-
由 Pranith Kumar 提交于
The rcu_start_future_gp() function checks the current rcu_node's ->gpnum and ->completed twice, once without ACCESS_ONCE() and once with it. Which is pointless because we hold that rcu_node's ->lock at that point. The intent was to check the current rcu_node structure and the root rcu_node structure, the latter locklessly with ACCESS_ONCE(). This commit therefore makes that change. The reason that it is safe to locklessly check the root rcu_nodes's ->gpnum and ->completed fields is that we hold the current rcu_node's ->lock, which constrains the root rcu_node's ability to change its ->gpnum and ->completed fields. Of course, if there is a single rcu_node structure, then rnp_root==rnp, and holding the lock prevents all changes. If there is more than one rcu_node structure, then the code updates the fields in the following order: 1. Increment rnp_root->gpnum to start new grace period. 2. Increment rnp->gpnum to initialize the current rcu_node, continuing initialization for the new grace period. 3. Increment rnp_root->completed to end the current grace period. 4. Increment rnp->completed to continue cleaning up after the old grace period. So there are four possible combinations of relative values of these four fields: N N N N: RCU idle, new grace period must be initiated. Although rnp_root->gpnum might be incremented immediately after we check, that will just result in unnecessary work. The grace period already started, and we try to start it. N+1 N N N: RCU grace period just started. No further change is possible because we hold rnp->lock, so the checks of rnp_root->gpnum and rnp_root->completed are stable. We know that our request for a future grace period will be seen during grace-period cleanup. N+1 N N+1 N: RCU grace period is ongoing. Because rnp->gpnum is different than rnp->completed, we won't even look at rnp_root->gpnum and rnp_root->completed, so the possible concurrent change to rnp_root->completed does not matter. We know that our request for a future grace period will be seen during grace-period cleanup, which cannot pass this rcu_node because we hold its ->lock. N+1 N+1 N+1 N: RCU grace period has ended, but not yet been cleaned up. Because rnp->gpnum is different than rnp->completed, we won't look at rnp_root->gpnum and rnp_root->completed, so the possible concurrent change to rnp_root->completed does not matter. We know that our request for a future grace period will be seen during grace-period cleanup, which cannot pass this rcu_node because we hold its ->lock. Therefore, despite initial appearances, the lockless check is safe. Signed-off-by: NPranith Kumar <bobby.prani@gmail.com> [ paulmck: Update comment to say why the lockless check is safe. ] Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
48bd8e9b