-
由 Yuyang Du 提交于
The main PELT function ___update_load_avg(), which implements the accumulation and progression of the geometric average series, is implemented along the following lines for the scenario where the time delta spans all 3 possible sections (see figure below): 1. add the remainder of the last incomplete period 2. decay old sum 3. accumulate new sum in full periods since last_update_time 4. accumulate the current incomplete period 5. update averages Or: d1 d2 d3 ^ ^ ^ | | | |<->|<----------------->|<--->| ... |---x---|------| ... |------|-----x (now) load_sum' = (load_sum + weight * scale * d1) * y^(p+1) + (1,2) p weight * scale * 1024 * \Sum y^n + (3) n=1 weight * scale * d3 * y^0 (4) load_avg' = load_sum' / LOAD_AVG_MAX (5) Where: d1 - is the delta part completing the remainder of the last incomplete period, d2 - is the delta part spannind complete periods, and d3 - is the delta part starting the current incomplete period. We can simplify the code in two steps; the first step is to separate the first term into new and old parts like: (load_sum + weight * scale * d1) * y^(p+1) = load_sum * y^(p+1) + weight * scale * d1 * y^(p+1) Once we've done that, its easy to see that all new terms carry the common factors: weight * scale If we factor those out, we arrive at the form: load_sum' = load_sum * y^(p+1) + weight * scale * (d1 * y^(p+1) + p 1024 * \Sum y^n + n=1 d3 * y^0) Which results in a simpler, smaller and faster implementation. Signed-off-by: NYuyang Du <yuyang.du@intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: matt@codeblueprint.co.uk Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1486935863-25251-3-git-send-email-yuyang.du@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
a481db34