mmu.c 121.1 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
A
Avi Kivity 已提交
44

45 46 47 48 49 50 51
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
52
bool tdp_enabled = false;
53

54 55 56 57
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
58 59 60
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
61
};
62

63
#undef MMU_DEBUG
64 65

#ifdef MMU_DEBUG
66 67
static bool dbg = 0;
module_param(dbg, bool, 0644);
68 69 70

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71
#define MMU_WARN_ON(x) WARN_ON(x)
72 73 74
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
75
#define MMU_WARN_ON(x) do { } while (0)
76
#endif
A
Avi Kivity 已提交
77

78 79
#define PTE_PREFETCH_NUM		8

80
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
81 82 83 84 85
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
86
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
87 88 89 90 91 92 93 94

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
95
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
96

97 98 99
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
100 101 102 103 104

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


105
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
106 107
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 109 110 111 112 113
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
114 115 116 117

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 119 120
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
121

122 123
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
124

125 126 127 128 129
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

130 131
#include <trace/events/kvm.h>

132 133 134
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

135 136
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137

138 139
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

140 141 142
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

143 144 145
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
146 147
};

148 149 150 151
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
152
	int level;
153 154 155 156 157 158 159 160
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

161 162 163 164 165 166
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

167
static struct kmem_cache *pte_list_desc_cache;
168
static struct kmem_cache *mmu_page_header_cache;
169
static struct percpu_counter kvm_total_used_mmu_pages;
170

S
Sheng Yang 已提交
171 172 173 174 175
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
176 177 178
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
179
static void mmu_free_roots(struct kvm_vcpu *vcpu);
180 181 182 183 184 185 186

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

187
/*
188 189 190 191 192 193 194
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
195
 */
196
#define MMIO_SPTE_GEN_LOW_SHIFT		2
197 198
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

199 200 201
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
202
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
203 204 205 206 207

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
208
	WARN_ON(gen & ~MMIO_GEN_MASK);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

226
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
227
{
228
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
229 230
}

231
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
232
			   unsigned access)
233
{
234
	unsigned int gen = kvm_current_mmio_generation(vcpu);
235
	u64 mask = generation_mmio_spte_mask(gen);
236

237
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 239
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

240
	trace_mark_mmio_spte(sptep, gfn, access, gen);
241
	mmu_spte_set(sptep, mask);
242 243 244 245 246 247 248 249 250
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
251
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252
	return (spte & ~mask) >> PAGE_SHIFT;
253 254 255 256
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
257
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258
	return (spte & ~mask) & ~PAGE_MASK;
259 260
}

261
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262
			  pfn_t pfn, unsigned access)
263 264
{
	if (unlikely(is_noslot_pfn(pfn))) {
265
		mark_mmio_spte(vcpu, sptep, gfn, access);
266 267 268 269 270
		return true;
	}

	return false;
}
271

272
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273
{
274 275
	unsigned int kvm_gen, spte_gen;

276
	kvm_gen = kvm_current_mmio_generation(vcpu);
277 278 279 280
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
281 282
}

S
Sheng Yang 已提交
283
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
285 286 287 288 289 290 291 292 293
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
294 295 296 297 298
static int is_cpuid_PSE36(void)
{
	return 1;
}

299 300
static int is_nx(struct kvm_vcpu *vcpu)
{
301
	return vcpu->arch.efer & EFER_NX;
302 303
}

304 305
static int is_shadow_present_pte(u64 pte)
{
306
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 308
}

M
Marcelo Tosatti 已提交
309 310 311 312 313
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

314
static int is_rmap_spte(u64 pte)
315
{
316
	return is_shadow_present_pte(pte);
317 318
}

319 320 321 322
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
323
	if (is_large_pte(pte))
324 325 326 327
		return 1;
	return 0;
}

328
static pfn_t spte_to_pfn(u64 pte)
329
{
330
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 332
}

333 334 335 336 337 338 339
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

340
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
341
static void __set_spte(u64 *sptep, u64 spte)
342
{
343
	*sptep = spte;
344 345
}

346
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347
{
348 349 350 351 352 353 354
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
355 356 357 358 359

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
360 361 362 363 364 365

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
366
#else
367 368 369 370 371 372 373
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
374

375 376 377 378 379 380 381 382 383 384 385 386
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

387 388 389
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
390

391 392 393 394 395 396 397 398 399 400 401 402 403
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
404 405
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
422
	count_spte_clear(sptep, spte);
423 424 425 426 427 428 429 430 431 432 433
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
434 435
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
436
	count_spte_clear(sptep, spte);
437 438 439

	return orig.spte;
}
440 441 442 443

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
444 445 446 447 448 449 450 451 452 453 454 455 456 457
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
498 499
#endif

500 501
static bool spte_is_locklessly_modifiable(u64 spte)
{
502 503
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
504 505
}

506 507
static bool spte_has_volatile_bits(u64 spte)
{
508 509 510 511 512 513 514 515 516
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

517 518 519 520 521 522
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

523 524
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
525 526 527 528 529
		return false;

	return true;
}

530 531 532 533 534
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

535 536 537 538 539
static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) != (new_spte & bit_mask);
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
554 555 556 557 558 559
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
560
 */
561
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562
{
563
	u64 old_spte = *sptep;
564
	bool ret = false;
565 566

	WARN_ON(!is_rmap_spte(new_spte));
567

568 569 570 571
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
572

573
	if (!spte_has_volatile_bits(old_spte))
574
		__update_clear_spte_fast(sptep, new_spte);
575
	else
576
		old_spte = __update_clear_spte_slow(sptep, new_spte);
577

578 579 580 581 582
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
583 584
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
585 586
		ret = true;

587
	if (!shadow_accessed_mask)
588
		return ret;
589

590 591 592 593 594 595 596 597
	/*
	 * Flush TLB when accessed/dirty bits are changed in the page tables,
	 * to guarantee consistency between TLB and page tables.
	 */
	if (spte_is_bit_changed(old_spte, new_spte,
                                shadow_accessed_mask | shadow_dirty_mask))
		ret = true;

598 599 600 601
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
602 603

	return ret;
604 605
}

606 607 608 609 610 611 612 613 614 615 616
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
617
		__update_clear_spte_fast(sptep, 0ull);
618
	else
619
		old_spte = __update_clear_spte_slow(sptep, 0ull);
620 621 622 623 624

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
625 626 627 628 629 630

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
631
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
647
	__update_clear_spte_fast(sptep, 0ull);
648 649
}

650 651 652 653 654 655 656
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
657 658 659 660 661 662 663 664 665 666 667
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
668 669 670 671
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
672 673 674 675 676 677 678 679
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
680 681
}

682
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
683
				  struct kmem_cache *base_cache, int min)
684 685 686 687
{
	void *obj;

	if (cache->nobjs >= min)
688
		return 0;
689
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
691
		if (!obj)
692
			return -ENOMEM;
693 694
		cache->objects[cache->nobjs++] = obj;
	}
695
	return 0;
696 697
}

698 699 700 701 702
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

703 704
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
705 706
{
	while (mc->nobjs)
707
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
708 709
}

A
Avi Kivity 已提交
710
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
711
				       int min)
A
Avi Kivity 已提交
712
{
713
	void *page;
A
Avi Kivity 已提交
714 715 716 717

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
718
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
719 720
		if (!page)
			return -ENOMEM;
721
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
722 723 724 725 726 727 728
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
729
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
730 731
}

732
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
733
{
734 735
	int r;

736
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
738 739
	if (r)
		goto out;
740
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
741 742
	if (r)
		goto out;
743
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
744
				   mmu_page_header_cache, 4);
745 746
out:
	return r;
747 748 749 750
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
751 752
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
753
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
754 755
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
756 757
}

758
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
759 760 761 762 763 764 765 766
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

767
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
768
{
769
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
770 771
}

772
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
773
{
774
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
775 776
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
793
/*
794 795
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
796
 */
797 798 799
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
800 801 802
{
	unsigned long idx;

803
	idx = gfn_to_index(gfn, slot->base_gfn, level);
804
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
805 806
}

807
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
808
{
809
	struct kvm_memslots *slots;
810
	struct kvm_memory_slot *slot;
811
	struct kvm_lpage_info *linfo;
812
	gfn_t gfn;
813
	int i;
M
Marcelo Tosatti 已提交
814

815
	gfn = sp->gfn;
816 817
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
818
	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
819 820
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
821
	}
822
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
823 824
}

825
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
826
{
827
	struct kvm_memslots *slots;
828
	struct kvm_memory_slot *slot;
829
	struct kvm_lpage_info *linfo;
830
	gfn_t gfn;
831
	int i;
M
Marcelo Tosatti 已提交
832

833
	gfn = sp->gfn;
834 835
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
836
	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
837 838 839
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
840
	}
841
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
842 843
}

844
static int has_wrprotected_page(struct kvm_vcpu *vcpu,
845 846
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
847
{
848
	struct kvm_memory_slot *slot;
849
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
850

851
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
M
Marcelo Tosatti 已提交
852
	if (slot) {
853 854
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
855 856 857 858 859
	}

	return 1;
}

860
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
861
{
J
Joerg Roedel 已提交
862
	unsigned long page_size;
863
	int i, ret = 0;
M
Marcelo Tosatti 已提交
864

J
Joerg Roedel 已提交
865
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
866

867
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
868 869 870 871 872 873
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

874
	return ret;
M
Marcelo Tosatti 已提交
875 876
}

877 878 879
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
880 881
{
	struct kvm_memory_slot *slot;
882

883
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
884 885 886 887 888 889 890 891 892
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
893
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
894 895 896 897 898
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
899

900 901 902 903 904
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
905
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
906 907

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
908
		if (has_wrprotected_page(vcpu, large_gfn, level))
909 910 911
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
912 913
}

914
/*
915
 * Pte mapping structures:
916
 *
917
 * If pte_list bit zero is zero, then pte_list point to the spte.
918
 *
919 920
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
921
 *
922
 * Returns the number of pte entries before the spte was added or zero if
923 924
 * the spte was not added.
 *
925
 */
926 927
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
928
{
929
	struct pte_list_desc *desc;
930
	int i, count = 0;
931

932 933 934 935 936 937 938
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
939
		desc->sptes[1] = spte;
940
		*pte_list = (unsigned long)desc | 1;
941
		++count;
942
	} else {
943 944 945
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
946
			desc = desc->more;
947
			count += PTE_LIST_EXT;
948
		}
949 950
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
951 952
			desc = desc->more;
		}
A
Avi Kivity 已提交
953
		for (i = 0; desc->sptes[i]; ++i)
954
			++count;
A
Avi Kivity 已提交
955
		desc->sptes[i] = spte;
956
	}
957
	return count;
958 959
}

960 961 962
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
963 964 965
{
	int j;

966
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
967
		;
A
Avi Kivity 已提交
968 969
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
970 971 972
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
973
		*pte_list = (unsigned long)desc->sptes[0];
974 975 976 977
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
978 979
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
980 981
}

982
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
983
{
984 985
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
986 987
	int i;

988 989
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
990
		BUG();
991 992 993 994
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
995 996
			BUG();
		}
997
		*pte_list = 0;
998
	} else {
999 1000
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1001 1002
		prev_desc = NULL;
		while (desc) {
1003
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
1004
				if (desc->sptes[i] == spte) {
1005
					pte_list_desc_remove_entry(pte_list,
1006
							       desc, i,
1007 1008 1009 1010 1011 1012
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1013
		pr_err("pte_list_remove: %p many->many\n", spte);
1014 1015 1016 1017
		BUG();
	}
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1038
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1039
				    struct kvm_memory_slot *slot)
1040
{
1041
	unsigned long idx;
1042

1043
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1044
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1045 1046
}

1047 1048 1049
/*
 * Take gfn and return the reverse mapping to it.
 */
1050
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
1051
{
1052
	struct kvm_memslots *slots;
1053 1054
	struct kvm_memory_slot *slot;

1055 1056
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1057
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1058 1059
}

1060 1061 1062 1063 1064 1065 1066 1067
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1068 1069 1070 1071 1072 1073 1074
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1075
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1087
	rmapp = gfn_to_rmap(kvm, gfn, sp);
1088 1089 1090
	pte_list_remove(spte, rmapp);
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1152 1153 1154 1155 1156
#define for_each_rmap_spte(_rmap_, _iter_, _spte_)			    \
	   for (_spte_ = rmap_get_first(*_rmap_, _iter_);		    \
		_spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;});  \
			_spte_ = rmap_get_next(_iter_))

1157
static void drop_spte(struct kvm *kvm, u64 *sptep)
1158
{
1159
	if (mmu_spte_clear_track_bits(sptep))
1160
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1161 1162
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1184
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1185
 * spte write-protection is caused by protecting shadow page table.
1186
 *
T
Tiejun Chen 已提交
1187
 * Note: write protection is difference between dirty logging and spte
1188 1189 1190 1191 1192
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1193
 *
1194
 * Return true if tlb need be flushed.
1195
 */
1196
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1197 1198 1199
{
	u64 spte = *sptep;

1200 1201
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1202 1203 1204 1205
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1206 1207
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1208
	spte = spte & ~PT_WRITABLE_MASK;
1209

1210
	return mmu_spte_update(sptep, spte);
1211 1212
}

1213
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1214
				 bool pt_protect)
1215
{
1216 1217
	u64 *sptep;
	struct rmap_iterator iter;
1218
	bool flush = false;
1219

1220
	for_each_rmap_spte(rmapp, &iter, sptep)
1221
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1222

1223
	return flush;
1224 1225
}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1243
	for_each_rmap_spte(rmapp, &iter, sptep)
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		flush |= spte_clear_dirty(kvm, sptep);

	return flush;
}

static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1266
	for_each_rmap_spte(rmapp, &iter, sptep)
1267 1268 1269 1270 1271
		flush |= spte_set_dirty(kvm, sptep);

	return flush;
}

1272
/**
1273
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1274 1275 1276 1277 1278 1279 1280 1281
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1282
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1283 1284
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1285 1286 1287
{
	unsigned long *rmapp;

1288
	while (mask) {
1289 1290
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1291
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1292

1293 1294 1295
		/* clear the first set bit */
		mask &= mask - 1;
	}
1296 1297
}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/**
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
	unsigned long *rmapp;

	while (mask) {
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmapp);

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1338 1339 1340 1341 1342
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1343 1344
}

1345
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1346 1347
{
	struct kvm_memory_slot *slot;
1348 1349
	unsigned long *rmapp;
	int i;
1350
	bool write_protected = false;
1351

1352
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1353

1354
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1355
		rmapp = __gfn_to_rmap(gfn, i, slot);
1356
		write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
1357 1358 1359
	}

	return write_protected;
1360 1361
}

1362
static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1363
{
1364 1365
	u64 *sptep;
	struct rmap_iterator iter;
1366
	bool flush = false;
1367

1368 1369
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1370
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1371 1372

		drop_spte(kvm, sptep);
1373
		flush = true;
1374
	}
1375

1376 1377 1378 1379 1380 1381 1382 1383
	return flush;
}

static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
	return kvm_zap_rmapp(kvm, rmapp);
1384 1385
}

F
Frederik Deweerdt 已提交
1386
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1387 1388
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1389
{
1390 1391
	u64 *sptep;
	struct rmap_iterator iter;
1392
	int need_flush = 0;
1393
	u64 new_spte;
1394 1395 1396 1397 1398
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1399

1400 1401
restart:
	for_each_rmap_spte(rmapp, &iter, sptep) {
1402 1403
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1404

1405
		need_flush = 1;
1406

1407
		if (pte_write(*ptep)) {
1408
			drop_spte(kvm, sptep);
1409
			goto restart;
1410
		} else {
1411
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1412 1413 1414 1415
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1416
			new_spte &= ~shadow_accessed_mask;
1417 1418 1419

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1420 1421
		}
	}
1422

1423 1424 1425 1426 1427 1428
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
	unsigned long *rmap;
	int level;

	/* private field. */
	unsigned long *end_rmap;
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1497 1498 1499 1500 1501 1502
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1503
					       struct kvm_memory_slot *slot,
1504 1505
					       gfn_t gfn,
					       int level,
1506
					       unsigned long data))
1507
{
1508
	struct kvm_memslots *slots;
1509
	struct kvm_memory_slot *memslot;
1510 1511
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1512
	int i;
1513

1514 1515 1516 1517 1518
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1539 1540
	}

1541
	return ret;
1542 1543
}

1544 1545 1546
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1547
					 struct kvm_memory_slot *slot,
1548
					 gfn_t gfn, int level,
1549 1550 1551
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1552 1553 1554 1555
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1556 1557 1558
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1559 1560 1561 1562 1563
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1564 1565
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1566
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1567 1568
}

F
Frederik Deweerdt 已提交
1569
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1570 1571
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1572
{
1573
	u64 *sptep;
1574
	struct rmap_iterator uninitialized_var(iter);
1575 1576
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1577
	BUG_ON(!shadow_accessed_mask);
1578

1579
	for_each_rmap_spte(rmapp, &iter, sptep)
1580
		if (*sptep & shadow_accessed_mask) {
1581
			young = 1;
1582 1583
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1584
		}
1585

1586
	trace_kvm_age_page(gfn, level, slot, young);
1587 1588 1589
	return young;
}

A
Andrea Arcangeli 已提交
1590
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1591 1592
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1593
{
1594 1595
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1606
	for_each_rmap_spte(rmapp, &iter, sptep)
1607
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1608 1609 1610 1611 1612 1613 1614
			young = 1;
			break;
		}
out:
	return young;
}

1615 1616
#define RMAP_RECYCLE_THRESHOLD 1000

1617
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1618 1619
{
	unsigned long *rmapp;
1620 1621 1622
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1623

1624
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1625

1626
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1627 1628 1629
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1630
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1631
{
A
Andres Lagar-Cavilla 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1653 1654
}

A
Andrea Arcangeli 已提交
1655 1656 1657 1658 1659
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1660
#ifdef MMU_DEBUG
1661
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1662
{
1663 1664 1665
	u64 *pos;
	u64 *end;

1666
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1667
		if (is_shadow_present_pte(*pos)) {
1668
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1669
			       pos, *pos);
A
Avi Kivity 已提交
1670
			return 0;
1671
		}
A
Avi Kivity 已提交
1672 1673
	return 1;
}
1674
#endif
A
Avi Kivity 已提交
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1688
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1689
{
1690
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1691
	hlist_del(&sp->hash_link);
1692 1693
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1694 1695
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1696
	kmem_cache_free(mmu_page_header_cache, sp);
1697 1698
}

1699 1700
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1701
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1702 1703
}

1704
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1705
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1706 1707 1708 1709
{
	if (!parent_pte)
		return;

1710
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1711 1712
}

1713
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1714 1715
				       u64 *parent_pte)
{
1716
	pte_list_remove(parent_pte, &sp->parent_ptes);
1717 1718
}

1719 1720 1721 1722
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1723
	mmu_spte_clear_no_track(parent_pte);
1724 1725
}

1726 1727
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1728
{
1729
	struct kvm_mmu_page *sp;
1730

1731 1732
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1733
	if (!direct)
1734
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1735
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1736 1737 1738 1739 1740 1741

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1742 1743 1744 1745 1746
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1747 1748
}

1749
static void mark_unsync(u64 *spte);
1750
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1751
{
1752
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1753 1754
}

1755
static void mark_unsync(u64 *spte)
1756
{
1757
	struct kvm_mmu_page *sp;
1758
	unsigned int index;
1759

1760
	sp = page_header(__pa(spte));
1761 1762
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1763
		return;
1764
	if (sp->unsync_children++)
1765
		return;
1766
	kvm_mmu_mark_parents_unsync(sp);
1767 1768
}

1769
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1770
			       struct kvm_mmu_page *sp)
1771 1772 1773 1774
{
	return 1;
}

M
Marcelo Tosatti 已提交
1775 1776 1777 1778
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1779 1780
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1781
				 const void *pte)
1782 1783 1784 1785
{
	WARN_ON(1);
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1796 1797
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1798
{
1799
	int i;
1800

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1816

1817
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1818
		struct kvm_mmu_page *child;
1819 1820
		u64 ent = sp->spt[i];

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1850 1851 1852
	}


1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1864 1865 1866 1867 1868
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1869
	trace_kvm_mmu_sync_page(sp);
1870 1871 1872 1873
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1874 1875 1876 1877
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1878

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1889 1890 1891 1892 1893 1894 1895 1896
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1897

1898
/* @sp->gfn should be write-protected at the call site */
1899
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1900
			   struct list_head *invalid_list, bool clear_unsync)
1901
{
1902
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1903
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1904 1905 1906
		return 1;
	}

1907
	if (clear_unsync)
1908 1909
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1910
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1911
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1912 1913 1914
		return 1;
	}

1915
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1916 1917 1918
	return 0;
}

1919 1920 1921
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1922
	LIST_HEAD(invalid_list);
1923 1924
	int ret;

1925
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1926
	if (ret)
1927 1928
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1929 1930 1931
	return ret;
}

1932 1933 1934 1935 1936 1937 1938
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1939 1940
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1941
{
1942
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1943 1944
}

1945 1946 1947 1948
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1949
	LIST_HEAD(invalid_list);
1950 1951
	bool flush = false;

1952
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1953
		if (!s->unsync)
1954 1955 1956
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1957
		kvm_unlink_unsync_page(vcpu->kvm, s);
1958
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1959
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1960
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1961 1962 1963 1964 1965
			continue;
		}
		flush = true;
	}

1966
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1967
	if (flush)
1968
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1969 1970
}

1971 1972 1973
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1974 1975
};

1976 1977 1978 1979 1980 1981
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1982 1983 1984
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

2003
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2004
{
2005 2006 2007 2008 2009
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2020 2021
}

2022 2023 2024
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
2025
{
2026 2027 2028
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
2029

2030 2031 2032 2033 2034 2035 2036
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2037
	LIST_HEAD(invalid_list);
2038 2039 2040

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
2041
		bool protected = false;
2042 2043

		for_each_sp(pages, sp, parents, i)
2044
			protected |= rmap_write_protect(vcpu, sp->gfn);
2045 2046 2047 2048

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

2049
		for_each_sp(pages, sp, parents, i) {
2050
			kvm_sync_page(vcpu, sp, &invalid_list);
2051 2052
			mmu_pages_clear_parents(&parents);
		}
2053
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2054
		cond_resched_lock(&vcpu->kvm->mmu_lock);
2055 2056
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
2057 2058
}

2059 2060 2061 2062 2063 2064 2065 2066
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2079 2080 2081 2082 2083
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2084 2085 2086 2087
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2088
					     int direct,
2089
					     unsigned access,
2090
					     u64 *parent_pte)
2091 2092 2093
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2094 2095
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2096

2097
	role = vcpu->arch.mmu.base_role;
2098
	role.level = level;
2099
	role.direct = direct;
2100
	if (role.direct)
2101
		role.cr4_pae = 0;
2102
	role.access = access;
2103 2104
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2105 2106 2107 2108
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2109
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2110 2111 2112
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

2113 2114
		if (!need_sync && sp->unsync)
			need_sync = true;
2115

2116 2117
		if (sp->role.word != role.word)
			continue;
2118

2119 2120
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
2121

2122 2123
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
2124
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2125 2126 2127
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
2128

2129
		__clear_sp_write_flooding_count(sp);
2130 2131 2132
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
2133
	++vcpu->kvm->stat.mmu_cache_miss;
2134
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2135 2136 2137 2138
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
2139 2140
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2141
	if (!direct) {
2142
		if (rmap_write_protect(vcpu, gfn))
2143
			kvm_flush_remote_tlbs(vcpu->kvm);
2144 2145 2146
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

2147
		account_shadowed(vcpu->kvm, sp);
2148
	}
2149
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2150
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
2151
	trace_kvm_mmu_get_page(sp, true);
2152
	return sp;
2153 2154
}

2155 2156 2157 2158 2159 2160
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2161 2162 2163 2164 2165 2166

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2181

2182 2183 2184 2185 2186
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2187 2188
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2189
{
2190
	if (is_last_spte(spte, iterator->level)) {
2191 2192 2193 2194
		iterator->level = 0;
		return;
	}

2195
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2196 2197 2198
	--iterator->level;
}

2199 2200 2201 2202 2203
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2204
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2205 2206 2207
{
	u64 spte;

2208 2209 2210
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2211
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2212 2213 2214 2215
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2216

2217
	mmu_spte_set(sptep, spte);
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2237
		drop_parent_pte(child, sptep);
2238 2239 2240 2241
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2242
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2243 2244 2245 2246 2247 2248 2249
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2250
		if (is_last_spte(pte, sp->role.level)) {
2251
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2252 2253 2254
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2255
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2256
			drop_parent_pte(child, spte);
2257
		}
X
Xiao Guangrong 已提交
2258 2259 2260 2261
		return true;
	}

	if (is_mmio_spte(pte))
2262
		mmu_spte_clear_no_track(spte);
2263

X
Xiao Guangrong 已提交
2264
	return false;
2265 2266
}

2267
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2268
					 struct kvm_mmu_page *sp)
2269
{
2270 2271
	unsigned i;

2272 2273
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2274 2275
}

2276
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2277
{
2278
	mmu_page_remove_parent_pte(sp, parent_pte);
2279 2280
}

2281
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2282
{
2283 2284
	u64 *sptep;
	struct rmap_iterator iter;
2285

2286 2287
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2288 2289
}

2290
static int mmu_zap_unsync_children(struct kvm *kvm,
2291 2292
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2293
{
2294 2295 2296
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2297

2298
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2299
		return 0;
2300 2301 2302 2303 2304 2305

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2306
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2307
			mmu_pages_clear_parents(&parents);
2308
			zapped++;
2309 2310 2311 2312 2313
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2314 2315
}

2316 2317
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2318
{
2319
	int ret;
A
Avi Kivity 已提交
2320

2321
	trace_kvm_mmu_prepare_zap_page(sp);
2322
	++kvm->stat.mmu_shadow_zapped;
2323
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2324
	kvm_mmu_page_unlink_children(kvm, sp);
2325
	kvm_mmu_unlink_parents(kvm, sp);
2326

2327
	if (!sp->role.invalid && !sp->role.direct)
2328
		unaccount_shadowed(kvm, sp);
2329

2330 2331
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2332
	if (!sp->root_count) {
2333 2334
		/* Count self */
		ret++;
2335
		list_move(&sp->link, invalid_list);
2336
		kvm_mod_used_mmu_pages(kvm, -1);
2337
	} else {
A
Avi Kivity 已提交
2338
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2339 2340 2341 2342 2343 2344 2345

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2346
	}
2347 2348

	sp->role.invalid = 1;
2349
	return ret;
2350 2351
}

2352 2353 2354
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2355
	struct kvm_mmu_page *sp, *nsp;
2356 2357 2358 2359

	if (list_empty(invalid_list))
		return;

2360 2361 2362 2363 2364
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2365

2366 2367 2368 2369 2370
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2371

2372
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2373
		WARN_ON(!sp->role.invalid || sp->root_count);
2374
		kvm_mmu_free_page(sp);
2375
	}
2376 2377
}

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2393 2394
/*
 * Changing the number of mmu pages allocated to the vm
2395
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2396
 */
2397
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2398
{
2399
	LIST_HEAD(invalid_list);
2400

2401 2402
	spin_lock(&kvm->mmu_lock);

2403
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2404 2405 2406 2407
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2408

2409
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2410
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2411 2412
	}

2413
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2414 2415

	spin_unlock(&kvm->mmu_lock);
2416 2417
}

2418
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2419
{
2420
	struct kvm_mmu_page *sp;
2421
	LIST_HEAD(invalid_list);
2422 2423
	int r;

2424
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2425
	r = 0;
2426
	spin_lock(&kvm->mmu_lock);
2427
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2428
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2429 2430
			 sp->role.word);
		r = 1;
2431
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2432
	}
2433
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2434 2435
	spin_unlock(&kvm->mmu_lock);

2436
	return r;
2437
}
2438
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2439

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2450 2451
{
	struct kvm_mmu_page *s;
2452

2453
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2454
		if (s->unsync)
2455
			continue;
2456 2457
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2458 2459 2460 2461 2462 2463
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2464 2465 2466
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2467
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2468 2469 2470
		if (!can_unsync)
			return 1;

2471
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2472
			return 1;
2473

G
Gleb Natapov 已提交
2474
		if (!s->unsync)
2475
			need_unsync = true;
2476
	}
2477 2478
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2479 2480 2481
	return 0;
}

A
Avi Kivity 已提交
2482
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2483
		    unsigned pte_access, int level,
2484
		    gfn_t gfn, pfn_t pfn, bool speculative,
2485
		    bool can_unsync, bool host_writable)
2486
{
2487
	u64 spte;
M
Marcelo Tosatti 已提交
2488
	int ret = 0;
S
Sheng Yang 已提交
2489

2490
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2491 2492
		return 0;

2493
	spte = PT_PRESENT_MASK;
2494
	if (!speculative)
2495
		spte |= shadow_accessed_mask;
2496

S
Sheng Yang 已提交
2497 2498 2499 2500
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2501

2502
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2503
		spte |= shadow_user_mask;
2504

2505
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2506
		spte |= PT_PAGE_SIZE_MASK;
2507
	if (tdp_enabled)
2508
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2509
			kvm_is_reserved_pfn(pfn));
2510

2511
	if (host_writable)
2512
		spte |= SPTE_HOST_WRITEABLE;
2513 2514
	else
		pte_access &= ~ACC_WRITE_MASK;
2515

2516
	spte |= (u64)pfn << PAGE_SHIFT;
2517

2518
	if (pte_access & ACC_WRITE_MASK) {
2519

X
Xiao Guangrong 已提交
2520
		/*
2521 2522 2523 2524
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2525
		 */
2526
		if (level > PT_PAGE_TABLE_LEVEL &&
2527
		    has_wrprotected_page(vcpu, gfn, level))
A
Avi Kivity 已提交
2528
			goto done;
2529

2530
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2531

2532 2533 2534 2535 2536 2537
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2538
		if (!can_unsync && is_writable_pte(*sptep))
2539 2540
			goto set_pte;

2541
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2542
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2543
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2544
			ret = 1;
2545
			pte_access &= ~ACC_WRITE_MASK;
2546
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2547 2548 2549
		}
	}

2550
	if (pte_access & ACC_WRITE_MASK) {
2551
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2552 2553
		spte |= shadow_dirty_mask;
	}
2554

2555
set_pte:
2556
	if (mmu_spte_update(sptep, spte))
2557
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2558
done:
M
Marcelo Tosatti 已提交
2559 2560 2561
	return ret;
}

A
Avi Kivity 已提交
2562
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2563 2564 2565
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2566 2567
{
	int was_rmapped = 0;
2568
	int rmap_count;
M
Marcelo Tosatti 已提交
2569

2570 2571
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2572

A
Avi Kivity 已提交
2573
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2574 2575 2576 2577
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2578 2579
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2580
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2581
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2582 2583

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2584
			drop_parent_pte(child, sptep);
2585
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2586
		} else if (pfn != spte_to_pfn(*sptep)) {
2587
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2588
				 spte_to_pfn(*sptep), pfn);
2589
			drop_spte(vcpu->kvm, sptep);
2590
			kvm_flush_remote_tlbs(vcpu->kvm);
2591 2592
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2593
	}
2594

2595 2596
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2597
		if (write_fault)
2598
			*emulate = 1;
2599
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2600
	}
M
Marcelo Tosatti 已提交
2601

2602 2603 2604
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2605
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2606
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2607
		 is_large_pte(*sptep)? "2MB" : "4kB",
2608 2609
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2610
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2611 2612
		++vcpu->kvm->stat.lpages;

2613 2614 2615 2616 2617 2618
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2619
	}
2620

X
Xiao Guangrong 已提交
2621
	kvm_release_pfn_clean(pfn);
2622 2623
}

2624 2625 2626 2627 2628
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2629
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2630
	if (!slot)
2631
		return KVM_PFN_ERR_FAULT;
2632

2633
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2634 2635 2636 2637 2638 2639 2640
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2641
	struct kvm_memory_slot *slot;
2642 2643 2644 2645 2646
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2647 2648
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2649 2650
		return -1;

2651
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2652 2653 2654 2655
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2656
		mmu_set_spte(vcpu, start, access, 0, NULL,
2657 2658
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2675
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2706
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2707 2708
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2709
{
2710
	struct kvm_shadow_walk_iterator iterator;
2711
	struct kvm_mmu_page *sp;
2712
	int emulate = 0;
2713
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2714

2715 2716 2717
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2718
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2719
		if (iterator.level == level) {
2720
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2721 2722
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2723
			direct_pte_prefetch(vcpu, iterator.sptep);
2724 2725
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2726 2727
		}

2728
		drop_large_spte(vcpu, iterator.sptep);
2729
		if (!is_shadow_present_pte(*iterator.sptep)) {
2730 2731 2732 2733
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2734 2735 2736
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2737

2738
			link_shadow_page(iterator.sptep, sp, true);
2739 2740
		}
	}
2741
	return emulate;
A
Avi Kivity 已提交
2742 2743
}

H
Huang Ying 已提交
2744
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2745
{
H
Huang Ying 已提交
2746 2747 2748 2749 2750 2751 2752
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2753

H
Huang Ying 已提交
2754
	send_sig_info(SIGBUS, &info, tsk);
2755 2756
}

2757
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2758
{
X
Xiao Guangrong 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2768
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2769
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2770
		return 0;
2771
	}
2772

2773
	return -EFAULT;
2774 2775
}

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2789
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2790 2791
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
2792
	    !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2811
			kvm_get_pfn(pfn);
2812 2813 2814 2815 2816
			*pfnp = pfn;
		}
	}
}

2817 2818 2819 2820 2821 2822
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2823
	if (unlikely(is_error_pfn(pfn))) {
2824 2825 2826 2827
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2828
	if (unlikely(is_noslot_pfn(pfn)))
2829 2830 2831 2832 2833 2834 2835
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2836
static bool page_fault_can_be_fast(u32 error_code)
2837
{
2838 2839 2840 2841 2842 2843 2844
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2858 2859
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
2883
	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2884
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2898
	struct kvm_mmu_page *sp;
2899 2900 2901
	bool ret = false;
	u64 spte = 0ull;

2902 2903 2904
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2905
	if (!page_fault_can_be_fast(error_code))
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

2922 2923
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2957 2958 2959 2960 2961
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2962
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2963
exit:
X
Xiao Guangrong 已提交
2964 2965
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2966 2967 2968 2969 2970
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2971
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2972
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2973
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2974

2975 2976
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2977 2978
{
	int r;
2979
	int level;
2980
	int force_pt_level;
2981
	pfn_t pfn;
2982
	unsigned long mmu_seq;
2983
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2984

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2995

2996 2997 2998
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2999

3000 3001 3002
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

3003
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3004
	smp_rmb();
3005

3006
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3007
		return 0;
3008

3009 3010
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3011

3012
	spin_lock(&vcpu->kvm->mmu_lock);
3013
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3014
		goto out_unlock;
3015
	make_mmu_pages_available(vcpu);
3016 3017
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3018 3019
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
3020 3021 3022
	spin_unlock(&vcpu->kvm->mmu_lock);


3023
	return r;
3024 3025 3026 3027 3028

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3029 3030 3031
}


3032 3033 3034
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3035
	struct kvm_mmu_page *sp;
3036
	LIST_HEAD(invalid_list);
3037

3038
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3039
		return;
3040

3041 3042 3043
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
3044
		hpa_t root = vcpu->arch.mmu.root_hpa;
3045

3046
		spin_lock(&vcpu->kvm->mmu_lock);
3047 3048
		sp = page_header(root);
		--sp->root_count;
3049 3050 3051 3052
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3053
		spin_unlock(&vcpu->kvm->mmu_lock);
3054
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3055 3056
		return;
	}
3057 3058

	spin_lock(&vcpu->kvm->mmu_lock);
3059
	for (i = 0; i < 4; ++i) {
3060
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3061

A
Avi Kivity 已提交
3062 3063
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3064 3065
			sp = page_header(root);
			--sp->root_count;
3066
			if (!sp->root_count && sp->role.invalid)
3067 3068
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3069
		}
3070
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3071
	}
3072
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3073
	spin_unlock(&vcpu->kvm->mmu_lock);
3074
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3075 3076
}

3077 3078 3079 3080 3081
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3082
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3083 3084 3085 3086 3087 3088
		ret = 1;
	}

	return ret;
}

3089 3090 3091
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3092
	unsigned i;
3093 3094 3095

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3096
		make_mmu_pages_available(vcpu);
3097 3098 3099 3100 3101 3102 3103 3104 3105
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3106
			MMU_WARN_ON(VALID_PAGE(root));
3107
			spin_lock(&vcpu->kvm->mmu_lock);
3108
			make_mmu_pages_available(vcpu);
3109 3110
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3111 3112 3113 3114 3115 3116 3117
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3118
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3119 3120 3121 3122 3123 3124 3125
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3126
{
3127
	struct kvm_mmu_page *sp;
3128 3129 3130
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3131

3132
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3133

3134 3135 3136 3137 3138 3139 3140 3141
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3142
		hpa_t root = vcpu->arch.mmu.root_hpa;
3143

3144
		MMU_WARN_ON(VALID_PAGE(root));
3145

3146
		spin_lock(&vcpu->kvm->mmu_lock);
3147
		make_mmu_pages_available(vcpu);
3148 3149
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3150 3151
		root = __pa(sp->spt);
		++sp->root_count;
3152
		spin_unlock(&vcpu->kvm->mmu_lock);
3153
		vcpu->arch.mmu.root_hpa = root;
3154
		return 0;
3155
	}
3156

3157 3158
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3159 3160
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3161
	 */
3162 3163 3164 3165
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3166
	for (i = 0; i < 4; ++i) {
3167
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3168

3169
		MMU_WARN_ON(VALID_PAGE(root));
3170
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3171
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3172
			if (!is_present_gpte(pdptr)) {
3173
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3174 3175
				continue;
			}
A
Avi Kivity 已提交
3176
			root_gfn = pdptr >> PAGE_SHIFT;
3177 3178
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3179
		}
3180
		spin_lock(&vcpu->kvm->mmu_lock);
3181
		make_mmu_pages_available(vcpu);
3182
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3183
				      PT32_ROOT_LEVEL, 0,
3184
				      ACC_ALL, NULL);
3185 3186
		root = __pa(sp->spt);
		++sp->root_count;
3187 3188
		spin_unlock(&vcpu->kvm->mmu_lock);

3189
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3190
	}
3191
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3218
	return 0;
3219 3220
}

3221 3222 3223 3224 3225 3226 3227 3228
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3229 3230 3231 3232 3233
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3234 3235 3236
	if (vcpu->arch.mmu.direct_map)
		return;

3237 3238
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3239

3240
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3241
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3242
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3243 3244 3245
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3246
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3247 3248 3249 3250 3251
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3252
		if (root && VALID_PAGE(root)) {
3253 3254 3255 3256 3257
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3258
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3259 3260 3261 3262 3263 3264
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3265
	spin_unlock(&vcpu->kvm->mmu_lock);
3266
}
N
Nadav Har'El 已提交
3267
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3268

3269
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3270
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3271
{
3272 3273
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3274 3275 3276
	return vaddr;
}

3277
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3278 3279
					 u32 access,
					 struct x86_exception *exception)
3280
{
3281 3282
	if (exception)
		exception->error_code = 0;
3283
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3284 3285
}

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

3314 3315 3316
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return spte;

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3331
		return RET_MMIO_PF_EMULATE;
3332 3333 3334 3335 3336 3337 3338

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3339
		if (!check_mmio_spte(vcpu, spte))
3340 3341
			return RET_MMIO_PF_INVALID;

3342 3343
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3344 3345

		trace_handle_mmio_page_fault(addr, gfn, access);
3346
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3347
		return RET_MMIO_PF_EMULATE;
3348 3349 3350 3351 3352 3353 3354
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3355
		return RET_MMIO_PF_BUG;
3356 3357 3358 3359 3360

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3361
	return RET_MMIO_PF_RETRY;
3362 3363 3364 3365 3366 3367 3368 3369 3370
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3371
	WARN_ON(ret == RET_MMIO_PF_BUG);
3372 3373 3374
	return ret;
}

A
Avi Kivity 已提交
3375
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3376
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3377
{
3378
	gfn_t gfn;
3379
	int r;
A
Avi Kivity 已提交
3380

3381
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3382

3383 3384 3385 3386 3387 3388
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3389

3390 3391 3392
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3393

3394
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3395

3396
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3397

3398
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3399
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3400 3401
}

3402
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3403 3404
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3405

3406
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3407
	arch.gfn = gfn;
3408
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3409
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3410

3411
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3423
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3424
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3425
{
3426
	struct kvm_memory_slot *slot;
3427 3428
	bool async;

3429
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3430 3431
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3432 3433 3434
	if (!async)
		return false; /* *pfn has correct page already */

3435
	if (!prefault && can_do_async_pf(vcpu)) {
3436
		trace_kvm_try_async_get_page(gva, gfn);
3437 3438 3439 3440 3441 3442 3443 3444
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3445
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3446 3447 3448
	return false;
}

G
Gleb Natapov 已提交
3449
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3450
			  bool prefault)
3451
{
3452
	pfn_t pfn;
3453
	int r;
3454
	int level;
3455
	int force_pt_level;
M
Marcelo Tosatti 已提交
3456
	gfn_t gfn = gpa >> PAGE_SHIFT;
3457
	unsigned long mmu_seq;
3458 3459
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3460

3461
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3462

3463 3464 3465 3466 3467 3468
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3469

3470 3471 3472 3473
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3474 3475 3476 3477 3478 3479
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3480

3481 3482 3483
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3484
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3485
	smp_rmb();
3486

3487
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3488 3489
		return 0;

3490 3491 3492
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3493
	spin_lock(&vcpu->kvm->mmu_lock);
3494
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3495
		goto out_unlock;
3496
	make_mmu_pages_available(vcpu);
3497 3498
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3499
	r = __direct_map(vcpu, gpa, write, map_writable,
3500
			 level, gfn, pfn, prefault);
3501 3502 3503
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3504 3505 3506 3507 3508

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3509 3510
}

3511 3512
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3513 3514 3515
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3516
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3517
	context->invlpg = nonpaging_invlpg;
3518
	context->update_pte = nonpaging_update_pte;
3519
	context->root_level = 0;
A
Avi Kivity 已提交
3520
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3521
	context->root_hpa = INVALID_PAGE;
3522
	context->direct_map = true;
3523
	context->nx = false;
A
Avi Kivity 已提交
3524 3525
}

3526
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3527
{
3528
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3529 3530
}

3531 3532
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3533
	return kvm_read_cr3(vcpu);
3534 3535
}

3536 3537
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3538
{
3539
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3540 3541
}

3542
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3543
			   unsigned access, int *nr_present)
3544 3545 3546 3547 3548 3549 3550 3551
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3552
		mark_mmio_spte(vcpu, sptep, gfn, access);
3553 3554 3555 3556 3557 3558
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3568 3569 3570 3571 3572
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3573 3574 3575 3576 3577 3578 3579 3580
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3581
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3582
				  struct kvm_mmu *context)
3583 3584 3585
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;
3586
	u64 gbpages_bit_rsvd = 0;
3587
	u64 nonleaf_bit8_rsvd = 0;
3588

3589 3590
	context->bad_mt_xwr = 0;

3591
	if (!context->nx)
3592
		exb_bit_rsvd = rsvd_bits(63, 63);
3593 3594
	if (!guest_cpuid_has_gbpages(vcpu))
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3595 3596 3597 3598 3599 3600 3601 3602

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
	if (guest_cpuid_is_amd(vcpu))
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3603
	switch (context->root_level) {
3604 3605 3606 3607
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3608 3609 3610 3611 3612 3613 3614
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3615 3616 3617 3618 3619 3620 3621 3622
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3623 3624
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
3625
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3626
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3627
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3628 3629 3630 3631 3632
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3633
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3634 3635 3636
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3637
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3638
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3639
			nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3640
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3641
			rsvd_bits(maxphyaddr, 51);
3642 3643 3644
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3645
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3646
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3647
			rsvd_bits(13, 29);
3648
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3649 3650
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3651
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3652 3653 3654 3655
		break;
	}
}

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

3688 3689
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
3690 3691 3692
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3693
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3694

F
Feng Wu 已提交
3695
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3696
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3697 3698 3699 3700 3701 3702
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3703 3704 3705 3706 3707 3708
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3709 3710 3711 3712 3713
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3714 3715 3716 3717 3718 3719
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3720
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3741 3742 3743
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3744

F
Feng Wu 已提交
3745 3746
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3747 3748 3749 3750 3751 3752
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3771 3772 3773
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3774
{
3775
	context->nx = is_nx(vcpu);
3776
	context->root_level = level;
3777

3778
	reset_rsvds_bits_mask(vcpu, context);
3779
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3780
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3781

3782
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
3783 3784
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3785
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3786
	context->invlpg = paging64_invlpg;
3787
	context->update_pte = paging64_update_pte;
3788
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3789
	context->root_hpa = INVALID_PAGE;
3790
	context->direct_map = false;
A
Avi Kivity 已提交
3791 3792
}

3793 3794
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3795
{
3796
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3797 3798
}

3799 3800
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3801
{
3802
	context->nx = false;
3803
	context->root_level = PT32_ROOT_LEVEL;
3804

3805
	reset_rsvds_bits_mask(vcpu, context);
3806
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3807
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3808 3809 3810

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3811
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3812
	context->invlpg = paging32_invlpg;
3813
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3814
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3815
	context->root_hpa = INVALID_PAGE;
3816
	context->direct_map = false;
A
Avi Kivity 已提交
3817 3818
}

3819 3820
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3821
{
3822
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3823 3824
}

3825
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3826
{
3827
	struct kvm_mmu *context = &vcpu->arch.mmu;
3828

3829
	context->base_role.word = 0;
3830
	context->base_role.smm = is_smm(vcpu);
3831
	context->page_fault = tdp_page_fault;
3832
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3833
	context->invlpg = nonpaging_invlpg;
3834
	context->update_pte = nonpaging_update_pte;
3835
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3836
	context->root_hpa = INVALID_PAGE;
3837
	context->direct_map = true;
3838
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3839
	context->get_cr3 = get_cr3;
3840
	context->get_pdptr = kvm_pdptr_read;
3841
	context->inject_page_fault = kvm_inject_page_fault;
3842 3843

	if (!is_paging(vcpu)) {
3844
		context->nx = false;
3845 3846 3847
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3848
		context->nx = is_nx(vcpu);
3849
		context->root_level = PT64_ROOT_LEVEL;
3850 3851
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3852
	} else if (is_pae(vcpu)) {
3853
		context->nx = is_nx(vcpu);
3854
		context->root_level = PT32E_ROOT_LEVEL;
3855 3856
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3857
	} else {
3858
		context->nx = false;
3859
		context->root_level = PT32_ROOT_LEVEL;
3860 3861
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3862 3863
	}

3864
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3865
	update_last_pte_bitmap(vcpu, context);
3866 3867
}

3868
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3869
{
3870
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3871
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3872 3873
	struct kvm_mmu *context = &vcpu->arch.mmu;

3874
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
3875 3876

	if (!is_paging(vcpu))
3877
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3878
	else if (is_long_mode(vcpu))
3879
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3880
	else if (is_pae(vcpu))
3881
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3882
	else
3883
		paging32_init_context(vcpu, context);
3884

3885 3886 3887 3888
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
3889
		= smep && !is_write_protection(vcpu);
3890 3891
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
3892
	context->base_role.smm = is_smm(vcpu);
3893 3894 3895
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

3896
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
3897
{
3898 3899
	struct kvm_mmu *context = &vcpu->arch.mmu;

3900
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

3919
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3920
{
3921 3922 3923 3924 3925 3926 3927
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
3928 3929
}

3930
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3931 3932 3933 3934
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3935
	g_context->get_pdptr         = kvm_pdptr_read;
3936 3937 3938 3939 3940 3941 3942 3943 3944
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3945
		g_context->nx = false;
3946 3947 3948
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3949
		g_context->nx = is_nx(vcpu);
3950
		g_context->root_level = PT64_ROOT_LEVEL;
3951
		reset_rsvds_bits_mask(vcpu, g_context);
3952 3953
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3954
		g_context->nx = is_nx(vcpu);
3955
		g_context->root_level = PT32E_ROOT_LEVEL;
3956
		reset_rsvds_bits_mask(vcpu, g_context);
3957 3958
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3959
		g_context->nx = false;
3960
		g_context->root_level = PT32_ROOT_LEVEL;
3961
		reset_rsvds_bits_mask(vcpu, g_context);
3962 3963 3964
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3965
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
3966
	update_last_pte_bitmap(vcpu, g_context);
3967 3968
}

3969
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3970
{
3971
	if (mmu_is_nested(vcpu))
3972
		init_kvm_nested_mmu(vcpu);
3973
	else if (tdp_enabled)
3974
		init_kvm_tdp_mmu(vcpu);
3975
	else
3976
		init_kvm_softmmu(vcpu);
3977 3978
}

3979
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3980
{
3981
	kvm_mmu_unload(vcpu);
3982
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3983
}
3984
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3985 3986

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3987
{
3988 3989
	int r;

3990
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3991 3992
	if (r)
		goto out;
3993
	r = mmu_alloc_roots(vcpu);
3994
	kvm_mmu_sync_roots(vcpu);
3995 3996
	if (r)
		goto out;
3997
	/* set_cr3() should ensure TLB has been flushed */
3998
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3999 4000
out:
	return r;
A
Avi Kivity 已提交
4001
}
A
Avi Kivity 已提交
4002 4003 4004 4005 4006
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4007
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4008
}
4009
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4010

4011
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4012 4013
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4014
{
4015
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4016 4017
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4018
        }
4019

A
Avi Kivity 已提交
4020
	++vcpu->kvm->stat.mmu_pte_updated;
4021
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4022 4023
}

4024 4025 4026 4027 4028 4029 4030 4031
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4032 4033
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4034 4035 4036
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4037 4038
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
4039
{
4040 4041 4042 4043
	if (zap_page)
		return;

	if (remote_flush)
4044
		kvm_flush_remote_tlbs(vcpu->kvm);
4045
	else if (local_flush)
4046
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4047 4048
}

4049 4050
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4051
{
4052 4053
	u64 gentry;
	int r;
4054 4055 4056

	/*
	 * Assume that the pte write on a page table of the same type
4057 4058
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4059
	 */
4060
	if (is_pae(vcpu) && *bytes == 4) {
4061
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4062 4063
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4064
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4065 4066
		if (r)
			gentry = 0;
4067 4068 4069
		new = (const u8 *)&gentry;
	}

4070
	switch (*bytes) {
4071 4072 4073 4074 4075 4076 4077 4078 4079
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4080 4081
	}

4082 4083 4084 4085 4086 4087 4088
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4089
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4090
{
4091 4092 4093 4094
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4095
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4096
		return false;
4097

4098
	return ++sp->write_flooding_count >= 3;
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4115 4116 4117 4118 4119 4120 4121 4122

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4168
	bool remote_flush, local_flush, zap_page;
4169 4170 4171 4172 4173 4174 4175
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4176
	mask.smm = 1;
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4200
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4201

4202
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4203
		if (detect_write_misaligned(sp, gpa, bytes) ||
4204
		      detect_write_flooding(sp)) {
4205
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4206
						     &invalid_list);
A
Avi Kivity 已提交
4207
			++vcpu->kvm->stat.mmu_flooded;
4208 4209
			continue;
		}
4210 4211 4212 4213 4214

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4215
		local_flush = true;
4216
		while (npte--) {
4217
			entry = *spte;
4218
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4219 4220
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4221
			      & mask.word) && rmap_can_add(vcpu))
4222
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4223
			if (need_remote_flush(entry, *spte))
4224
				remote_flush = true;
4225
			++spte;
4226 4227
		}
	}
4228
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4229
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4230
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4231
	spin_unlock(&vcpu->kvm->mmu_lock);
4232 4233
}

4234 4235
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4236 4237
	gpa_t gpa;
	int r;
4238

4239
	if (vcpu->arch.mmu.direct_map)
4240 4241
		return 0;

4242
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4243 4244

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4245

4246
	return r;
4247
}
4248
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4249

4250
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4251
{
4252
	LIST_HEAD(invalid_list);
4253

4254 4255 4256
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4257 4258 4259
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4260

A
Avi Kivity 已提交
4261
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4262
	}
4263
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4264 4265
}

4266 4267 4268 4269 4270 4271 4272 4273
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4274 4275
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4276
{
4277
	int r, emulation_type = EMULTYPE_RETRY;
4278 4279
	enum emulation_result er;

G
Gleb Natapov 已提交
4280
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4281 4282 4283 4284 4285 4286 4287 4288
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4289 4290 4291 4292
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4293 4294 4295 4296

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4297
	case EMULATE_USER_EXIT:
4298
		++vcpu->stat.mmio_exits;
4299
		/* fall through */
4300
	case EMULATE_FAIL:
4301
		return 0;
4302 4303 4304 4305 4306 4307 4308 4309
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4310 4311 4312
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4313
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4314 4315 4316 4317
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4318 4319 4320 4321 4322 4323
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4324 4325 4326 4327 4328 4329
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4330 4331
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4332
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4333 4334
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4335 4336 4337 4338
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4339
	struct page *page;
A
Avi Kivity 已提交
4340 4341
	int i;

4342 4343 4344 4345 4346 4347 4348
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4349 4350
		return -ENOMEM;

4351
	vcpu->arch.mmu.pae_root = page_address(page);
4352
	for (i = 0; i < 4; ++i)
4353
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4354

A
Avi Kivity 已提交
4355 4356 4357
	return 0;
}

4358
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4359
{
4360 4361 4362 4363
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4364

4365 4366
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4367

4368
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4369
{
4370
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4371

4372
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4373 4374
}

4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
4444 4445 4446 4447
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
4448
	int i;
X
Xiao Guangrong 已提交
4449 4450

	spin_lock(&kvm->mmu_lock);
4451 4452 4453 4454 4455 4456 4457 4458 4459
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
4460

4461 4462 4463 4464
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
4465 4466 4467 4468 4469
	}

	spin_unlock(&kvm->mmu_lock);
}

4470 4471 4472 4473 4474
static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
{
	return __rmap_write_protect(kvm, rmapp, false);
}

4475 4476
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
4477
{
4478
	bool flush;
A
Avi Kivity 已提交
4479

4480
	spin_lock(&kvm->mmu_lock);
4481 4482
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
4483
	spin_unlock(&kvm->mmu_lock);
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4503 4504
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4505
}
4506

4507 4508 4509 4510 4511 4512 4513 4514 4515
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
		unsigned long *rmapp)
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
	pfn_t pfn;
	struct kvm_mmu_page *sp;

4516 4517
restart:
	for_each_rmap_spte(rmapp, &iter, sptep) {
4518 4519 4520 4521
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
4522 4523 4524 4525 4526
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
4527 4528 4529 4530 4531 4532
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
			PageTransCompound(pfn_to_page(pfn))) {
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
4533 4534
			goto restart;
		}
4535 4536 4537 4538 4539 4540
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4541
				   const struct kvm_memory_slot *memslot)
4542
{
4543
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4544
	spin_lock(&kvm->mmu_lock);
4545 4546
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
4547 4548 4549
	spin_unlock(&kvm->mmu_lock);
}

4550 4551 4552
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
4553
	bool flush;
4554 4555

	spin_lock(&kvm->mmu_lock);
4556
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
4575
	bool flush;
4576 4577

	spin_lock(&kvm->mmu_lock);
4578 4579
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
4593
	bool flush;
4594 4595

	spin_lock(&kvm->mmu_lock);
4596
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
4607
#define BATCH_ZAP_PAGES	10
4608 4609 4610
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4611
	int batch = 0;
4612 4613 4614 4615

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4616 4617
		int ret;

4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4633 4634 4635 4636
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4637
		if (batch >= BATCH_ZAP_PAGES &&
4638
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4639
			batch = 0;
4640 4641 4642
			goto restart;
		}

4643 4644
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4645 4646 4647
		batch += ret;

		if (ret)
4648 4649 4650
			goto restart;
	}

4651 4652 4653 4654
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4655
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4670
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4671 4672
	kvm->arch.mmu_valid_gen++;

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4684 4685 4686 4687
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4688 4689 4690 4691 4692
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4693
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4694 4695 4696 4697 4698
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4699
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4700
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4701
		kvm_mmu_invalidate_zap_all_pages(kvm);
4702
	}
4703 4704
}

4705 4706
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4707 4708
{
	struct kvm *kvm;
4709
	int nr_to_scan = sc->nr_to_scan;
4710
	unsigned long freed = 0;
4711

4712
	spin_lock(&kvm_lock);
4713 4714

	list_for_each_entry(kvm, &vm_list, vm_list) {
4715
		int idx;
4716
		LIST_HEAD(invalid_list);
4717

4718 4719 4720 4721 4722 4723 4724 4725
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4726 4727 4728 4729 4730 4731
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4732 4733
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4734 4735
			continue;

4736
		idx = srcu_read_lock(&kvm->srcu);
4737 4738
		spin_lock(&kvm->mmu_lock);

4739 4740 4741 4742 4743 4744
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4745 4746
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4747
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4748

4749
unlock:
4750
		spin_unlock(&kvm->mmu_lock);
4751
		srcu_read_unlock(&kvm->srcu, idx);
4752

4753 4754 4755 4756 4757
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4758 4759
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4760 4761
	}

4762
	spin_unlock(&kvm_lock);
4763 4764 4765 4766 4767 4768
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4769
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4770 4771 4772
}

static struct shrinker mmu_shrinker = {
4773 4774
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4775 4776 4777
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4778
static void mmu_destroy_caches(void)
4779
{
4780 4781
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4782 4783
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4784 4785 4786 4787
}

int kvm_mmu_module_init(void)
{
4788 4789
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4790
					    0, 0, NULL);
4791
	if (!pte_list_desc_cache)
4792 4793
		goto nomem;

4794 4795
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4796
						  0, 0, NULL);
4797 4798 4799
	if (!mmu_page_header_cache)
		goto nomem;

4800
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4801 4802
		goto nomem;

4803 4804
	register_shrinker(&mmu_shrinker);

4805 4806 4807
	return 0;

nomem:
4808
	mmu_destroy_caches();
4809 4810 4811
	return -ENOMEM;
}

4812 4813 4814 4815 4816 4817 4818
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4819
	struct kvm_memslots *slots;
4820
	struct kvm_memory_slot *memslot;
4821
	int i;
4822

4823 4824
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
4825

4826 4827 4828
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
4829 4830 4831

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
4832
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4833 4834 4835 4836

	return nr_mmu_pages;
}

4837 4838 4839
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4840
	u64 spte;
4841 4842
	int nr_sptes = 0;

4843 4844 4845
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return nr_sptes;

4846 4847 4848
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4849
		nr_sptes++;
4850
		if (!is_shadow_present_pte(spte))
4851 4852
			break;
	}
4853
	walk_shadow_page_lockless_end(vcpu);
4854 4855 4856 4857 4858

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4859 4860
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
4861
	kvm_mmu_unload(vcpu);
4862 4863
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4864 4865 4866 4867 4868 4869 4870
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4871 4872
	mmu_audit_disable();
}