i915_gem.c 130.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/swap.h>
J
Jesse Barnes 已提交
35
#include <linux/pci.h>
36

37 38
#define I915_GEM_GPU_DOMAINS	(~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))

39 40 41 42 43 44 45 46 47
static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 50 51
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52
static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53
static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 55 56
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
57

58 59 60
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

J
Jesse Barnes 已提交
61 62
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
63 64 65
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
66 67 68
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
69 70 71
		return -EINVAL;
	}

J
Jesse Barnes 已提交
72 73
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
74

J
Jesse Barnes 已提交
75 76 77 78
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
79

J
Jesse Barnes 已提交
80 81 82 83 84 85 86 87 88
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 90
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
91
	return ret;
92 93
}

94 95 96 97 98 99 100 101 102 103
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
104 105
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
106 107 108 109

	return 0;
}

110 111 112 113 114 115 116 117 118 119

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
120 121
	int ret;
	u32 handle;
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
	obj = drm_gem_object_alloc(dev, args->size);
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_handle_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	if (ret)
		return ret;

	args->handle = handle;

	return 0;
}

143 144 145 146 147 148 149
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
150
	int unwritten;
151 152 153 154

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
155
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156 157
	kunmap_atomic(vaddr, KM_USER0);

158 159 160 161
	if (unwritten)
		return -EFAULT;

	return 0;
162 163
}

164 165 166 167 168 169 170 171 172
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static inline int
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

	dst_vaddr = kmap_atomic(dst_page, KM_USER0);
	if (dst_vaddr == NULL)
		return -ENOMEM;

	src_vaddr = kmap_atomic(src_page, KM_USER1);
	if (src_vaddr == NULL) {
		kunmap_atomic(dst_vaddr, KM_USER0);
		return -ENOMEM;
	}

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

	kunmap_atomic(src_vaddr, KM_USER1);
	kunmap_atomic(dst_vaddr, KM_USER0);

	return 0;
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static inline int
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

	gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
	if (gpu_vaddr == NULL)
		return -ENOMEM;

	cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
	if (cpu_vaddr == NULL) {
		kunmap_atomic(gpu_vaddr, KM_USER0);
		return -ENOMEM;
	}

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	kunmap_atomic(cpu_vaddr, KM_USER1);
	kunmap_atomic(gpu_vaddr, KM_USER0);

	return 0;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
static inline gfp_t
i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
{
	return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
}

static inline void
i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
{
	mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
}

static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

	ret = i915_gem_object_get_pages(obj);

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;
		gfp_t gfp;

		ret = i915_gem_evict_something(dev, obj->size);
		if (ret)
			return ret;

		gfp = i915_gem_object_get_page_gfp_mask(obj);
		i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
		ret = i915_gem_object_get_pages(obj);
		i915_gem_object_set_page_gfp_mask (obj, gfp);
	}

	return ret;
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
385
	int do_bit17_swizzling;
386 387 388 389 390 391 392 393 394 395 396

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

397
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398 399 400 401 402
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403
				      num_pages, 1, 0, user_pages, NULL);
404 405 406 407 408 409
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

410 411
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

412 413
	mutex_lock(&dev->struct_mutex);

414 415
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

446 447 448 449 450 451 452 453 454 455 456 457 458 459
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    1);
		} else {
			ret = slow_shmem_copy(user_pages[data_page_index],
					      data_page_offset,
					      obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      page_length);
		}
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
477
	drm_free_large(user_pages);
478 479 480 481

	return ret;
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
	obj_priv = obj->driver_private;

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}

511
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
512
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513 514 515 516 517 518
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
519 520 521

	drm_gem_object_unreference(obj);

522
	return ret;
523 524
}

525 526
/* This is the fast write path which cannot handle
 * page faults in the source data
527
 */
528 529 530 531 532 533

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
534 535
{
	char *vaddr_atomic;
536
	unsigned long unwritten;
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
	io_mapping_unmap_atomic(vaddr_atomic);
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

static inline int
552 553 554 555
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
556
{
557
	char *src_vaddr, *dst_vaddr;
558 559
	unsigned long unwritten;

560 561 562 563 564 565 566
	dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
	src_vaddr = kmap_atomic(user_page, KM_USER1);
	unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
						      src_vaddr + user_offset,
						      length);
	kunmap_atomic(src_vaddr, KM_USER1);
	io_mapping_unmap_atomic(dst_vaddr);
567 568
	if (unwritten)
		return -EFAULT;
569 570 571
	return 0;
}

572 573 574 575 576 577 578
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
579
	unsigned long unwritten;
580 581 582 583

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
584
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585 586
	kunmap_atomic(vaddr, KM_USER0);

587 588
	if (unwritten)
		return -EFAULT;
589 590 591
	return 0;
}

592 593 594 595
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
596
static int
597 598 599
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
600 601
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
602
	drm_i915_private_t *dev_priv = dev->dev_private;
603
	ssize_t remain;
604
	loff_t offset, page_base;
605
	char __user *user_data;
606 607
	int page_offset, page_length;
	int ret;
608 609 610 611 612 613 614 615 616 617 618 619 620

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
621
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622 623 624 625 626 627 628 629 630
	if (ret)
		goto fail;

	obj_priv = obj->driver_private;
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
631 632 633
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
634
		 */
635 636 637 638 639 640 641 642 643 644
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
645 646
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
647
		 */
648 649
		if (ret)
			goto fail;
650

651 652 653
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
654 655 656 657 658 659 660 661 662
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

663 664 665 666 667 668 669
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
670
static int
671 672 673
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
674
{
675 676 677 678 679 680 681 682 683
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
684
	int ret;
685 686 687 688 689 690 691 692 693 694 695 696
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

697
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698 699 700 701 702 703 704 705 706 707 708
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
709 710

	mutex_lock(&dev->struct_mutex);
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

	obj_priv = obj->driver_private;
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

		ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
					gtt_page_base, gtt_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
			goto out_unpin_object;

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
767
	drm_free_large(user_pages);
768 769 770 771

	return ret;
}

772 773 774 775
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
776
static int
777 778 779
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
780
{
781 782 783 784 785
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
786
	int ret;
787 788 789

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
790 791 792

	mutex_lock(&dev->struct_mutex);

793 794 795
	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;
796

797
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
860
	int do_bit17_swizzling;
861 862 863 864 865 866 867 868 869 870 871

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

872
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873 874 875 876 877 878 879 880 881 882
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
883 884
	}

885 886
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

887 888
	mutex_lock(&dev->struct_mutex);

889 890
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
891 892 893 894 895 896 897
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
898
	offset = args->offset;
899
	obj_priv->dirty = 1;
900

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

921 922 923 924 925 926 927 928 929 930 931 932 933 934
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    0);
		} else {
			ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length);
		}
935 936 937 938 939 940
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
941 942
	}

943 944 945
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
946
	mutex_unlock(&dev->struct_mutex);
947 948 949
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
950
	drm_free_large(user_pages);
951

952
	return ret;
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
	obj_priv = obj->driver_private;

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
990 991 992
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993 994 995 996 997 998
		 dev->gtt_total != 0) {
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
999 1000
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001 1002 1003 1004 1005 1006 1007
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

	drm_gem_object_unreference(obj);

	return ret;
}

/**
1020 1021
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1022 1023 1024 1025 1026
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1027
	struct drm_i915_private *dev_priv = dev->dev_private;
1028 1029
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1030
	struct drm_i915_gem_object *obj_priv;
1031 1032
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1033 1034 1035 1036 1037
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1038
	/* Only handle setting domains to types used by the CPU. */
1039
	if (write_domain & I915_GEM_GPU_DOMAINS)
1040 1041
		return -EINVAL;

1042
	if (read_domains & I915_GEM_GPU_DOMAINS)
1043 1044 1045 1046 1047 1048 1049 1050
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1051 1052 1053
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
1054
	obj_priv = obj->driver_private;
1055 1056

	mutex_lock(&dev->struct_mutex);
1057 1058 1059

	intel_mark_busy(dev, obj);

1060
#if WATCH_BUF
1061
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062
		 obj, obj->size, read_domains, write_domain);
1063
#endif
1064 1065
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066

1067 1068 1069 1070 1071 1072 1073 1074
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
			list_move_tail(&obj_priv->fence_list,
				       &dev_priv->mm.fence_list);
		}

1075 1076 1077 1078 1079 1080
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1081
	} else {
1082
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083 1084
	}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

#if WATCH_BUF
1113
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114 1115 1116 1117 1118
		 __func__, args->handle, obj, obj->size);
#endif
	obj_priv = obj->driver_private;

	/* Pinned buffers may be scanout, so flush the cache */
1119 1120 1121
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1193
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194 1195 1196 1197 1198 1199 1200 1201

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1202
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1203 1204
		if (ret)
			goto unlock;
1205

J
Jesse Barnes 已提交
1206
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1207 1208

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1209 1210
		if (ret)
			goto unlock;
1211 1212 1213
	}

	/* Need a new fence register? */
1214
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1215
		ret = i915_gem_object_get_fence_reg(obj);
1216 1217
		if (ret)
			goto unlock;
1218
	}
1219 1220 1221 1222 1223 1224

	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1225
unlock:
1226 1227 1228
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1229 1230 1231
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1232 1233 1234 1235
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1236
		return VM_FAULT_SIGBUS;
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_map_list *list;
1258
	struct drm_local_map *map;
1259 1260 1261 1262
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1263
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1303
	kfree(list->map);
1304 1305 1306 1307

	return ret;
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
 * Preserve the reservation of the mmaping with the DRM core code, but
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1322
void
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1350
		kfree(list->map);
1351 1352 1353 1354 1355 1356
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	mutex_lock(&dev->struct_mutex);

	obj_priv = obj->driver_private;

1429 1430 1431 1432 1433 1434 1435 1436
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1437 1438
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1439 1440 1441
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1442
			return ret;
1443
		}
1444 1445 1446 1447 1448 1449 1450 1451 1452
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1453
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1454 1455 1456 1457 1458
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
J
Jesse Barnes 已提交
1459
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1460 1461 1462 1463 1464 1465 1466 1467
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1468
void
1469
i915_gem_object_put_pages(struct drm_gem_object *obj)
1470 1471 1472 1473 1474
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int page_count = obj->size / PAGE_SIZE;
	int i;

1475
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1476
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1477

1478 1479
	if (--obj_priv->pages_refcount != 0)
		return;
1480

1481 1482 1483
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1484
	if (obj_priv->madv == I915_MADV_DONTNEED)
1485
		obj_priv->dirty = 0;
1486 1487 1488 1489 1490 1491 1492 1493 1494

	for (i = 0; i < page_count; i++) {
		if (obj_priv->pages[i] == NULL)
			break;

		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1495
			mark_page_accessed(obj_priv->pages[i]);
1496 1497 1498

		page_cache_release(obj_priv->pages[i]);
	}
1499 1500
	obj_priv->dirty = 0;

1501
	drm_free_large(obj_priv->pages);
1502
	obj_priv->pages = NULL;
1503 1504 1505
}

static void
1506
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
	/* Move from whatever list we were on to the tail of execution. */
1518
	spin_lock(&dev_priv->mm.active_list_lock);
1519 1520
	list_move_tail(&obj_priv->list,
		       &dev_priv->mm.active_list);
1521
	spin_unlock(&dev_priv->mm.active_list_lock);
1522
	obj_priv->last_rendering_seqno = seqno;
1523 1524
}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1536

1537 1538 1539 1540
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
1541 1542
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct inode *inode;
1543

C
Chris Wilson 已提交
1544 1545 1546 1547 1548
	inode = obj->filp->f_path.dentry->d_inode;
	if (inode->i_op->truncate)
		inode->i_op->truncate (inode);

	obj_priv->madv = __I915_MADV_PURGED;
1549 1550 1551 1552 1553 1554 1555 1556
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1570
	obj_priv->last_rendering_seqno = 0;
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

/**
 * Creates a new sequence number, emitting a write of it to the status page
 * plus an interrupt, which will trigger i915_user_interrupt_handler.
 *
 * Must be called with struct_lock held.
 *
 * Returned sequence numbers are nonzero on success.
 */
1586
uint32_t
1587 1588
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
		 uint32_t flush_domains)
1589 1590
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1591
	struct drm_i915_file_private *i915_file_priv = NULL;
1592 1593 1594 1595 1596
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;
	RING_LOCALS;

1597 1598 1599
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1600
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	if (request == NULL)
		return 0;

	/* Grab the seqno we're going to make this request be, and bump the
	 * next (skipping 0 so it can be the reserved no-seqno value).
	 */
	seqno = dev_priv->mm.next_gem_seqno;
	dev_priv->mm.next_gem_seqno++;
	if (dev_priv->mm.next_gem_seqno == 0)
		dev_priv->mm.next_gem_seqno++;

	BEGIN_LP_RING(4);
	OUT_RING(MI_STORE_DWORD_INDEX);
	OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	OUT_RING(seqno);

	OUT_RING(MI_USER_INTERRUPT);
	ADVANCE_LP_RING();

1620
	DRM_DEBUG_DRIVER("%d\n", seqno);
1621 1622 1623 1624 1625

	request->seqno = seqno;
	request->emitted_jiffies = jiffies;
	was_empty = list_empty(&dev_priv->mm.request_list);
	list_add_tail(&request->list, &dev_priv->mm.request_list);
1626 1627 1628 1629 1630 1631
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	/* Associate any objects on the flushing list matching the write
	 * domain we're flushing with our flush.
	 */
	if (flush_domains != 0) {
		struct drm_i915_gem_object *obj_priv, *next;

		list_for_each_entry_safe(obj_priv, next,
					 &dev_priv->mm.flushing_list, list) {
			struct drm_gem_object *obj = obj_priv->obj;

			if ((obj->write_domain & flush_domains) ==
			    obj->write_domain) {
C
Chris Wilson 已提交
1645 1646
				uint32_t old_write_domain = obj->write_domain;

1647 1648
				obj->write_domain = 0;
				i915_gem_object_move_to_active(obj, seqno);
C
Chris Wilson 已提交
1649 1650 1651 1652

				trace_i915_gem_object_change_domain(obj,
								    obj->read_domains,
								    old_write_domain);
1653 1654 1655 1656 1657
			}
		}

	}

B
Ben Gamari 已提交
1658 1659 1660 1661 1662
	if (!dev_priv->mm.suspended) {
		mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
		if (was_empty)
			queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
	}
1663 1664 1665 1666 1667 1668 1669 1670 1671
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1672
static uint32_t
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
i915_retire_commands(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
	uint32_t flush_domains = 0;
	RING_LOCALS;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
	BEGIN_LP_RING(2);
	OUT_RING(cmd);
	OUT_RING(0); /* noop */
	ADVANCE_LP_RING();
	return flush_domains;
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

C
Chris Wilson 已提交
1700 1701
	trace_i915_gem_request_retire(dev, request->seqno);

1702 1703 1704
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1705
	spin_lock(&dev_priv->mm.active_list_lock);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	while (!list_empty(&dev_priv->mm.active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&dev_priv->mm.active_list,
					    struct drm_i915_gem_object,
					    list);
		obj = obj_priv->obj;

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1720
			goto out;
1721

1722 1723 1724 1725 1726
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1727 1728
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1729 1730 1731 1732 1733 1734 1735 1736
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1737
			i915_gem_object_move_to_inactive(obj);
1738 1739 1740 1741
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1742
	}
1743 1744
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1745 1746 1747 1748 1749
}

/**
 * Returns true if seq1 is later than seq2.
 */
1750
bool
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
i915_get_gem_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1773
	if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1774 1775
		return;

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	seqno = i915_get_gem_seqno(dev);

	while (!list_empty(&dev_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

		request = list_first_entry(&dev_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
1788
		    atomic_read(&dev_priv->mm.wedged)) {
1789 1790 1791
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1792
			list_del(&request->client_list);
1793
			kfree(request);
1794 1795 1796
		} else
			break;
	}
1797 1798 1799 1800 1801 1802

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
		i915_user_irq_put(dev);
		dev_priv->trace_irq_seqno = 0;
	}
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
}

void
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
	i915_gem_retire_requests(dev);
1817 1818
	if (!dev_priv->mm.suspended &&
	    !list_empty(&dev_priv->mm.request_list))
1819
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1820 1821 1822
	mutex_unlock(&dev->struct_mutex);
}

1823
int
1824
i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1825 1826
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1827
	u32 ier;
1828 1829 1830 1831
	int ret = 0;

	BUG_ON(seqno == 0);

1832
	if (atomic_read(&dev_priv->mm.wedged))
1833 1834
		return -EIO;

1835
	if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1836
		if (IS_IRONLAKE(dev))
1837 1838 1839
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1840 1841 1842 1843 1844 1845 1846
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1847 1848
		trace_i915_gem_request_wait_begin(dev, seqno);

1849 1850
		dev_priv->mm.waiting_gem_seqno = seqno;
		i915_user_irq_get(dev);
1851 1852 1853 1854 1855 1856 1857 1858 1859
		if (interruptible)
			ret = wait_event_interruptible(dev_priv->irq_queue,
				i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
				atomic_read(&dev_priv->mm.wedged));
		else
			wait_event(dev_priv->irq_queue,
				i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
				atomic_read(&dev_priv->mm.wedged));

1860 1861
		i915_user_irq_put(dev);
		dev_priv->mm.waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1862 1863

		trace_i915_gem_request_wait_end(dev, seqno);
1864
	}
1865
	if (atomic_read(&dev_priv->mm.wedged))
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
			  __func__, ret, seqno, i915_get_gem_seqno(dev));

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
		i915_gem_retire_requests(dev);

	return ret;
}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
i915_wait_request(struct drm_device *dev, uint32_t seqno)
{
	return i915_do_wait_request(dev, seqno, 1);
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t cmd;
	RING_LOCALS;

#if WATCH_EXEC
	DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
		  invalidate_domains, flush_domains);
#endif
C
Chris Wilson 已提交
1906 1907
	trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
				     invalidate_domains, flush_domains);
1908 1909 1910 1911

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);

1912
	if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		/*
		 * read/write caches:
		 *
		 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
		 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
		 * also flushed at 2d versus 3d pipeline switches.
		 *
		 * read-only caches:
		 *
		 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
		 * MI_READ_FLUSH is set, and is always flushed on 965.
		 *
		 * I915_GEM_DOMAIN_COMMAND may not exist?
		 *
		 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
		 * invalidated when MI_EXE_FLUSH is set.
		 *
		 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
		 * invalidated with every MI_FLUSH.
		 *
		 * TLBs:
		 *
		 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
		 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
		 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
		 * are flushed at any MI_FLUSH.
		 */

		cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
		if ((invalidate_domains|flush_domains) &
		    I915_GEM_DOMAIN_RENDER)
			cmd &= ~MI_NO_WRITE_FLUSH;
		if (!IS_I965G(dev)) {
			/*
			 * On the 965, the sampler cache always gets flushed
			 * and this bit is reserved.
			 */
			if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
				cmd |= MI_READ_FLUSH;
		}
		if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
			cmd |= MI_EXE_FLUSH;

#if WATCH_EXEC
		DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
#endif
		BEGIN_LP_RING(2);
		OUT_RING(cmd);
1961
		OUT_RING(MI_NOOP);
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
		ADVANCE_LP_RING();
	}
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret;

1977 1978
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1979
	 */
1980
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
		ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2001
int
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2020 2021 2022 2023 2024 2025
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2026 2027 2028 2029 2030 2031
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2032
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2033
	if (ret) {
2034 2035
		if (ret != -ERESTARTSYS)
			DRM_ERROR("set_domain failed: %d\n", ret);
2036 2037 2038
		return ret;
	}

2039 2040
	BUG_ON(obj_priv->active);

2041 2042 2043 2044 2045 2046
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

2047
	i915_gem_object_put_pages(obj);
2048
	BUG_ON(obj_priv->pages_refcount);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);

2062 2063 2064
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2065 2066
	trace_i915_gem_object_unbind(obj);

2067 2068 2069
	return 0;
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
static struct drm_gem_object *
i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	struct drm_gem_object *best = NULL;
	struct drm_gem_object *first = NULL;

	/* Try to find the smallest clean object */
	list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
		struct drm_gem_object *obj = obj_priv->obj;
		if (obj->size >= min_size) {
2082 2083
			if ((!obj_priv->dirty ||
			     i915_gem_object_is_purgeable(obj_priv)) &&
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
			    (!best || obj->size < best->size)) {
				best = obj;
				if (best->size == min_size)
					return best;
			}
			if (!first)
			    first = obj;
		}
	}

	return best ? best : first;
}

2097
static int
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
i915_gem_evict_everything(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;
	int ret;
	bool lists_empty;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->mm.active_list));
	spin_unlock(&dev_priv->mm.active_list_lock);

2111
	if (lists_empty)
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
		return -ENOSPC;

	/* Flush everything (on to the inactive lists) and evict */
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
	if (seqno == 0)
		return -ENOMEM;

	ret = i915_wait_request(dev, seqno);
	if (ret)
		return ret;

2124
	ret = i915_gem_evict_from_inactive_list(dev);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	if (ret)
		return ret;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->mm.active_list));
	spin_unlock(&dev_priv->mm.active_list_lock);
	BUG_ON(!lists_empty);

	return 0;
}

2138
static int
2139
i915_gem_evict_something(struct drm_device *dev, int min_size)
2140 2141 2142
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
2143
	int ret;
2144 2145

	for (;;) {
2146 2147
		i915_gem_retire_requests(dev);

2148 2149 2150
		/* If there's an inactive buffer available now, grab it
		 * and be done.
		 */
2151 2152 2153 2154
		obj = i915_gem_find_inactive_object(dev, min_size);
		if (obj) {
			struct drm_i915_gem_object *obj_priv;

2155 2156 2157
#if WATCH_LRU
			DRM_INFO("%s: evicting %p\n", __func__, obj);
#endif
2158 2159
			obj_priv = obj->driver_private;
			BUG_ON(obj_priv->pin_count != 0);
2160 2161 2162
			BUG_ON(obj_priv->active);

			/* Wait on the rendering and unbind the buffer. */
2163
			return i915_gem_object_unbind(obj);
2164 2165 2166
		}

		/* If we didn't get anything, but the ring is still processing
2167 2168
		 * things, wait for the next to finish and hopefully leave us
		 * a buffer to evict.
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
		 */
		if (!list_empty(&dev_priv->mm.request_list)) {
			struct drm_i915_gem_request *request;

			request = list_first_entry(&dev_priv->mm.request_list,
						   struct drm_i915_gem_request,
						   list);

			ret = i915_wait_request(dev, request->seqno);
			if (ret)
2179
				return ret;
2180

2181
			continue;
2182 2183 2184 2185 2186 2187 2188 2189
		}

		/* If we didn't have anything on the request list but there
		 * are buffers awaiting a flush, emit one and try again.
		 * When we wait on it, those buffers waiting for that flush
		 * will get moved to inactive.
		 */
		if (!list_empty(&dev_priv->mm.flushing_list)) {
2190
			struct drm_i915_gem_object *obj_priv;
2191

2192 2193 2194 2195 2196
			/* Find an object that we can immediately reuse */
			list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
				obj = obj_priv->obj;
				if (obj->size >= min_size)
					break;
2197

2198 2199
				obj = NULL;
			}
2200

2201 2202
			if (obj != NULL) {
				uint32_t seqno;
2203

2204 2205 2206 2207 2208 2209
				i915_gem_flush(dev,
					       obj->write_domain,
					       obj->write_domain);
				seqno = i915_add_request(dev, NULL, obj->write_domain);
				if (seqno == 0)
					return -ENOMEM;
2210

2211 2212 2213 2214 2215 2216
				ret = i915_wait_request(dev, seqno);
				if (ret)
					return ret;

				continue;
			}
2217 2218
		}

2219 2220 2221
		/* If we didn't do any of the above, there's no single buffer
		 * large enough to swap out for the new one, so just evict
		 * everything and start again. (This should be rare.)
2222
		 */
2223
		if (!list_empty (&dev_priv->mm.inactive_list))
2224
			return i915_gem_evict_from_inactive_list(dev);
2225
		else
2226
			return i915_gem_evict_everything(dev);
2227 2228 2229
	}
}

2230
int
2231
i915_gem_object_get_pages(struct drm_gem_object *obj)
2232 2233 2234 2235 2236 2237 2238 2239
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;
	int ret;

2240
	if (obj_priv->pages_refcount++ != 0)
2241 2242 2243 2244 2245 2246
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2247
	BUG_ON(obj_priv->pages != NULL);
2248
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2249 2250
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2251 2252 2253 2254 2255 2256 2257 2258 2259
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_mapping_page(mapping, i, NULL);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
2260
			i915_gem_object_put_pages(obj);
2261 2262
			return ret;
		}
2263
		obj_priv->pages[i] = page;
2264
	}
2265 2266 2267 2268

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2269 2270 2271
	return 0;
}

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
2299
	int tile_width;
2300
	uint32_t fence_reg, val;
2301 2302 2303 2304
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2305
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2306
		     __func__, obj_priv->gtt_offset, obj->size);
2307 2308 2309
		return;
	}

2310 2311 2312
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2313
	else
2314 2315 2316 2317 2318
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2319 2320 2321 2322 2323 2324 2325 2326

	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2327 2328 2329 2330 2331
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2343
	uint32_t fence_size_bits;
2344

2345
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2346
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2347
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2348
		     __func__, obj_priv->gtt_offset);
2349 2350 2351
		return;
	}

2352 2353 2354 2355
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2356 2357 2358
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2359 2360 2361
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2381 2382
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2383 2384
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2385
	struct drm_i915_private *dev_priv = dev->dev_private;
2386 2387
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_i915_fence_reg *reg = NULL;
2388 2389
	struct drm_i915_gem_object *old_obj_priv = NULL;
	int i, ret, avail;
2390

2391 2392 2393 2394 2395 2396
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
		list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
		return 0;
	}

2397 2398 2399 2400 2401
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2402 2403 2404 2405 2406
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2407 2408
		break;
	case I915_TILING_Y:
2409 2410 2411 2412 2413
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2414 2415 2416 2417
		break;
	}

	/* First try to find a free reg */
2418
	avail = 0;
2419 2420 2421 2422
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			break;
2423 2424 2425 2426

		old_obj_priv = reg->obj->driver_private;
		if (!old_obj_priv->pin_count)
		    avail++;
2427 2428 2429 2430
	}

	/* None available, try to steal one or wait for a user to finish */
	if (i == dev_priv->num_fence_regs) {
2431
		struct drm_gem_object *old_obj = NULL;
2432

2433
		if (avail == 0)
C
Chris Wilson 已提交
2434
			return -ENOSPC;
2435

2436 2437 2438
		list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
				    fence_list) {
			old_obj = old_obj_priv->obj;
2439 2440 2441 2442

			if (old_obj_priv->pin_count)
				continue;

2443 2444 2445 2446 2447 2448
			/* Take a reference, as otherwise the wait_rendering
			 * below may cause the object to get freed out from
			 * under us.
			 */
			drm_gem_object_reference(old_obj);

2449 2450
			/* i915 uses fences for GPU access to tiled buffers */
			if (IS_I965G(dev) || !old_obj_priv->active)
2451
				break;
2452

2453 2454 2455 2456 2457 2458 2459 2460
			/* This brings the object to the head of the LRU if it
			 * had been written to.  The only way this should
			 * result in us waiting longer than the expected
			 * optimal amount of time is if there was a
			 * fence-using buffer later that was read-only.
			 */
			i915_gem_object_flush_gpu_write_domain(old_obj);
			ret = i915_gem_object_wait_rendering(old_obj);
2461 2462
			if (ret != 0) {
				drm_gem_object_unreference(old_obj);
2463
				return ret;
2464 2465
			}

2466
			break;
2467 2468 2469 2470 2471 2472
		}

		/*
		 * Zap this virtual mapping so we can set up a fence again
		 * for this object next time we need it.
		 */
2473 2474
		i915_gem_release_mmap(old_obj);

2475
		i = old_obj_priv->fence_reg;
2476 2477
		reg = &dev_priv->fence_regs[i];

2478
		old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2479
		list_del_init(&old_obj_priv->fence_list);
2480

2481
		drm_gem_object_unreference(old_obj);
2482 2483 2484
	}

	obj_priv->fence_reg = i;
2485 2486
	list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);

2487 2488 2489 2490 2491 2492 2493 2494
	reg->obj = obj;

	if (IS_I965G(dev))
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2495

C
Chris Wilson 已提交
2496 2497
	trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);

2498
	return 0;
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2512
	drm_i915_private_t *dev_priv = dev->dev_private;
2513 2514 2515 2516
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (IS_I965G(dev))
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	else {
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2528 2529 2530

	dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2531
	list_del_init(&obj_priv->fence_list);
2532 2533
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

		i915_gem_object_flush_gpu_write_domain(obj);
		i915_gem_object_flush_gtt_write_domain(obj);
		ret = i915_gem_object_wait_rendering(obj);
		if (ret != 0)
			return ret;
	}

	i915_gem_clear_fence_reg (obj);

	return 0;
}

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_mm_node *free_space;
2580 2581
	bool retry_alloc = false;
	int ret;
2582

2583 2584
	if (dev_priv->mm.suspended)
		return -EBUSY;
2585

C
Chris Wilson 已提交
2586
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2587 2588 2589 2590
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2591
	if (alignment == 0)
2592
		alignment = i915_gem_get_gtt_alignment(obj);
2593
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
		if (obj_priv->gtt_space != NULL) {
			obj_priv->gtt_space->private = obj;
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
		}
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2616
		ret = i915_gem_evict_something(dev, obj->size);
2617
		if (ret)
2618
			return ret;
2619

2620 2621 2622 2623
		goto search_free;
	}

#if WATCH_BUF
2624
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2625 2626
		 obj->size, obj_priv->gtt_offset);
#endif
2627 2628 2629 2630
	if (retry_alloc) {
		i915_gem_object_set_page_gfp_mask (obj,
						   i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
	}
2631
	ret = i915_gem_object_get_pages(obj);
2632 2633 2634 2635
	if (retry_alloc) {
		i915_gem_object_set_page_gfp_mask (obj,
						   i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
	}
2636 2637 2638
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
			ret = i915_gem_evict_something(dev, obj->size);
			if (ret) {
				/* now try to shrink everyone else */
				if (! retry_alloc) {
				    retry_alloc = true;
				    goto search_free;
				}

				return ret;
			}

			goto search_free;
		}

2656 2657 2658 2659 2660 2661 2662
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2663
					       obj_priv->pages,
2664
					       obj->size >> PAGE_SHIFT,
2665 2666
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2667
	if (obj_priv->agp_mem == NULL) {
2668
		i915_gem_object_put_pages(obj);
2669 2670
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2671 2672

		ret = i915_gem_evict_something(dev, obj->size);
2673
		if (ret)
2674 2675 2676
			return ret;

		goto search_free;
2677 2678 2679 2680 2681 2682 2683 2684
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2685 2686
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2687

C
Chris Wilson 已提交
2688 2689
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
	struct drm_i915_gem_object	*obj_priv = obj->driver_private;

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2702
	if (obj_priv->pages == NULL)
2703 2704
		return;

C
Chris Wilson 已提交
2705
	trace_i915_gem_object_clflush(obj);
2706

2707
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2708 2709
}

2710 2711 2712 2713 2714 2715
/** Flushes any GPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	uint32_t seqno;
C
Chris Wilson 已提交
2716
	uint32_t old_write_domain;
2717 2718 2719 2720 2721

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
		return;

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2722
	old_write_domain = obj->write_domain;
2723
	i915_gem_flush(dev, 0, obj->write_domain);
2724
	seqno = i915_add_request(dev, NULL, obj->write_domain);
2725 2726
	obj->write_domain = 0;
	i915_gem_object_move_to_active(obj, seqno);
C
Chris Wilson 已提交
2727 2728 2729 2730

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2731 2732 2733 2734 2735 2736
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2737 2738
	uint32_t old_write_domain;

2739 2740 2741 2742 2743 2744 2745
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2746
	old_write_domain = obj->write_domain;
2747
	obj->write_domain = 0;
C
Chris Wilson 已提交
2748 2749 2750 2751

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2752 2753 2754 2755 2756 2757 2758
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2759
	uint32_t old_write_domain;
2760 2761 2762 2763 2764 2765

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2766
	old_write_domain = obj->write_domain;
2767
	obj->write_domain = 0;
C
Chris Wilson 已提交
2768 2769 2770 2771

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2772 2773
}

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
void
i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
{
	switch (obj->write_domain) {
	case I915_GEM_DOMAIN_GTT:
		i915_gem_object_flush_gtt_write_domain(obj);
		break;
	case I915_GEM_DOMAIN_CPU:
		i915_gem_object_flush_cpu_write_domain(obj);
		break;
	default:
		i915_gem_object_flush_gpu_write_domain(obj);
		break;
	}
}

2790 2791 2792 2793 2794 2795
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2796
int
2797 2798 2799
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
C
Chris Wilson 已提交
2800
	uint32_t old_write_domain, old_read_domains;
2801
	int ret;
2802

2803 2804 2805 2806
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2807 2808 2809 2810 2811 2812
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;

C
Chris Wilson 已提交
2813 2814 2815
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2816 2817
	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2818
	 */
2819 2820
	if (write)
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2821

2822
	i915_gem_object_flush_cpu_write_domain(obj);
2823

2824 2825 2826 2827 2828 2829 2830 2831
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2832 2833
	}

C
Chris Wilson 已提交
2834 2835 2836 2837
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	return 0;
}

/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2850
	uint32_t old_write_domain, old_read_domains;
2851 2852 2853
	int ret;

	i915_gem_object_flush_gpu_write_domain(obj);
2854
	/* Wait on any GPU rendering and flushing to occur. */
2855 2856 2857
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;
2858

2859
	i915_gem_object_flush_gtt_write_domain(obj);
2860

2861 2862
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2863
	 */
2864
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2865

C
Chris Wilson 已提交
2866 2867 2868
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2869 2870
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2871 2872
		i915_gem_clflush_object(obj);

2873
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2874 2875 2876 2877 2878
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2879 2880 2881 2882 2883 2884 2885 2886 2887
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2888

C
Chris Wilson 已提交
2889 2890 2891 2892
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2893 2894 2895
	return 0;
}

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3007
static void
3008
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3009 3010 3011 3012 3013
{
	struct drm_device		*dev = obj->dev;
	struct drm_i915_gem_object	*obj_priv = obj->driver_private;
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3014
	uint32_t			old_read_domains;
3015

3016 3017
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3018

3019 3020
	intel_mark_busy(dev, obj);

3021 3022 3023
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
3024 3025
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
3026 3027 3028 3029 3030
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3031 3032
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3033 3034 3035 3036 3037 3038 3039 3040 3041
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3042 3043
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3044
		flush_domains |= obj->write_domain;
3045 3046
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3047 3048 3049 3050 3051
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3052
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3053 3054 3055 3056 3057 3058 3059 3060
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

C
Chris Wilson 已提交
3061 3062
	old_read_domains = obj->read_domains;

3063 3064 3065 3066 3067 3068 3069 3070
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3071
	obj->read_domains = obj->pending_read_domains;
3072 3073 3074 3075 3076 3077 3078 3079 3080

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
C
Chris Wilson 已提交
3081 3082 3083 3084

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3085 3086 3087
}

/**
3088
 * Moves the object from a partially CPU read to a full one.
3089
 *
3090 3091
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3092
 */
3093 3094
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3095 3096 3097
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3109
			drm_clflush_pages(obj_priv->pages + i, 1);
3110 3111 3112 3113 3114 3115
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3116
	kfree(obj_priv->page_cpu_valid);
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
C
Chris Wilson 已提交
3137
	uint32_t old_read_domains;
3138
	int i, ret;
3139

3140 3141
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3142

3143 3144
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
3145
	ret = i915_gem_object_wait_rendering(obj);
3146
	if (ret != 0)
3147
		return ret;
3148 3149 3150 3151 3152 3153
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3154

3155 3156 3157
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3158
	if (obj_priv->page_cpu_valid == NULL) {
3159 3160
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3161 3162 3163 3164
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3165 3166 3167 3168

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3169 3170
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3171 3172 3173
		if (obj_priv->page_cpu_valid[i])
			continue;

3174
		drm_clflush_pages(obj_priv->pages + i, 1);
3175 3176 3177 3178

		obj_priv->page_cpu_valid[i] = 1;
	}

3179 3180 3181 3182 3183
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3184
	old_read_domains = obj->read_domains;
3185 3186
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3187 3188 3189 3190
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3191 3192 3193 3194 3195 3196 3197 3198 3199
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
3200 3201
				 struct drm_i915_gem_exec_object *entry,
				 struct drm_i915_gem_relocation_entry *relocs)
3202 3203
{
	struct drm_device *dev = obj->dev;
3204
	drm_i915_private_t *dev_priv = dev->dev_private;
3205 3206
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int i, ret;
3207
	void __iomem *reloc_page;
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3220
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3221 3222
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3223 3224
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3225 3226

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3227
						   reloc->target_handle);
3228 3229 3230 3231 3232 3233
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
			return -EBADF;
		}
		target_obj_priv = target_obj->driver_private;

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3249 3250 3251 3252 3253
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3254
				  reloc->target_handle);
3255 3256 3257 3258 3259
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3260
		/* Validate that the target is in a valid r/w GPU domain */
3261 3262
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3263 3264 3265
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3266 3267 3268 3269
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3270 3271
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3272 3273
			return -EINVAL;
		}
3274 3275
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3276 3277 3278
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3279 3280 3281
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3282 3283 3284 3285 3286 3287
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3288 3289
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3290 3291 3292 3293

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3294
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3295 3296 3297 3298
			drm_gem_object_unreference(target_obj);
			continue;
		}

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3330 3331 3332 3333 3334
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3335 3336 3337 3338 3339
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3340
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3341 3342 3343
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
						       ~(PAGE_SIZE - 1)));
3344
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3345
						   (reloc_offset & (PAGE_SIZE - 1)));
3346
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3347 3348 3349

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3350
			  obj, (unsigned int) reloc->offset,
3351 3352 3353
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3354
		io_mapping_unmap_atomic(reloc_page);
3355

3356 3357
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3358
		 */
3359
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/** Dispatch a batchbuffer to the ring
 */
static int
i915_dispatch_gem_execbuffer(struct drm_device *dev,
			      struct drm_i915_gem_execbuffer *exec,
3376
			      struct drm_clip_rect *cliprects,
3377 3378 3379 3380 3381
			      uint64_t exec_offset)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int nbox = exec->num_cliprects;
	int i = 0, count;
3382
	uint32_t exec_start, exec_len;
3383 3384 3385 3386 3387
	RING_LOCALS;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

3388
	trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
C
Chris Wilson 已提交
3389

3390 3391 3392 3393
	count = nbox ? nbox : 1;

	for (i = 0; i < count; i++) {
		if (i < nbox) {
3394
			int ret = i915_emit_box(dev, cliprects, i,
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
						exec->DR1, exec->DR4);
			if (ret)
				return ret;
		}

		if (IS_I830(dev) || IS_845G(dev)) {
			BEGIN_LP_RING(4);
			OUT_RING(MI_BATCH_BUFFER);
			OUT_RING(exec_start | MI_BATCH_NON_SECURE);
			OUT_RING(exec_start + exec_len - 4);
			OUT_RING(0);
			ADVANCE_LP_RING();
		} else {
			BEGIN_LP_RING(2);
			if (IS_I965G(dev)) {
				OUT_RING(MI_BATCH_BUFFER_START |
					 (2 << 6) |
					 MI_BATCH_NON_SECURE_I965);
				OUT_RING(exec_start);
			} else {
				OUT_RING(MI_BATCH_BUFFER_START |
					 (2 << 6));
				OUT_RING(exec_start | MI_BATCH_NON_SECURE);
			}
			ADVANCE_LP_RING();
		}
	}

	/* XXX breadcrumb */
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3430 3431 3432 3433
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3434 3435 3436 3437 3438 3439 3440 3441
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3442
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3443 3444

	mutex_lock(&dev->struct_mutex);
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

		ret = i915_wait_request(dev, request->seqno);
		if (ret != 0)
			break;
	}
3459
	mutex_unlock(&dev->struct_mutex);
3460

3461 3462 3463
	return ret;
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
static int
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3479
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	if (*relocs == NULL)
		return -ENOMEM;

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3493
			drm_free_large(*relocs);
3494
			*relocs = NULL;
3495
			return -EFAULT;
3496 3497 3498 3499 3500
		}

		reloc_index += exec_list[i].relocation_count;
	}

3501
	return 0;
3502 3503 3504 3505 3506 3507 3508 3509
}

static int
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3510
	int ret = 0;
3511 3512 3513

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3514
		int unwritten;
3515 3516 3517

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3518 3519 3520 3521 3522 3523 3524 3525
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3526 3527 3528 3529 3530
		}

		reloc_count += exec_list[i].relocation_count;
	}

3531
err:
3532
	drm_free_large(relocs);
3533 3534 3535 3536

	return ret;
}

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
static int
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
static int
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
			obj_priv = object_list[i]->driver_private;
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

3590 3591 3592 3593 3594 3595 3596 3597 3598
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3599
	struct drm_i915_gem_object *obj_priv;
3600
	struct drm_clip_rect *cliprects = NULL;
3601 3602
	struct drm_i915_gem_relocation_entry *relocs;
	int ret, ret2, i, pinned = 0;
3603
	uint64_t exec_offset;
3604
	uint32_t seqno, flush_domains, reloc_index;
3605
	int pin_tries, flips;
3606 3607 3608 3609 3610 3611

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

3612 3613 3614 3615
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3616
	/* Copy in the exec list from userland */
3617 3618
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
	if (exec_list == NULL || object_list == NULL) {
		DRM_ERROR("Failed to allocate exec or object list "
			  "for %d buffers\n",
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		goto pre_mutex_err;
	}

3636
	if (args->num_cliprects != 0) {
3637 3638
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
		if (cliprects == NULL)
			goto pre_mutex_err;

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
			goto pre_mutex_err;
		}
	}

3653 3654 3655 3656 3657
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3658 3659 3660 3661
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3662
	if (atomic_read(&dev_priv->mm.wedged)) {
3663
		mutex_unlock(&dev->struct_mutex);
3664 3665
		ret = -EIO;
		goto pre_mutex_err;
3666 3667 3668 3669
	}

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3670 3671
		ret = -EBUSY;
		goto pre_mutex_err;
3672 3673
	}

3674
	/* Look up object handles */
3675
	flips = 0;
3676 3677 3678 3679 3680 3681 3682 3683 3684
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
			ret = -EBADF;
			goto err;
		}
3685 3686 3687 3688 3689 3690 3691 3692 3693

		obj_priv = object_list[i]->driver_private;
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
			ret = -EBADF;
			goto err;
		}
		obj_priv->in_execbuffer = true;
3694 3695 3696 3697 3698 3699 3700 3701
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3702
	}
3703

3704 3705 3706
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3707 3708
		reloc_index = 0;

3709 3710 3711 3712 3713
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3714 3715
							       &exec_list[i],
							       &relocs[reloc_index]);
3716 3717 3718
			if (ret)
				break;
			pinned = i + 1;
3719
			reloc_index += exec_list[i].relocation_count;
3720 3721 3722 3723 3724 3725
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3726
		if (ret != -ENOSPC || pin_tries >= 1) {
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
				for (i = 0; i < args->buffer_count; i++)
					total_size += object_list[i]->size;
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
					  pinned+1, args->buffer_count,
					  total_size, ret);
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3744 3745
			goto err;
		}
3746 3747 3748 3749

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3750
		pinned = 0;
3751 3752 3753

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3754
		if (ret && ret != -ENOSPC)
3755
			goto err;
3756 3757 3758 3759
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3760 3761 3762 3763 3764 3765
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3766

3767 3768 3769 3770 3771 3772 3773 3774
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3775 3776
	i915_verify_inactive(dev, __FILE__, __LINE__);

3777 3778 3779 3780 3781 3782 3783
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;

3784 3785 3786
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3787
		/* Compute new gpu domains and update invalidate/flush */
3788
		i915_gem_object_set_to_gpu_domain(obj);
3789 3790 3791 3792
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
		if (dev->flush_domains)
3804 3805
			(void)i915_add_request(dev, file_priv,
					       dev->flush_domains);
3806
	}
3807

3808 3809
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
C
Chris Wilson 已提交
3810
		uint32_t old_write_domain = obj->write_domain;
3811 3812

		obj->write_domain = obj->pending_write_domain;
C
Chris Wilson 已提交
3813 3814 3815
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3816 3817
	}

3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3828
	i915_gem_dump_object(batch_obj,
3829 3830 3831 3832 3833 3834
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3835
	ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
	flush_domains = i915_retire_commands(dev);

	i915_verify_inactive(dev, __FILE__, __LINE__);

	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3856
	seqno = i915_add_request(dev, file_priv, flush_domains);
3857 3858 3859 3860
	BUG_ON(seqno == 0);
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3861
		i915_gem_object_move_to_active(obj, seqno);
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}
#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3873 3874 3875
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3876 3877 3878 3879 3880
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
			obj_priv = object_list[i]->driver_private;
			obj_priv->in_execbuffer = false;
		}
3881
		drm_gem_object_unreference(object_list[i]);
3882
	}
3883 3884 3885

	mutex_unlock(&dev->struct_mutex);

3886 3887 3888 3889 3890 3891
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
3892 3893
		if (ret) {
			ret = -EFAULT;
3894 3895 3896
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
3897
		}
3898 3899
	}

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3914
pre_mutex_err:
3915 3916
	drm_free_large(object_list);
	drm_free_large(exec_list);
3917
	kfree(cliprects);
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931

	return ret;
}

int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
3932
		if (ret)
3933
			return ret;
3934 3935 3936 3937 3938
	}
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle tiled surfaces.
	 */
3939
	if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3940
		ret = i915_gem_object_get_fence_reg(obj);
3941 3942 3943 3944 3945 3946
		if (ret != 0) {
			if (ret != -EBUSY && ret != -ERESTARTSYS)
				DRM_ERROR("Failure to install fence: %d\n",
					  ret);
			return ret;
		}
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
	}
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
3957
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
		    !list_empty(&obj_priv->list))
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
3984
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}
	obj_priv = obj->driver_private;

C
Chris Wilson 已提交
4013 4014
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4015 4016 4017 4018 4019
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4020 4021 4022
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4023
		drm_gem_object_unreference(obj);
4024
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4037 4038 4039 4040 4041
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4042
	i915_gem_object_flush_cpu_write_domain(obj);
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4056
	struct drm_i915_gem_object *obj_priv;
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

J
Jesse Barnes 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
	obj_priv = obj->driver_private;
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

4102
	mutex_lock(&dev->struct_mutex);
4103 4104 4105 4106 4107 4108 4109
	/* Update the active list for the hardware's current position.
	 * Otherwise this only updates on a delayed timer or when irqs are
	 * actually unmasked, and our working set ends up being larger than
	 * required.
	 */
	i915_gem_retire_requests(dev);

4110
	obj_priv = obj->driver_private;
4111 4112 4113 4114 4115 4116 4117 4118
	/* Don't count being on the flushing list against the object being
	 * done.  Otherwise, a buffer left on the flushing list but not getting
	 * flushed (because nobody's flushing that domain) won't ever return
	 * unbusy and get reused by libdrm's bo cache.  The other expected
	 * consumer of this interface, OpenGL's occlusion queries, also specs
	 * that the objects get unbusy "eventually" without any interference.
	 */
	args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

	mutex_lock(&dev->struct_mutex);
	obj_priv = obj->driver_private;

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4166 4167
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4168

4169 4170 4171 4172 4173
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4174 4175
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4176 4177 4178 4179 4180 4181
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4182 4183 4184 4185
int i915_gem_init_object(struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;

4186
	obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
	if (obj_priv == NULL)
		return -ENOMEM;

	/*
	 * We've just allocated pages from the kernel,
	 * so they've just been written by the CPU with
	 * zeros. They'll need to be clflushed before we
	 * use them with the GPU.
	 */
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;

4199 4200
	obj_priv->agp_type = AGP_USER_MEMORY;

4201 4202
	obj->driver_private = obj_priv;
	obj_priv->obj = obj;
4203
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
4204
	INIT_LIST_HEAD(&obj_priv->list);
4205
	INIT_LIST_HEAD(&obj_priv->fence_list);
4206
	obj_priv->madv = I915_MADV_WILLNEED;
4207

C
Chris Wilson 已提交
4208
	trace_i915_gem_object_create(obj);
4209

4210 4211 4212 4213 4214
	return 0;
}

void i915_gem_free_object(struct drm_gem_object *obj)
{
4215
	struct drm_device *dev = obj->dev;
4216 4217
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

C
Chris Wilson 已提交
4218 4219
	trace_i915_gem_object_destroy(obj);

4220 4221 4222
	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

4223 4224 4225
	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

4226 4227
	i915_gem_object_unbind(obj);

4228 4229
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4230

4231
	kfree(obj_priv->page_cpu_valid);
4232
	kfree(obj_priv->bit_17);
4233
	kfree(obj->driver_private);
4234 4235
}

4236
/** Unbinds all inactive objects. */
4237
static int
4238
i915_gem_evict_from_inactive_list(struct drm_device *dev)
4239
{
4240
	drm_i915_private_t *dev_priv = dev->dev_private;
4241

4242 4243 4244
	while (!list_empty(&dev_priv->mm.inactive_list)) {
		struct drm_gem_object *obj;
		int ret;
4245

4246 4247 4248
		obj = list_first_entry(&dev_priv->mm.inactive_list,
				       struct drm_i915_gem_object,
				       list)->obj;
4249 4250 4251

		ret = i915_gem_object_unbind(obj);
		if (ret != 0) {
4252
			DRM_ERROR("Error unbinding object: %d\n", ret);
4253 4254 4255 4256 4257 4258 4259
			return ret;
		}
	}

	return 0;
}

4260
int
4261 4262 4263 4264 4265 4266
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno, cur_seqno, last_seqno;
	int stuck, ret;

4267 4268 4269 4270
	mutex_lock(&dev->struct_mutex);

	if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
4271
		return 0;
4272
	}
4273 4274 4275 4276 4277

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 */
	dev_priv->mm.suspended = 1;
B
Ben Gamari 已提交
4278
	del_timer(&dev_priv->hangcheck_timer);
4279

4280 4281 4282 4283 4284 4285
	/* Cancel the retire work handler, wait for it to finish if running
	 */
	mutex_unlock(&dev->struct_mutex);
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
	mutex_lock(&dev->struct_mutex);

4286 4287 4288 4289
	i915_kernel_lost_context(dev);

	/* Flush the GPU along with all non-CPU write domains
	 */
4290 4291
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307

	if (seqno == 0) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOMEM;
	}

	dev_priv->mm.waiting_gem_seqno = seqno;
	last_seqno = 0;
	stuck = 0;
	for (;;) {
		cur_seqno = i915_get_gem_seqno(dev);
		if (i915_seqno_passed(cur_seqno, seqno))
			break;
		if (last_seqno == cur_seqno) {
			if (stuck++ > 100) {
				DRM_ERROR("hardware wedged\n");
4308
				atomic_set(&dev_priv->mm.wedged, 1);
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
				DRM_WAKEUP(&dev_priv->irq_queue);
				break;
			}
		}
		msleep(10);
		last_seqno = cur_seqno;
	}
	dev_priv->mm.waiting_gem_seqno = 0;

	i915_gem_retire_requests(dev);

4320
	spin_lock(&dev_priv->mm.active_list_lock);
4321
	if (!atomic_read(&dev_priv->mm.wedged)) {
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
		/* Active and flushing should now be empty as we've
		 * waited for a sequence higher than any pending execbuffer
		 */
		WARN_ON(!list_empty(&dev_priv->mm.active_list));
		WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
		/* Request should now be empty as we've also waited
		 * for the last request in the list
		 */
		WARN_ON(!list_empty(&dev_priv->mm.request_list));
	}
4332

4333 4334 4335 4336
	/* Empty the active and flushing lists to inactive.  If there's
	 * anything left at this point, it means that we're wedged and
	 * nothing good's going to happen by leaving them there.  So strip
	 * the GPU domains and just stuff them onto inactive.
4337
	 */
4338
	while (!list_empty(&dev_priv->mm.active_list)) {
C
Chris Wilson 已提交
4339 4340
		struct drm_gem_object *obj;
		uint32_t old_write_domain;
4341

C
Chris Wilson 已提交
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
		obj = list_first_entry(&dev_priv->mm.active_list,
				       struct drm_i915_gem_object,
				       list)->obj;
		old_write_domain = obj->write_domain;
		obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
		i915_gem_object_move_to_inactive(obj);

		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
4352
	}
4353
	spin_unlock(&dev_priv->mm.active_list_lock);
4354 4355

	while (!list_empty(&dev_priv->mm.flushing_list)) {
C
Chris Wilson 已提交
4356 4357
		struct drm_gem_object *obj;
		uint32_t old_write_domain;
4358

C
Chris Wilson 已提交
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
		obj = list_first_entry(&dev_priv->mm.flushing_list,
				       struct drm_i915_gem_object,
				       list)->obj;
		old_write_domain = obj->write_domain;
		obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
		i915_gem_object_move_to_inactive(obj);

		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
4369 4370 4371 4372
	}


	/* Move all inactive buffers out of the GTT. */
4373
	ret = i915_gem_evict_from_inactive_list(dev);
4374
	WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4375 4376
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4377
		return ret;
4378
	}
4379

4380 4381 4382
	i915_gem_cleanup_ringbuffer(dev);
	mutex_unlock(&dev->struct_mutex);

4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
	return 0;
}

static int
i915_gem_init_hws(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	/* If we need a physical address for the status page, it's already
	 * initialized at driver load time.
	 */
	if (!I915_NEED_GFX_HWS(dev))
		return 0;

	obj = drm_gem_object_alloc(dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate status page\n");
		return -ENOMEM;
	}
	obj_priv = obj->driver_private;
4406
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4407 4408 4409 4410 4411 4412 4413 4414 4415

	ret = i915_gem_object_pin(obj, 4096);
	if (ret != 0) {
		drm_gem_object_unreference(obj);
		return ret;
	}

	dev_priv->status_gfx_addr = obj_priv->gtt_offset;

4416
	dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4417
	if (dev_priv->hw_status_page == NULL) {
4418 4419
		DRM_ERROR("Failed to map status page.\n");
		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4420
		i915_gem_object_unpin(obj);
4421 4422 4423 4424 4425 4426
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}
	dev_priv->hws_obj = obj;
	memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
	I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4427
	I915_READ(HWS_PGA); /* posting read */
4428
	DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4429 4430 4431 4432

	return 0;
}

4433 4434 4435 4436
static void
i915_gem_cleanup_hws(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4437 4438
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4439 4440 4441 4442

	if (dev_priv->hws_obj == NULL)
		return;

4443 4444 4445
	obj = dev_priv->hws_obj;
	obj_priv = obj->driver_private;

4446
	kunmap(obj_priv->pages[0]);
4447 4448 4449
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->hws_obj = NULL;
4450

4451 4452 4453 4454 4455 4456 4457
	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
	dev_priv->hw_status_page = NULL;

	/* Write high address into HWS_PGA when disabling. */
	I915_WRITE(HWS_PGA, 0x1ffff000);
}

J
Jesse Barnes 已提交
4458
int
4459 4460 4461 4462 4463
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
J
Jesse Barnes 已提交
4464
	drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4465
	int ret;
4466
	u32 head;
4467 4468 4469 4470 4471 4472 4473 4474

	ret = i915_gem_init_hws(dev);
	if (ret != 0)
		return ret;

	obj = drm_gem_object_alloc(dev, 128 * 1024);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate ringbuffer\n");
4475
		i915_gem_cleanup_hws(dev);
4476 4477 4478 4479 4480 4481 4482
		return -ENOMEM;
	}
	obj_priv = obj->driver_private;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret != 0) {
		drm_gem_object_unreference(obj);
4483
		i915_gem_cleanup_hws(dev);
4484 4485 4486 4487
		return ret;
	}

	/* Set up the kernel mapping for the ring. */
J
Jesse Barnes 已提交
4488
	ring->Size = obj->size;
4489

J
Jesse Barnes 已提交
4490 4491 4492 4493 4494
	ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
	ring->map.size = obj->size;
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;
4495

J
Jesse Barnes 已提交
4496 4497
	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
4498 4499
		DRM_ERROR("Failed to map ringbuffer.\n");
		memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4500
		i915_gem_object_unpin(obj);
4501
		drm_gem_object_unreference(obj);
4502
		i915_gem_cleanup_hws(dev);
4503 4504
		return -EINVAL;
	}
J
Jesse Barnes 已提交
4505 4506
	ring->ring_obj = obj;
	ring->virtual_start = ring->map.handle;
4507 4508 4509 4510

	/* Stop the ring if it's running. */
	I915_WRITE(PRB0_CTL, 0);
	I915_WRITE(PRB0_TAIL, 0);
4511
	I915_WRITE(PRB0_HEAD, 0);
4512 4513 4514

	/* Initialize the ring. */
	I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;

	/* G45 ring initialization fails to reset head to zero */
	if (head != 0) {
		DRM_ERROR("Ring head not reset to zero "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
		I915_WRITE(PRB0_HEAD, 0);

		DRM_ERROR("Ring head forced to zero "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
	}

4535 4536 4537 4538 4539
	I915_WRITE(PRB0_CTL,
		   ((obj->size - 4096) & RING_NR_PAGES) |
		   RING_NO_REPORT |
		   RING_VALID);

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;

	/* If the head is still not zero, the ring is dead */
	if (head != 0) {
		DRM_ERROR("Ring initialization failed "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
		return -EIO;
	}

4553
	/* Update our cache of the ring state */
J
Jesse Barnes 已提交
4554 4555 4556 4557 4558 4559 4560 4561 4562
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_kernel_lost_context(dev);
	else {
		ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
		ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
		ring->space = ring->head - (ring->tail + 8);
		if (ring->space < 0)
			ring->space += ring->Size;
	}
4563 4564 4565 4566

	return 0;
}

J
Jesse Barnes 已提交
4567
void
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	if (dev_priv->ring.ring_obj == NULL)
		return;

	drm_core_ioremapfree(&dev_priv->ring.map, dev);

	i915_gem_object_unpin(dev_priv->ring.ring_obj);
	drm_gem_object_unreference(dev_priv->ring.ring_obj);
	dev_priv->ring.ring_obj = NULL;
	memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));

4582
	i915_gem_cleanup_hws(dev);
4583 4584 4585 4586 4587 4588 4589 4590 4591
}

int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4592 4593 4594
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4595
	if (atomic_read(&dev_priv->mm.wedged)) {
4596
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4597
		atomic_set(&dev_priv->mm.wedged, 0);
4598 4599 4600
	}

	mutex_lock(&dev->struct_mutex);
4601 4602 4603
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4604 4605
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4606
		return ret;
4607
	}
4608

4609
	spin_lock(&dev_priv->mm.active_list_lock);
4610
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4611 4612
	spin_unlock(&dev_priv->mm.active_list_lock);

4613 4614 4615 4616
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	BUG_ON(!list_empty(&dev_priv->mm.request_list));
	mutex_unlock(&dev->struct_mutex);
4617 4618 4619

	drm_irq_install(dev);

4620 4621 4622 4623 4624 4625 4626
	return 0;
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4627 4628 4629
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4630
	drm_irq_uninstall(dev);
4631
	return i915_gem_idle(dev);
4632 4633 4634 4635 4636 4637 4638
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4639 4640 4641
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4642 4643 4644
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4645 4646 4647 4648 4649
}

void
i915_gem_load(struct drm_device *dev)
{
4650
	int i;
4651 4652
	drm_i915_private_t *dev_priv = dev->dev_private;

4653
	spin_lock_init(&dev_priv->mm.active_list_lock);
4654 4655 4656 4657
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
	INIT_LIST_HEAD(&dev_priv->mm.request_list);
4658
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4659 4660 4661 4662
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
	dev_priv->mm.next_gem_seqno = 1;

4663 4664 4665 4666
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4667 4668 4669
	/* Old X drivers will take 0-2 for front, back, depth buffers */
	dev_priv->fence_reg_start = 3;

4670
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4671 4672 4673 4674
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}
4686
	i915_gem_detect_bit_6_swizzle(dev);
4687
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4688
}
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
			      int id, int size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4704
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

	phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4723
	kfree(phys_obj);
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4752
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

	obj_priv = obj->driver_private;
	if (!obj_priv->phys_obj)
		return;

4768
	ret = i915_gem_object_get_pages(obj);
4769 4770 4771 4772 4773 4774
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4775
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4776 4777 4778 4779 4780
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4781
	drm_clflush_pages(obj_priv->pages, page_count);
4782
	drm_agp_chipset_flush(dev);
4783 4784

	i915_gem_object_put_pages(obj);
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
			    struct drm_gem_object *obj, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

	obj_priv = obj->driver_private;

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}


	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
						obj->size);
		if (ret) {
4817
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4818 4819 4820 4821 4822 4823 4824 4825
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4826
	ret = i915_gem_object_get_pages(obj);
4827 4828 4829 4830 4831 4832 4833 4834
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4835
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4836 4837 4838 4839 4840 4841
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4842 4843
	i915_gem_object_put_pages(obj);

4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4862
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4863 4864 4865 4866 4867 4868 4869
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929

static int
i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		i915_gem_retire_requests(dev);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
4930
				i915_gem_object_unbind(obj_priv->obj);
4931 4932 4933 4934 4935 4936 4937 4938
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

4939 4940
		would_deadlock = 0;

4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
4959
				i915_gem_object_unbind(obj_priv->obj);
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}