sunxi_nand.c 58.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
 *
 * Derived from:
 *	https://github.com/yuq/sunxi-nfc-mtd
 *	Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
 *
 *	https://github.com/hno/Allwinner-Info
 *	Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
 *
 *	Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
 *	Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
41
#include <linux/iopoll.h>
42
#include <linux/reset.h>
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

#define NFC_REG_CTL		0x0000
#define NFC_REG_ST		0x0004
#define NFC_REG_INT		0x0008
#define NFC_REG_TIMING_CTL	0x000C
#define NFC_REG_TIMING_CFG	0x0010
#define NFC_REG_ADDR_LOW	0x0014
#define NFC_REG_ADDR_HIGH	0x0018
#define NFC_REG_SECTOR_NUM	0x001C
#define NFC_REG_CNT		0x0020
#define NFC_REG_CMD		0x0024
#define NFC_REG_RCMD_SET	0x0028
#define NFC_REG_WCMD_SET	0x002C
#define NFC_REG_IO_DATA		0x0030
#define NFC_REG_ECC_CTL		0x0034
#define NFC_REG_ECC_ST		0x0038
#define NFC_REG_DEBUG		0x003C
60 61
#define NFC_REG_ECC_ERR_CNT(x)	((0x0040 + (x)) & ~0x3)
#define NFC_REG_USER_DATA(x)	(0x0050 + ((x) * 4))
62
#define NFC_REG_SPARE_AREA	0x00A0
63
#define NFC_REG_PAT_ID		0x00A4
64 65 66 67 68 69
#define NFC_RAM0_BASE		0x0400
#define NFC_RAM1_BASE		0x0800

/* define bit use in NFC_CTL */
#define NFC_EN			BIT(0)
#define NFC_RESET		BIT(1)
70 71 72 73 74 75 76
#define NFC_BUS_WIDTH_MSK	BIT(2)
#define NFC_BUS_WIDTH_8		(0 << 2)
#define NFC_BUS_WIDTH_16	(1 << 2)
#define NFC_RB_SEL_MSK		BIT(3)
#define NFC_RB_SEL(x)		((x) << 3)
#define NFC_CE_SEL_MSK		GENMASK(26, 24)
#define NFC_CE_SEL(x)		((x) << 24)
77
#define NFC_CE_CTL		BIT(6)
78 79
#define NFC_PAGE_SHIFT_MSK	GENMASK(11, 8)
#define NFC_PAGE_SHIFT(x)	(((x) < 10 ? 0 : (x) - 10) << 8)
80 81 82 83 84 85 86 87 88 89 90
#define NFC_SAM			BIT(12)
#define NFC_RAM_METHOD		BIT(14)
#define NFC_DEBUG_CTL		BIT(31)

/* define bit use in NFC_ST */
#define NFC_RB_B2R		BIT(0)
#define NFC_CMD_INT_FLAG	BIT(1)
#define NFC_DMA_INT_FLAG	BIT(2)
#define NFC_CMD_FIFO_STATUS	BIT(3)
#define NFC_STA			BIT(4)
#define NFC_NATCH_INT_FLAG	BIT(5)
91
#define NFC_RB_STATE(x)		BIT(x + 8)
92 93 94 95 96 97 98 99 100

/* define bit use in NFC_INT */
#define NFC_B2R_INT_ENABLE	BIT(0)
#define NFC_CMD_INT_ENABLE	BIT(1)
#define NFC_DMA_INT_ENABLE	BIT(2)
#define NFC_INT_MASK		(NFC_B2R_INT_ENABLE | \
				 NFC_CMD_INT_ENABLE | \
				 NFC_DMA_INT_ENABLE)

101 102 103
/* define bit use in NFC_TIMING_CTL */
#define NFC_TIMING_CTL_EDO	BIT(8)

104 105 106 107 108 109
/* define NFC_TIMING_CFG register layout */
#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD)		\
	(((tWB) & 0x3) | (((tADL) & 0x3) << 2) |		\
	(((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) |		\
	(((tCAD) & 0x7) << 8))

110
/* define bit use in NFC_CMD */
111 112 113 114 115
#define NFC_CMD_LOW_BYTE_MSK	GENMASK(7, 0)
#define NFC_CMD_HIGH_BYTE_MSK	GENMASK(15, 8)
#define NFC_CMD(x)		(x)
#define NFC_ADR_NUM_MSK		GENMASK(18, 16)
#define NFC_ADR_NUM(x)		(((x) - 1) << 16)
116 117 118 119 120 121 122 123 124 125 126
#define NFC_SEND_ADR		BIT(19)
#define NFC_ACCESS_DIR		BIT(20)
#define NFC_DATA_TRANS		BIT(21)
#define NFC_SEND_CMD1		BIT(22)
#define NFC_WAIT_FLAG		BIT(23)
#define NFC_SEND_CMD2		BIT(24)
#define NFC_SEQ			BIT(25)
#define NFC_DATA_SWAP_METHOD	BIT(26)
#define NFC_ROW_AUTO_INC	BIT(27)
#define NFC_SEND_CMD3		BIT(28)
#define NFC_SEND_CMD4		BIT(29)
127 128 129 130
#define NFC_CMD_TYPE_MSK	GENMASK(31, 30)
#define NFC_NORMAL_OP		(0 << 30)
#define NFC_ECC_OP		(1 << 30)
#define NFC_PAGE_OP		(2 << 30)
131 132

/* define bit use in NFC_RCMD_SET */
133 134 135
#define NFC_READ_CMD_MSK	GENMASK(7, 0)
#define NFC_RND_READ_CMD0_MSK	GENMASK(15, 8)
#define NFC_RND_READ_CMD1_MSK	GENMASK(23, 16)
136 137

/* define bit use in NFC_WCMD_SET */
138 139 140 141
#define NFC_PROGRAM_CMD_MSK	GENMASK(7, 0)
#define NFC_RND_WRITE_CMD_MSK	GENMASK(15, 8)
#define NFC_READ_CMD0_MSK	GENMASK(23, 16)
#define NFC_READ_CMD1_MSK	GENMASK(31, 24)
142 143 144 145 146

/* define bit use in NFC_ECC_CTL */
#define NFC_ECC_EN		BIT(0)
#define NFC_ECC_PIPELINE	BIT(3)
#define NFC_ECC_EXCEPTION	BIT(4)
147
#define NFC_ECC_BLOCK_SIZE_MSK	BIT(5)
148
#define NFC_ECC_BLOCK_512	BIT(5)
149 150
#define NFC_RANDOM_EN		BIT(9)
#define NFC_RANDOM_DIRECTION	BIT(10)
151 152 153 154 155 156 157
#define NFC_ECC_MODE_MSK	GENMASK(15, 12)
#define NFC_ECC_MODE(x)		((x) << 12)
#define NFC_RANDOM_SEED_MSK	GENMASK(30, 16)
#define NFC_RANDOM_SEED(x)	((x) << 16)

/* define bit use in NFC_ECC_ST */
#define NFC_ECC_ERR(x)		BIT(x)
158
#define NFC_ECC_ERR_MSK		GENMASK(15, 0)
159
#define NFC_ECC_PAT_FOUND(x)	BIT(x + 16)
160
#define NFC_ECC_ERR_CNT(b, x)	(((x) >> (((b) % 4) * 8)) & 0xff)
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

#define NFC_DEFAULT_TIMEOUT_MS	1000

#define NFC_SRAM_SIZE		1024

#define NFC_MAX_CS		7

/*
 * Ready/Busy detection type: describes the Ready/Busy detection modes
 *
 * @RB_NONE:	no external detection available, rely on STATUS command
 *		and software timeouts
 * @RB_NATIVE:	use sunxi NAND controller Ready/Busy support. The Ready/Busy
 *		pin of the NAND flash chip must be connected to one of the
 *		native NAND R/B pins (those which can be muxed to the NAND
 *		Controller)
 * @RB_GPIO:	use a simple GPIO to handle Ready/Busy status. The Ready/Busy
 *		pin of the NAND flash chip must be connected to a GPIO capable
 *		pin.
 */
enum sunxi_nand_rb_type {
	RB_NONE,
	RB_NATIVE,
	RB_GPIO,
};

/*
 * Ready/Busy structure: stores information related to Ready/Busy detection
 *
 * @type:	the Ready/Busy detection mode
 * @info:	information related to the R/B detection mode. Either a gpio
 *		id or a native R/B id (those supported by the NAND controller).
 */
struct sunxi_nand_rb {
	enum sunxi_nand_rb_type type;
	union {
		int gpio;
		int nativeid;
	} info;
};

/*
 * Chip Select structure: stores information related to NAND Chip Select
 *
 * @cs:		the NAND CS id used to communicate with a NAND Chip
 * @rb:		the Ready/Busy description
 */
struct sunxi_nand_chip_sel {
	u8 cs;
	struct sunxi_nand_rb rb;
};

/*
 * sunxi HW ECC infos: stores information related to HW ECC support
 *
 * @mode:	the sunxi ECC mode field deduced from ECC requirements
 */
struct sunxi_nand_hw_ecc {
	int mode;
};

/*
 * NAND chip structure: stores NAND chip device related information
 *
 * @node:		used to store NAND chips into a list
 * @nand:		base NAND chip structure
 * @mtd:		base MTD structure
 * @clk_rate:		clk_rate required for this NAND chip
229
 * @timing_cfg		TIMING_CFG register value for this NAND chip
230 231 232 233 234 235 236 237
 * @selected:		current active CS
 * @nsels:		number of CS lines required by the NAND chip
 * @sels:		array of CS lines descriptions
 */
struct sunxi_nand_chip {
	struct list_head node;
	struct nand_chip nand;
	unsigned long clk_rate;
238
	u32 timing_cfg;
239
	u32 timing_ctl;
240
	int selected;
241 242 243 244
	int addr_cycles;
	u32 addr[2];
	int cmd_cycles;
	u8 cmd[2];
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	int nsels;
	struct sunxi_nand_chip_sel sels[0];
};

static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
{
	return container_of(nand, struct sunxi_nand_chip, nand);
}

/*
 * NAND Controller structure: stores sunxi NAND controller information
 *
 * @controller:		base controller structure
 * @dev:		parent device (used to print error messages)
 * @regs:		NAND controller registers
 * @ahb_clk:		NAND Controller AHB clock
 * @mod_clk:		NAND Controller mod clock
 * @assigned_cs:	bitmask describing already assigned CS lines
 * @clk_rate:		NAND controller current clock rate
 * @chips:		a list containing all the NAND chips attached to
 *			this NAND controller
 * @complete:		a completion object used to wait for NAND
 *			controller events
 */
struct sunxi_nfc {
	struct nand_hw_control controller;
	struct device *dev;
	void __iomem *regs;
	struct clk *ahb_clk;
	struct clk *mod_clk;
275
	struct reset_control *reset;
276 277 278 279
	unsigned long assigned_cs;
	unsigned long clk_rate;
	struct list_head chips;
	struct completion complete;
280
	struct dma_chan *dmac;
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
};

static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
{
	return container_of(ctrl, struct sunxi_nfc, controller);
}

static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
{
	struct sunxi_nfc *nfc = dev_id;
	u32 st = readl(nfc->regs + NFC_REG_ST);
	u32 ien = readl(nfc->regs + NFC_REG_INT);

	if (!(ien & st))
		return IRQ_NONE;

	if ((ien & st) == ien)
		complete(&nfc->complete);

	writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
	writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);

	return IRQ_HANDLED;
}

306 307
static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events,
				 bool use_polling, unsigned int timeout_ms)
308
{
309
	int ret;
310

311 312
	if (events & ~NFC_INT_MASK)
		return -EINVAL;
313 314 315 316

	if (!timeout_ms)
		timeout_ms = NFC_DEFAULT_TIMEOUT_MS;

317 318 319 320 321 322 323
	if (!use_polling) {
		init_completion(&nfc->complete);

		writel(events, nfc->regs + NFC_REG_INT);

		ret = wait_for_completion_timeout(&nfc->complete,
						msecs_to_jiffies(timeout_ms));
324 325 326 327
		if (!ret)
			ret = -ETIMEDOUT;
		else
			ret = 0;
328 329 330 331 332 333 334 335

		writel(0, nfc->regs + NFC_REG_INT);
	} else {
		u32 status;

		ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status,
					 (status & events) == events, 1,
					 timeout_ms * 1000);
336 337
	}

338 339 340 341 342 343
	writel(events & NFC_INT_MASK, nfc->regs + NFC_REG_ST);

	if (ret)
		dev_err(nfc->dev, "wait interrupt timedout\n");

	return ret;
344 345 346 347
}

static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
{
348 349
	u32 status;
	int ret;
350

351 352 353 354 355
	ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status,
				 !(status & NFC_CMD_FIFO_STATUS), 1,
				 NFC_DEFAULT_TIMEOUT_MS * 1000);
	if (ret)
		dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
356

357
	return ret;
358 359 360 361
}

static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
{
362 363
	u32 ctl;
	int ret;
364 365 366 367

	writel(0, nfc->regs + NFC_REG_ECC_CTL);
	writel(NFC_RESET, nfc->regs + NFC_REG_CTL);

368 369 370 371 372
	ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl,
				 !(ctl & NFC_RESET), 1,
				 NFC_DEFAULT_TIMEOUT_MS * 1000);
	if (ret)
		dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
373

374
	return ret;
375 376
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
static int sunxi_nfc_dma_op_prepare(struct mtd_info *mtd, const void *buf,
				    int chunksize, int nchunks,
				    enum dma_data_direction ddir,
				    struct scatterlist *sg)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct dma_async_tx_descriptor *dmad;
	enum dma_transfer_direction tdir;
	dma_cookie_t dmat;
	int ret;

	if (ddir == DMA_FROM_DEVICE)
		tdir = DMA_DEV_TO_MEM;
	else
		tdir = DMA_MEM_TO_DEV;

	sg_init_one(sg, buf, nchunks * chunksize);
	ret = dma_map_sg(nfc->dev, sg, 1, ddir);
	if (!ret)
		return -ENOMEM;

	dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK);
400 401
	if (!dmad) {
		ret = -EINVAL;
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
		goto err_unmap_buf;
	}

	writel(readl(nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD,
	       nfc->regs + NFC_REG_CTL);
	writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM);
	writel(chunksize, nfc->regs + NFC_REG_CNT);
	dmat = dmaengine_submit(dmad);

	ret = dma_submit_error(dmat);
	if (ret)
		goto err_clr_dma_flag;

	return 0;

err_clr_dma_flag:
	writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD,
	       nfc->regs + NFC_REG_CTL);

err_unmap_buf:
	dma_unmap_sg(nfc->dev, sg, 1, ddir);
	return ret;
}

static void sunxi_nfc_dma_op_cleanup(struct mtd_info *mtd,
				     enum dma_data_direction ddir,
				     struct scatterlist *sg)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);

	dma_unmap_sg(nfc->dev, sg, 1, ddir);
	writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD,
	       nfc->regs + NFC_REG_CTL);
}

438 439
static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
{
440
	struct nand_chip *nand = mtd_to_nand(mtd);
441 442 443 444 445 446 447 448 449 450 451 452 453
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	struct sunxi_nand_rb *rb;
	int ret;

	if (sunxi_nand->selected < 0)
		return 0;

	rb = &sunxi_nand->sels[sunxi_nand->selected].rb;

	switch (rb->type) {
	case RB_NATIVE:
		ret = !!(readl(nfc->regs + NFC_REG_ST) &
454
			 NFC_RB_STATE(rb->info.nativeid));
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
		break;
	case RB_GPIO:
		ret = gpio_get_value(rb->info.gpio);
		break;
	case RB_NONE:
	default:
		ret = 0;
		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
		break;
	}

	return ret;
}

static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
{
471
	struct nand_chip *nand = mtd_to_nand(mtd);
472 473 474 475 476 477 478 479 480 481 482 483
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	struct sunxi_nand_chip_sel *sel;
	u32 ctl;

	if (chip > 0 && chip >= sunxi_nand->nsels)
		return;

	if (chip == sunxi_nand->selected)
		return;

	ctl = readl(nfc->regs + NFC_REG_CTL) &
484
	      ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
485 486 487 488

	if (chip >= 0) {
		sel = &sunxi_nand->sels[chip];

489
		ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
490
		       NFC_PAGE_SHIFT(nand->page_shift);
491 492 493 494 495
		if (sel->rb.type == RB_NONE) {
			nand->dev_ready = NULL;
		} else {
			nand->dev_ready = sunxi_nfc_dev_ready;
			if (sel->rb.type == RB_NATIVE)
496
				ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
497 498 499 500 501 502 503 504 505 506
		}

		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);

		if (nfc->clk_rate != sunxi_nand->clk_rate) {
			clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
			nfc->clk_rate = sunxi_nand->clk_rate;
		}
	}

507
	writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
508
	writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
509 510 511 512 513 514 515
	writel(ctl, nfc->regs + NFC_REG_CTL);

	sunxi_nand->selected = chip;
}

static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
516
	struct nand_chip *nand = mtd_to_nand(mtd);
517 518 519 520 521 522 523 524
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	int ret;
	int cnt;
	int offs = 0;
	u32 tmp;

	while (len > offs) {
525 526
		bool poll = false;

527 528 529 530 531 532 533 534 535 536
		cnt = min(len - offs, NFC_SRAM_SIZE);

		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
		if (ret)
			break;

		writel(cnt, nfc->regs + NFC_REG_CNT);
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
		writel(tmp, nfc->regs + NFC_REG_CMD);

537 538 539 540 541
		/* Arbitrary limit for polling mode */
		if (cnt < 64)
			poll = true;

		ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0);
542 543 544 545 546 547 548 549 550 551 552 553 554
		if (ret)
			break;

		if (buf)
			memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
				      cnt);
		offs += cnt;
	}
}

static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
				int len)
{
555
	struct nand_chip *nand = mtd_to_nand(mtd);
556 557 558 559 560 561 562 563
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	int ret;
	int cnt;
	int offs = 0;
	u32 tmp;

	while (len > offs) {
564 565
		bool poll = false;

566 567 568 569 570 571 572 573 574 575 576 577
		cnt = min(len - offs, NFC_SRAM_SIZE);

		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
		if (ret)
			break;

		writel(cnt, nfc->regs + NFC_REG_CNT);
		memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
		      NFC_ACCESS_DIR;
		writel(tmp, nfc->regs + NFC_REG_CMD);

578 579 580 581 582
		/* Arbitrary limit for polling mode */
		if (cnt < 64)
			poll = true;

		ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0);
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
		if (ret)
			break;

		offs += cnt;
	}
}

static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
{
	uint8_t ret;

	sunxi_nfc_read_buf(mtd, &ret, 1);

	return ret;
}

static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
			       unsigned int ctrl)
{
602
	struct nand_chip *nand = mtd_to_nand(mtd);
603 604 605 606
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	int ret;

607 608 609
	if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) &&
	    !(ctrl & (NAND_CLE | NAND_ALE))) {
		u32 cmd = 0;
610

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles)
			return;

		if (sunxi_nand->cmd_cycles--)
			cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0];

		if (sunxi_nand->cmd_cycles--) {
			cmd |= NFC_SEND_CMD2;
			writel(sunxi_nand->cmd[1],
			       nfc->regs + NFC_REG_RCMD_SET);
		}

		sunxi_nand->cmd_cycles = 0;

		if (sunxi_nand->addr_cycles) {
			cmd |= NFC_SEND_ADR |
			       NFC_ADR_NUM(sunxi_nand->addr_cycles);
			writel(sunxi_nand->addr[0],
			       nfc->regs + NFC_REG_ADDR_LOW);
		}

		if (sunxi_nand->addr_cycles > 4)
			writel(sunxi_nand->addr[1],
			       nfc->regs + NFC_REG_ADDR_HIGH);

636 637 638 639
		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
		if (ret)
			return;

640 641 642 643
		writel(cmd, nfc->regs + NFC_REG_CMD);
		sunxi_nand->addr[0] = 0;
		sunxi_nand->addr[1] = 0;
		sunxi_nand->addr_cycles = 0;
644
		sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
645 646
	}

647 648 649 650 651 652 653
	if (ctrl & NAND_CLE) {
		sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat;
	} else if (ctrl & NAND_ALE) {
		sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |=
				dat << ((sunxi_nand->addr_cycles % 4) * 8);
		sunxi_nand->addr_cycles++;
	}
654 655
}

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
/* These seed values have been extracted from Allwinner's BSP */
static const u16 sunxi_nfc_randomizer_page_seeds[] = {
	0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
	0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
	0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
	0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
	0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
	0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
	0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
	0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
	0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
	0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
	0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
	0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
	0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
	0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
	0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
	0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
};

/*
 * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds
 * have been generated using
 * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what
 * the randomizer engine does internally before de/scrambling OOB data.
 *
 * Those tables are statically defined to avoid calculating randomizer state
 * at runtime.
 */
static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = {
	0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64,
	0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409,
	0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617,
	0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d,
	0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91,
	0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d,
	0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab,
	0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8,
	0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8,
	0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b,
	0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5,
	0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a,
	0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891,
	0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36,
	0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd,
	0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0,
};

static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = {
	0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6,
	0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982,
	0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9,
	0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07,
	0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e,
	0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2,
	0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c,
	0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f,
	0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc,
	0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e,
	0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8,
	0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68,
	0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d,
	0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179,
	0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601,
	0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd,
};

static u16 sunxi_nfc_randomizer_step(u16 state, int count)
{
	state &= 0x7fff;

	/*
	 * This loop is just a simple implementation of a Fibonacci LFSR using
	 * the x16 + x15 + 1 polynomial.
	 */
	while (count--)
		state = ((state >> 1) |
			 (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff;

	return state;
}

static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc)
{
	const u16 *seeds = sunxi_nfc_randomizer_page_seeds;
741
	int mod = mtd_div_by_ws(mtd->erasesize, mtd);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758

	if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds))
		mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds);

	if (ecc) {
		if (mtd->ecc_step_size == 512)
			seeds = sunxi_nfc_randomizer_ecc512_seeds;
		else
			seeds = sunxi_nfc_randomizer_ecc1024_seeds;
	}

	return seeds[page % mod];
}

static void sunxi_nfc_randomizer_config(struct mtd_info *mtd,
					int page, bool ecc)
{
759
	struct nand_chip *nand = mtd_to_nand(mtd);
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
	u16 state;

	if (!(nand->options & NAND_NEED_SCRAMBLING))
		return;

	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
	state = sunxi_nfc_randomizer_state(mtd, page, ecc);
	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK;
	writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL);
}

static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd)
{
775
	struct nand_chip *nand = mtd_to_nand(mtd);
776 777 778 779 780 781 782 783 784 785 786
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);

	if (!(nand->options & NAND_NEED_SCRAMBLING))
		return;

	writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN,
	       nfc->regs + NFC_REG_ECC_CTL);
}

static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd)
{
787
	struct nand_chip *nand = mtd_to_nand(mtd);
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);

	if (!(nand->options & NAND_NEED_SCRAMBLING))
		return;

	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN,
	       nfc->regs + NFC_REG_ECC_CTL);
}

static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm)
{
	u16 state = sunxi_nfc_randomizer_state(mtd, page, true);

	bbm[0] ^= state;
	bbm[1] ^= sunxi_nfc_randomizer_step(state, 8);
}

static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd,
					   const uint8_t *buf, int len,
					   bool ecc, int page)
{
	sunxi_nfc_randomizer_config(mtd, page, ecc);
	sunxi_nfc_randomizer_enable(mtd);
	sunxi_nfc_write_buf(mtd, buf, len);
	sunxi_nfc_randomizer_disable(mtd);
}

static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf,
					  int len, bool ecc, int page)
{
	sunxi_nfc_randomizer_config(mtd, page, ecc);
	sunxi_nfc_randomizer_enable(mtd);
	sunxi_nfc_read_buf(mtd, buf, len);
	sunxi_nfc_randomizer_disable(mtd);
}

824 825
static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
{
826
	struct nand_chip *nand = mtd_to_nand(mtd);
827 828 829 830 831 832 833
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
	u32 ecc_ctl;

	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
	ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
		     NFC_ECC_BLOCK_SIZE_MSK);
834 835
	ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION |
		   NFC_ECC_PIPELINE;
836

837 838 839
	if (nand->ecc.size == 512)
		ecc_ctl |= NFC_ECC_BLOCK_512;

840 841 842 843 844
	writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
}

static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
{
845
	struct nand_chip *nand = mtd_to_nand(mtd);
846 847 848 849 850 851
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);

	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
	       nfc->regs + NFC_REG_ECC_CTL);
}

852 853 854 855 856 857 858 859
static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
{
	buf[0] = user_data;
	buf[1] = user_data >> 8;
	buf[2] = user_data >> 16;
	buf[3] = user_data >> 24;
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
{
	return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
}

static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct mtd_info *mtd, u8 *oob,
						int step, bool bbm, int page)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);

	sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)),
				   oob);

	/* De-randomize the Bad Block Marker. */
	if (bbm && (nand->options & NAND_NEED_SCRAMBLING))
		sunxi_nfc_randomize_bbm(mtd, page, oob);
}

static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct mtd_info *mtd,
						const u8 *oob, int step,
						bool bbm, int page)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	u8 user_data[4];

	/* Randomize the Bad Block Marker. */
	if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) {
		memcpy(user_data, oob, sizeof(user_data));
		sunxi_nfc_randomize_bbm(mtd, page, user_data);
		oob = user_data;
	}

	writel(sunxi_nfc_buf_to_user_data(oob),
	       nfc->regs + NFC_REG_USER_DATA(step));
}

static void sunxi_nfc_hw_ecc_update_stats(struct mtd_info *mtd,
					  unsigned int *max_bitflips, int ret)
{
	if (ret < 0) {
		mtd->ecc_stats.failed++;
	} else {
		mtd->ecc_stats.corrected += ret;
		*max_bitflips = max_t(unsigned int, *max_bitflips, ret);
	}
}

static int sunxi_nfc_hw_ecc_correct(struct mtd_info *mtd, u8 *data, u8 *oob,
910
				    int step, u32 status, bool *erased)
911 912 913 914
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct nand_ecc_ctrl *ecc = &nand->ecc;
915
	u32 tmp;
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

	*erased = false;

	if (status & NFC_ECC_ERR(step))
		return -EBADMSG;

	if (status & NFC_ECC_PAT_FOUND(step)) {
		u8 pattern;

		if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) {
			pattern = 0x0;
		} else {
			pattern = 0xff;
			*erased = true;
		}

		if (data)
			memset(data, pattern, ecc->size);

		if (oob)
			memset(oob, pattern, ecc->bytes + 4);

		return 0;
	}

	tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(step));

	return NFC_ECC_ERR_CNT(step, tmp);
}

946 947 948 949
static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
				       u8 *data, int data_off,
				       u8 *oob, int oob_off,
				       int *cur_off,
950
				       unsigned int *max_bitflips,
951
				       bool bbm, bool oob_required, int page)
952
{
953
	struct nand_chip *nand = mtd_to_nand(mtd);
954 955
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct nand_ecc_ctrl *ecc = &nand->ecc;
956
	int raw_mode = 0;
957
	bool erased;
958 959 960 961 962
	int ret;

	if (*cur_off != data_off)
		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);

963
	sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page);
964

965
	if (data_off + ecc->size != oob_off)
966 967 968 969 970 971
		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);

	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
	if (ret)
		return ret;

972
	sunxi_nfc_randomizer_enable(mtd);
973 974 975
	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
	       nfc->regs + NFC_REG_CMD);

976
	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
977
	sunxi_nfc_randomizer_disable(mtd);
978 979 980
	if (ret)
		return ret;

981 982
	*cur_off = oob_off + ecc->bytes + 4;

983
	ret = sunxi_nfc_hw_ecc_correct(mtd, data, oob_required ? oob : NULL, 0,
984
				       readl(nfc->regs + NFC_REG_ECC_ST),
985
				       &erased);
986
	if (erased)
987
		return 1;
988

989
	if (ret < 0) {
990 991 992 993 994 995 996
		/*
		 * Re-read the data with the randomizer disabled to identify
		 * bitflips in erased pages.
		 */
		if (nand->options & NAND_NEED_SCRAMBLING) {
			nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
			nand->read_buf(mtd, data, ecc->size);
997 998 999
		} else {
			memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE,
				      ecc->size);
1000 1001
		}

1002 1003 1004
		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
		nand->read_buf(mtd, oob, ecc->bytes + 4);

1005 1006 1007
		ret = nand_check_erased_ecc_chunk(data,	ecc->size,
						  oob, ecc->bytes + 4,
						  NULL, 0, ecc->strength);
1008 1009
		if (ret >= 0)
			raw_mode = 1;
1010
	} else {
1011
		memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
1012

1013 1014 1015 1016
		if (oob_required) {
			nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
			sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4,
						      true, page);
1017

1018 1019 1020
			sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, 0,
							    bbm, page);
		}
1021 1022
	}

1023 1024
	sunxi_nfc_hw_ecc_update_stats(mtd, max_bitflips, ret);

1025
	return raw_mode;
1026 1027
}

1028
static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
1029 1030
					    u8 *oob, int *cur_off,
					    bool randomize, int page)
1031
{
1032
	struct nand_chip *nand = mtd_to_nand(mtd);
1033 1034 1035 1036 1037 1038 1039
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	int offset = ((ecc->bytes + 4) * ecc->steps);
	int len = mtd->oobsize - offset;

	if (len <= 0)
		return;

1040
	if (!cur_off || *cur_off != offset)
1041 1042 1043
		nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
			      offset + mtd->writesize, -1);

1044 1045 1046 1047 1048
	if (!randomize)
		sunxi_nfc_read_buf(mtd, oob + offset, len);
	else
		sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len,
					      false, page);
1049

1050 1051
	if (cur_off)
		*cur_off = mtd->oobsize + mtd->writesize;
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf,
					    int oob_required, int page,
					    int nchunks)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	bool randomized = nand->options & NAND_NEED_SCRAMBLING;
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	unsigned int max_bitflips = 0;
	int ret, i, raw_mode = 0;
	struct scatterlist sg;
	u32 status;

	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
	if (ret)
		return ret;

	ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, nchunks,
				       DMA_FROM_DEVICE, &sg);
	if (ret)
		return ret;

	sunxi_nfc_hw_ecc_enable(mtd);
	sunxi_nfc_randomizer_config(mtd, page, false);
	sunxi_nfc_randomizer_enable(mtd);

	writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) |
	       NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET);

	dma_async_issue_pending(nfc->dmac);

	writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS,
	       nfc->regs + NFC_REG_CMD);

1088
	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	if (ret)
		dmaengine_terminate_all(nfc->dmac);

	sunxi_nfc_randomizer_disable(mtd);
	sunxi_nfc_hw_ecc_disable(mtd);

	sunxi_nfc_dma_op_cleanup(mtd, DMA_FROM_DEVICE, &sg);

	if (ret)
		return ret;

	status = readl(nfc->regs + NFC_REG_ECC_ST);

	for (i = 0; i < nchunks; i++) {
		int data_off = i * ecc->size;
		int oob_off = i * (ecc->bytes + 4);
		u8 *data = buf + data_off;
		u8 *oob = nand->oob_poi + oob_off;
		bool erased;

		ret = sunxi_nfc_hw_ecc_correct(mtd, randomized ? data : NULL,
					       oob_required ? oob : NULL,
					       i, status, &erased);

		/* ECC errors are handled in the second loop. */
		if (ret < 0)
			continue;

		if (oob_required && !erased) {
			/* TODO: use DMA to retrieve OOB */
1119 1120
			nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
				      mtd->writesize + oob_off, -1);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
			nand->read_buf(mtd, oob, ecc->bytes + 4);

			sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, i,
							    !i, page);
		}

		if (erased)
			raw_mode = 1;

		sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret);
	}

	if (status & NFC_ECC_ERR_MSK) {
		for (i = 0; i < nchunks; i++) {
			int data_off = i * ecc->size;
			int oob_off = i * (ecc->bytes + 4);
			u8 *data = buf + data_off;
			u8 *oob = nand->oob_poi + oob_off;

			if (!(status & NFC_ECC_ERR(i)))
				continue;

			/*
			 * Re-read the data with the randomizer disabled to
			 * identify bitflips in erased pages.
			 */
			if (randomized) {
				/* TODO: use DMA to read page in raw mode */
				nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
					      data_off, -1);
				nand->read_buf(mtd, data, ecc->size);
			}

			/* TODO: use DMA to retrieve OOB */
1155 1156
			nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
				      mtd->writesize + oob_off, -1);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
			nand->read_buf(mtd, oob, ecc->bytes + 4);

			ret = nand_check_erased_ecc_chunk(data,	ecc->size,
							  oob, ecc->bytes + 4,
							  NULL, 0,
							  ecc->strength);
			if (ret >= 0)
				raw_mode = 1;

			sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret);
		}
	}

	if (oob_required)
		sunxi_nfc_hw_ecc_read_extra_oob(mtd, nand->oob_poi,
						NULL, !raw_mode,
						page);

	return max_bitflips;
}

1178 1179 1180
static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
					const u8 *data, int data_off,
					const u8 *oob, int oob_off,
1181 1182
					int *cur_off, bool bbm,
					int page)
1183
{
1184
	struct nand_chip *nand = mtd_to_nand(mtd);
1185 1186 1187 1188 1189 1190 1191
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	int ret;

	if (data_off != *cur_off)
		nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);

1192
	sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page);
1193

1194
	if (data_off + ecc->size != oob_off)
1195 1196 1197 1198 1199 1200
		nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);

	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
	if (ret)
		return ret;

1201
	sunxi_nfc_randomizer_enable(mtd);
1202 1203
	sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, 0, bbm, page);

1204 1205 1206 1207
	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
	       NFC_ACCESS_DIR | NFC_ECC_OP,
	       nfc->regs + NFC_REG_CMD);

1208
	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
1209
	sunxi_nfc_randomizer_disable(mtd);
1210 1211 1212 1213 1214 1215 1216 1217
	if (ret)
		return ret;

	*cur_off = oob_off + ecc->bytes + 4;

	return 0;
}

1218
static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
1219 1220
					     u8 *oob, int *cur_off,
					     int page)
1221
{
1222
	struct nand_chip *nand = mtd_to_nand(mtd);
1223 1224 1225 1226 1227 1228 1229
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	int offset = ((ecc->bytes + 4) * ecc->steps);
	int len = mtd->oobsize - offset;

	if (len <= 0)
		return;

1230
	if (!cur_off || *cur_off != offset)
1231 1232 1233
		nand->cmdfunc(mtd, NAND_CMD_RNDIN,
			      offset + mtd->writesize, -1);

1234
	sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page);
1235

1236 1237
	if (cur_off)
		*cur_off = mtd->oobsize + mtd->writesize;
1238 1239
}

1240 1241 1242 1243 1244 1245
static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
				      struct nand_chip *chip, uint8_t *buf,
				      int oob_required, int page)
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	unsigned int max_bitflips = 0;
1246
	int ret, i, cur_off = 0;
1247
	bool raw_mode = false;
1248

1249
	sunxi_nfc_hw_ecc_enable(mtd);
1250 1251

	for (i = 0; i < ecc->steps; i++) {
1252 1253 1254 1255 1256 1257 1258
		int data_off = i * ecc->size;
		int oob_off = i * (ecc->bytes + 4);
		u8 *data = buf + data_off;
		u8 *oob = chip->oob_poi + oob_off;

		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
						  oob_off + mtd->writesize,
1259
						  &cur_off, &max_bitflips,
1260
						  !i, oob_required, page);
1261
		if (ret < 0)
1262
			return ret;
1263 1264
		else if (ret)
			raw_mode = true;
1265 1266
	}

1267
	if (oob_required)
1268 1269
		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
						!raw_mode, page);
1270

1271
	sunxi_nfc_hw_ecc_disable(mtd);
1272 1273 1274 1275

	return max_bitflips;
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
static int sunxi_nfc_hw_ecc_read_page_dma(struct mtd_info *mtd,
					  struct nand_chip *chip, u8 *buf,
					  int oob_required, int page)
{
	int ret;

	ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, oob_required, page,
					       chip->ecc.steps);
	if (ret >= 0)
		return ret;

	/* Fallback to PIO mode */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1);

	return sunxi_nfc_hw_ecc_read_page(mtd, chip, buf, oob_required, page);
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd,
					 struct nand_chip *chip,
					 u32 data_offs, u32 readlen,
					 u8 *bufpoi, int page)
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int ret, i, cur_off = 0;
	unsigned int max_bitflips = 0;

	sunxi_nfc_hw_ecc_enable(mtd);

	for (i = data_offs / ecc->size;
	     i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) {
		int data_off = i * ecc->size;
		int oob_off = i * (ecc->bytes + 4);
		u8 *data = bufpoi + data_off;
		u8 *oob = chip->oob_poi + oob_off;

		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off,
						  oob,
						  oob_off + mtd->writesize,
1314 1315
						  &cur_off, &max_bitflips, !i,
						  false, page);
1316 1317 1318 1319 1320 1321 1322 1323 1324
		if (ret < 0)
			return ret;
	}

	sunxi_nfc_hw_ecc_disable(mtd);

	return max_bitflips;
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
static int sunxi_nfc_hw_ecc_read_subpage_dma(struct mtd_info *mtd,
					     struct nand_chip *chip,
					     u32 data_offs, u32 readlen,
					     u8 *buf, int page)
{
	int nchunks = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
	int ret;

	ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, false, page, nchunks);
	if (ret >= 0)
		return ret;

	/* Fallback to PIO mode */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1);

	return sunxi_nfc_hw_ecc_read_subpage(mtd, chip, data_offs, readlen,
					     buf, page);
}

1344 1345
static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
				       struct nand_chip *chip,
1346 1347
				       const uint8_t *buf, int oob_required,
				       int page)
1348 1349
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
1350
	int ret, i, cur_off = 0;
1351

1352
	sunxi_nfc_hw_ecc_enable(mtd);
1353 1354

	for (i = 0; i < ecc->steps; i++) {
1355 1356 1357 1358 1359 1360 1361
		int data_off = i * ecc->size;
		int oob_off = i * (ecc->bytes + 4);
		const u8 *data = buf + data_off;
		const u8 *oob = chip->oob_poi + oob_off;

		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
						   oob_off + mtd->writesize,
1362
						   &cur_off, !i, page);
1363 1364 1365 1366
		if (ret)
			return ret;
	}

1367 1368 1369
	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
						 &cur_off, page);
1370

1371
	sunxi_nfc_hw_ecc_disable(mtd);
1372 1373 1374 1375

	return 0;
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd,
					  struct nand_chip *chip,
					  u32 data_offs, u32 data_len,
					  const u8 *buf, int oob_required,
					  int page)
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int ret, i, cur_off = 0;

	sunxi_nfc_hw_ecc_enable(mtd);

	for (i = data_offs / ecc->size;
	     i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) {
		int data_off = i * ecc->size;
		int oob_off = i * (ecc->bytes + 4);
		const u8 *data = buf + data_off;
		const u8 *oob = chip->oob_poi + oob_off;

		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
						   oob_off + mtd->writesize,
						   &cur_off, !i, page);
		if (ret)
			return ret;
	}

	sunxi_nfc_hw_ecc_disable(mtd);

	return 0;
}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static int sunxi_nfc_hw_ecc_write_page_dma(struct mtd_info *mtd,
					   struct nand_chip *chip,
					   const u8 *buf,
					   int oob_required,
					   int page)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	struct scatterlist sg;
	int ret, i;

	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
	if (ret)
		return ret;

	ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, ecc->steps,
				       DMA_TO_DEVICE, &sg);
	if (ret)
		goto pio_fallback;

	for (i = 0; i < ecc->steps; i++) {
		const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4));

		sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, i, !i, page);
	}

	sunxi_nfc_hw_ecc_enable(mtd);
	sunxi_nfc_randomizer_config(mtd, page, false);
	sunxi_nfc_randomizer_enable(mtd);

	writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG,
	       nfc->regs + NFC_REG_RCMD_SET);

	dma_async_issue_pending(nfc->dmac);

	writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD |
	       NFC_DATA_TRANS | NFC_ACCESS_DIR,
	       nfc->regs + NFC_REG_CMD);

1446
	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	if (ret)
		dmaengine_terminate_all(nfc->dmac);

	sunxi_nfc_randomizer_disable(mtd);
	sunxi_nfc_hw_ecc_disable(mtd);

	sunxi_nfc_dma_op_cleanup(mtd, DMA_TO_DEVICE, &sg);

	if (ret)
		return ret;

	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
		/* TODO: use DMA to transfer extra OOB bytes ? */
		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
						 NULL, page);

	return 0;

pio_fallback:
	return sunxi_nfc_hw_ecc_write_page(mtd, chip, buf, oob_required, page);
}

1469 1470 1471 1472 1473 1474 1475
static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
					       struct nand_chip *chip,
					       uint8_t *buf, int oob_required,
					       int page)
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	unsigned int max_bitflips = 0;
1476
	int ret, i, cur_off = 0;
1477
	bool raw_mode = false;
1478

1479
	sunxi_nfc_hw_ecc_enable(mtd);
1480 1481

	for (i = 0; i < ecc->steps; i++) {
1482 1483 1484 1485 1486 1487 1488
		int data_off = i * (ecc->size + ecc->bytes + 4);
		int oob_off = data_off + ecc->size;
		u8 *data = buf + (i * ecc->size);
		u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));

		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
						  oob_off, &cur_off,
1489 1490 1491
						  &max_bitflips, !i,
						  oob_required,
						  page);
1492
		if (ret < 0)
1493
			return ret;
1494 1495
		else if (ret)
			raw_mode = true;
1496 1497
	}

1498
	if (oob_required)
1499 1500
		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
						!raw_mode, page);
1501

1502
	sunxi_nfc_hw_ecc_disable(mtd);
1503 1504 1505 1506 1507 1508 1509

	return max_bitflips;
}

static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
						struct nand_chip *chip,
						const uint8_t *buf,
1510
						int oob_required, int page)
1511 1512
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
1513
	int ret, i, cur_off = 0;
1514

1515
	sunxi_nfc_hw_ecc_enable(mtd);
1516 1517

	for (i = 0; i < ecc->steps; i++) {
1518 1519 1520 1521
		int data_off = i * (ecc->size + ecc->bytes + 4);
		int oob_off = data_off + ecc->size;
		const u8 *data = buf + (i * ecc->size);
		const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
1522

1523
		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
1524 1525
						   oob, oob_off, &cur_off,
						   false, page);
1526 1527 1528 1529
		if (ret)
			return ret;
	}

1530 1531 1532
	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
						 &cur_off, page);
1533

1534
	sunxi_nfc_hw_ecc_disable(mtd);
1535 1536 1537 1538

	return 0;
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
static int sunxi_nfc_hw_common_ecc_read_oob(struct mtd_info *mtd,
					    struct nand_chip *chip,
					    int page)
{
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	chip->pagebuf = -1;

	return chip->ecc.read_page(mtd, chip, chip->buffers->databuf, 1, page);
}

static int sunxi_nfc_hw_common_ecc_write_oob(struct mtd_info *mtd,
					     struct nand_chip *chip,
					     int page)
{
	int ret, status;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0, page);

	chip->pagebuf = -1;

	memset(chip->buffers->databuf, 0xff, mtd->writesize);
	ret = chip->ecc.write_page(mtd, chip, chip->buffers->databuf, 1, page);
	if (ret)
		return ret;

	/* Send command to program the OOB data */
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
static const s32 tWB_lut[] = {6, 12, 16, 20};
static const s32 tRHW_lut[] = {4, 8, 12, 20};

static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
		u32 clk_period)
{
	u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
	int i;

	for (i = 0; i < lut_size; i++) {
		if (clk_cycles <= lut[i])
			return i;
	}

	/* Doesn't fit */
	return -EINVAL;
}

#define sunxi_nand_lookup_timing(l, p, c) \
			_sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)

1594 1595
static int sunxi_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
					const struct nand_data_interface *conf)
1596
{
1597 1598
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct sunxi_nand_chip *chip = to_sunxi_nand(nand);
1599
	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
1600
	const struct nand_sdr_timings *timings;
1601
	u32 min_clk_period = 0;
1602
	s32 tWB, tADL, tWHR, tRHW, tCAD;
1603
	long real_clk_rate;
1604

1605 1606 1607 1608
	timings = nand_get_sdr_timings(conf);
	if (IS_ERR(timings))
		return -ENOTSUPP;

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/* T1 <=> tCLS */
	if (timings->tCLS_min > min_clk_period)
		min_clk_period = timings->tCLS_min;

	/* T2 <=> tCLH */
	if (timings->tCLH_min > min_clk_period)
		min_clk_period = timings->tCLH_min;

	/* T3 <=> tCS */
	if (timings->tCS_min > min_clk_period)
		min_clk_period = timings->tCS_min;

	/* T4 <=> tCH */
	if (timings->tCH_min > min_clk_period)
		min_clk_period = timings->tCH_min;

	/* T5 <=> tWP */
	if (timings->tWP_min > min_clk_period)
		min_clk_period = timings->tWP_min;

	/* T6 <=> tWH */
	if (timings->tWH_min > min_clk_period)
		min_clk_period = timings->tWH_min;

	/* T7 <=> tALS */
	if (timings->tALS_min > min_clk_period)
		min_clk_period = timings->tALS_min;

	/* T8 <=> tDS */
	if (timings->tDS_min > min_clk_period)
		min_clk_period = timings->tDS_min;

	/* T9 <=> tDH */
	if (timings->tDH_min > min_clk_period)
		min_clk_period = timings->tDH_min;

	/* T10 <=> tRR */
	if (timings->tRR_min > (min_clk_period * 3))
		min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);

	/* T11 <=> tALH */
	if (timings->tALH_min > min_clk_period)
		min_clk_period = timings->tALH_min;

	/* T12 <=> tRP */
	if (timings->tRP_min > min_clk_period)
		min_clk_period = timings->tRP_min;

	/* T13 <=> tREH */
	if (timings->tREH_min > min_clk_period)
		min_clk_period = timings->tREH_min;

	/* T14 <=> tRC */
	if (timings->tRC_min > (min_clk_period * 2))
		min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);

	/* T15 <=> tWC */
	if (timings->tWC_min > (min_clk_period * 2))
		min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);

1669
	/* T16 - T19 + tCAD */
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	if (timings->tWB_max > (min_clk_period * 20))
		min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20);

	if (timings->tADL_min > (min_clk_period * 32))
		min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32);

	if (timings->tWHR_min > (min_clk_period * 32))
		min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32);

	if (timings->tRHW_min > (min_clk_period * 20))
		min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20);

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
					min_clk_period);
	if (tWB < 0) {
		dev_err(nfc->dev, "unsupported tWB\n");
		return tWB;
	}

	tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
	if (tADL > 3) {
		dev_err(nfc->dev, "unsupported tADL\n");
		return -EINVAL;
	}

	tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
	if (tWHR > 3) {
		dev_err(nfc->dev, "unsupported tWHR\n");
		return -EINVAL;
	}

	tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
					min_clk_period);
	if (tRHW < 0) {
		dev_err(nfc->dev, "unsupported tRHW\n");
		return tRHW;
	}

1708
	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1709 1710
		return 0;

1711 1712 1713 1714 1715 1716 1717 1718
	/*
	 * TODO: according to ONFI specs this value only applies for DDR NAND,
	 * but Allwinner seems to set this to 0x7. Mimic them for now.
	 */
	tCAD = 0x7;

	/* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
	chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
1719 1720 1721 1722 1723

	/* Convert min_clk_period from picoseconds to nanoseconds */
	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);

	/*
1724 1725 1726 1727
	 * Unlike what is stated in Allwinner datasheet, the clk_rate should
	 * be set to (1 / min_clk_period), and not (2 / min_clk_period).
	 * This new formula was verified with a scope and validated by
	 * Allwinner engineers.
1728
	 */
1729
	chip->clk_rate = NSEC_PER_SEC / min_clk_period;
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	real_clk_rate = clk_round_rate(nfc->mod_clk, chip->clk_rate);

	/*
	 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
	 * output cycle timings shall be used if the host drives tRC less than
	 * 30 ns.
	 */
	min_clk_period = NSEC_PER_SEC / real_clk_rate;
	chip->timing_ctl = ((min_clk_period * 2) < 30) ?
			   NFC_TIMING_CTL_EDO : 0;
1740 1741 1742 1743

	return 0;
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
static int sunxi_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
				    struct mtd_oob_region *oobregion)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &nand->ecc;

	if (section >= ecc->steps)
		return -ERANGE;

	oobregion->offset = section * (ecc->bytes + 4) + 4;
	oobregion->length = ecc->bytes;

	return 0;
}

static int sunxi_nand_ooblayout_free(struct mtd_info *mtd, int section,
				     struct mtd_oob_region *oobregion)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &nand->ecc;

	if (section > ecc->steps)
		return -ERANGE;

	/*
	 * The first 2 bytes are used for BB markers, hence we
	 * only have 2 bytes available in the first user data
	 * section.
	 */
	if (!section && ecc->mode == NAND_ECC_HW) {
		oobregion->offset = 2;
		oobregion->length = 2;

		return 0;
	}

	oobregion->offset = section * (ecc->bytes + 4);

	if (section < ecc->steps)
		oobregion->length = 4;
	else
		oobregion->offset = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = {
	.ecc = sunxi_nand_ooblayout_ecc,
	.free = sunxi_nand_ooblayout_free,
};

1795 1796 1797 1798 1799
static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
					      struct nand_ecc_ctrl *ecc,
					      struct device_node *np)
{
	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
1800
	struct nand_chip *nand = mtd_to_nand(mtd);
1801 1802 1803 1804 1805 1806 1807
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	struct sunxi_nand_hw_ecc *data;
	int nsectors;
	int ret;
	int i;

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	if (ecc->options & NAND_ECC_MAXIMIZE) {
		int bytes;

		ecc->size = 1024;
		nsectors = mtd->writesize / ecc->size;

		/* Reserve 2 bytes for the BBM */
		bytes = (mtd->oobsize - 2) / nsectors;

		/* 4 non-ECC bytes are added before each ECC bytes section */
		bytes -= 4;

		/* and bytes has to be even. */
		if (bytes % 2)
			bytes--;

		ecc->strength = bytes * 8 / fls(8 * ecc->size);

		for (i = 0; i < ARRAY_SIZE(strengths); i++) {
			if (strengths[i] > ecc->strength)
				break;
		}

		if (!i)
			ecc->strength = 0;
		else
			ecc->strength = strengths[i - 1];
	}

1837 1838 1839
	if (ecc->size != 512 && ecc->size != 1024)
		return -EINVAL;

1840 1841 1842 1843
	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

1844 1845 1846 1847 1848 1849
	/* Prefer 1k ECC chunk over 512 ones */
	if (ecc->size == 512 && mtd->writesize > 512) {
		ecc->size = 1024;
		ecc->strength *= 2;
	}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	/* Add ECC info retrieval from DT */
	for (i = 0; i < ARRAY_SIZE(strengths); i++) {
		if (ecc->strength <= strengths[i])
			break;
	}

	if (i >= ARRAY_SIZE(strengths)) {
		dev_err(nfc->dev, "unsupported strength\n");
		ret = -ENOTSUPP;
		goto err;
	}

	data->mode = i;

	/* HW ECC always request ECC bytes for 1024 bytes blocks */
	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);

	/* HW ECC always work with even numbers of ECC bytes */
	ecc->bytes = ALIGN(ecc->bytes, 2);

	nsectors = mtd->writesize / ecc->size;

	if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
		ret = -EINVAL;
		goto err;
	}

1877 1878
	ecc->read_oob = sunxi_nfc_hw_common_ecc_read_oob;
	ecc->write_oob = sunxi_nfc_hw_common_ecc_write_oob;
1879
	mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	ecc->priv = data;

	return 0;

err:
	kfree(data);

	return ret;
}

static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
{
	kfree(ecc->priv);
}

static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
				       struct nand_ecc_ctrl *ecc,
				       struct device_node *np)
{
1899 1900 1901
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
1902 1903 1904 1905 1906 1907
	int ret;

	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
	if (ret)
		return ret;

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	if (nfc->dmac) {
		ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma;
		ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma;
		ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma;
		nand->options |= NAND_USE_BOUNCE_BUFFER;
	} else {
		ecc->read_page = sunxi_nfc_hw_ecc_read_page;
		ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage;
		ecc->write_page = sunxi_nfc_hw_ecc_write_page;
	}

1919 1920
	/* TODO: support DMA for raw accesses and subpage write */
	ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage;
1921 1922
	ecc->read_oob_raw = nand_read_oob_std;
	ecc->write_oob_raw = nand_write_oob_std;
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

	return 0;
}

static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
						struct nand_ecc_ctrl *ecc,
						struct device_node *np)
{
	int ret;

	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
	if (ret)
		return ret;

	ecc->prepad = 4;
	ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
	ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
1940 1941
	ecc->read_oob_raw = nand_read_oob_syndrome;
	ecc->write_oob_raw = nand_write_oob_syndrome;
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

	return 0;
}

static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
{
	switch (ecc->mode) {
	case NAND_ECC_HW:
	case NAND_ECC_HW_SYNDROME:
		sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
		break;
	case NAND_ECC_NONE:
	default:
		break;
	}
}

static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
			       struct device_node *np)
{
1962
	struct nand_chip *nand = mtd_to_nand(mtd);
1963 1964
	int ret;

1965
	if (!ecc->size) {
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
		ecc->size = nand->ecc_step_ds;
		ecc->strength = nand->ecc_strength_ds;
	}

	if (!ecc->size || !ecc->strength)
		return -EINVAL;

	switch (ecc->mode) {
	case NAND_ECC_HW:
		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
		if (ret)
			return ret;
		break;
	case NAND_ECC_HW_SYNDROME:
		ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
		if (ret)
			return ret;
		break;
	case NAND_ECC_NONE:
	case NAND_ECC_SOFT:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
				struct device_node *np)
{
	struct sunxi_nand_chip *chip;
	struct mtd_info *mtd;
	struct nand_chip *nand;
	int nsels;
	int ret;
	int i;
	u32 tmp;

	if (!of_get_property(np, "reg", &nsels))
		return -EINVAL;

	nsels /= sizeof(u32);
	if (!nsels) {
		dev_err(dev, "invalid reg property size\n");
		return -EINVAL;
	}

	chip = devm_kzalloc(dev,
			    sizeof(*chip) +
			    (nsels * sizeof(struct sunxi_nand_chip_sel)),
			    GFP_KERNEL);
	if (!chip) {
		dev_err(dev, "could not allocate chip\n");
		return -ENOMEM;
	}

	chip->nsels = nsels;
	chip->selected = -1;

	for (i = 0; i < nsels; i++) {
		ret = of_property_read_u32_index(np, "reg", i, &tmp);
		if (ret) {
			dev_err(dev, "could not retrieve reg property: %d\n",
				ret);
			return ret;
		}

		if (tmp > NFC_MAX_CS) {
			dev_err(dev,
				"invalid reg value: %u (max CS = 7)\n",
				tmp);
			return -EINVAL;
		}

		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
			dev_err(dev, "CS %d already assigned\n", tmp);
			return -EINVAL;
		}

		chip->sels[i].cs = tmp;

		if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
		    tmp < 2) {
			chip->sels[i].rb.type = RB_NATIVE;
			chip->sels[i].rb.info.nativeid = tmp;
		} else {
			ret = of_get_named_gpio(np, "rb-gpios", i);
			if (ret >= 0) {
				tmp = ret;
				chip->sels[i].rb.type = RB_GPIO;
				chip->sels[i].rb.info.gpio = tmp;
				ret = devm_gpio_request(dev, tmp, "nand-rb");
				if (ret)
					return ret;

				ret = gpio_direction_input(tmp);
				if (ret)
					return ret;
			} else {
				chip->sels[i].rb.type = RB_NONE;
			}
		}
	}

	nand = &chip->nand;
	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
	nand->chip_delay = 200;
	nand->controller = &nfc->controller;
2075 2076 2077 2078 2079
	/*
	 * Set the ECC mode to the default value in case nothing is specified
	 * in the DT.
	 */
	nand->ecc.mode = NAND_ECC_HW;
2080
	nand_set_flash_node(nand, np);
2081 2082 2083 2084 2085
	nand->select_chip = sunxi_nfc_select_chip;
	nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
	nand->read_buf = sunxi_nfc_read_buf;
	nand->write_buf = sunxi_nfc_write_buf;
	nand->read_byte = sunxi_nfc_read_byte;
2086
	nand->setup_data_interface = sunxi_nfc_setup_data_interface;
2087

2088
	mtd = nand_to_mtd(nand);
2089 2090 2091 2092 2093 2094
	mtd->dev.parent = dev;

	ret = nand_scan_ident(mtd, nsels, NULL);
	if (ret)
		return ret;

2095 2096 2097
	if (nand->bbt_options & NAND_BBT_USE_FLASH)
		nand->bbt_options |= NAND_BBT_NO_OOB;

2098 2099 2100
	if (nand->options & NAND_NEED_SCRAMBLING)
		nand->options |= NAND_NO_SUBPAGE_WRITE;

2101 2102
	nand->options |= NAND_SUBPAGE_READ;

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
	if (ret) {
		dev_err(dev, "ECC init failed: %d\n", ret);
		return ret;
	}

	ret = nand_scan_tail(mtd);
	if (ret) {
		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
		return ret;
	}

2115
	ret = mtd_device_register(mtd, NULL, 0);
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	if (ret) {
		dev_err(dev, "failed to register mtd device: %d\n", ret);
		nand_release(mtd);
		return ret;
	}

	list_add_tail(&chip->node, &nfc->chips);

	return 0;
}

static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
{
	struct device_node *np = dev->of_node;
	struct device_node *nand_np;
	int nchips = of_get_child_count(np);
	int ret;

	if (nchips > 8) {
		dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
		return -EINVAL;
	}

	for_each_child_of_node(np, nand_np) {
		ret = sunxi_nand_chip_init(dev, nfc, nand_np);
2141 2142
		if (ret) {
			of_node_put(nand_np);
2143
			return ret;
2144
		}
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	}

	return 0;
}

static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
{
	struct sunxi_nand_chip *chip;

	while (!list_empty(&nfc->chips)) {
		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
					node);
2157
		nand_release(nand_to_mtd(&chip->nand));
2158
		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
2159
		list_del(&chip->node);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	}
}

static int sunxi_nfc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct resource *r;
	struct sunxi_nfc *nfc;
	int irq;
	int ret;

	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	nfc->dev = dev;
2176
	nand_hw_control_init(&nfc->controller);
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	INIT_LIST_HEAD(&nfc->chips);

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nfc->regs = devm_ioremap_resource(dev, r);
	if (IS_ERR(nfc->regs))
		return PTR_ERR(nfc->regs);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(dev, "failed to retrieve irq\n");
		return irq;
	}

	nfc->ahb_clk = devm_clk_get(dev, "ahb");
	if (IS_ERR(nfc->ahb_clk)) {
		dev_err(dev, "failed to retrieve ahb clk\n");
		return PTR_ERR(nfc->ahb_clk);
	}

	ret = clk_prepare_enable(nfc->ahb_clk);
	if (ret)
		return ret;

	nfc->mod_clk = devm_clk_get(dev, "mod");
	if (IS_ERR(nfc->mod_clk)) {
		dev_err(dev, "failed to retrieve mod clk\n");
		ret = PTR_ERR(nfc->mod_clk);
		goto out_ahb_clk_unprepare;
	}

	ret = clk_prepare_enable(nfc->mod_clk);
	if (ret)
		goto out_ahb_clk_unprepare;

2211
	nfc->reset = devm_reset_control_get_optional_exclusive(dev, "ahb");
2212
	if (IS_ERR(nfc->reset)) {
2213 2214 2215 2216
		ret = PTR_ERR(nfc->reset);
		goto out_mod_clk_unprepare;
	}

2217 2218 2219 2220 2221 2222
	ret = reset_control_deassert(nfc->reset);
	if (ret) {
		dev_err(dev, "reset err %d\n", ret);
		goto out_mod_clk_unprepare;
	}

2223 2224
	ret = sunxi_nfc_rst(nfc);
	if (ret)
2225
		goto out_ahb_reset_reassert;
2226 2227 2228 2229 2230

	writel(0, nfc->regs + NFC_REG_INT);
	ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
			       0, "sunxi-nand", nfc);
	if (ret)
2231
		goto out_ahb_reset_reassert;
2232

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	nfc->dmac = dma_request_slave_channel(dev, "rxtx");
	if (nfc->dmac) {
		struct dma_slave_config dmac_cfg = { };

		dmac_cfg.src_addr = r->start + NFC_REG_IO_DATA;
		dmac_cfg.dst_addr = dmac_cfg.src_addr;
		dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width;
		dmac_cfg.src_maxburst = 4;
		dmac_cfg.dst_maxburst = 4;
		dmaengine_slave_config(nfc->dmac, &dmac_cfg);
	} else {
		dev_warn(dev, "failed to request rxtx DMA channel\n");
	}

2248 2249 2250 2251 2252
	platform_set_drvdata(pdev, nfc);

	ret = sunxi_nand_chips_init(dev, nfc);
	if (ret) {
		dev_err(dev, "failed to init nand chips\n");
2253
		goto out_release_dmac;
2254 2255 2256 2257
	}

	return 0;

2258 2259 2260
out_release_dmac:
	if (nfc->dmac)
		dma_release_channel(nfc->dmac);
2261
out_ahb_reset_reassert:
2262
	reset_control_assert(nfc->reset);
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
out_mod_clk_unprepare:
	clk_disable_unprepare(nfc->mod_clk);
out_ahb_clk_unprepare:
	clk_disable_unprepare(nfc->ahb_clk);

	return ret;
}

static int sunxi_nfc_remove(struct platform_device *pdev)
{
	struct sunxi_nfc *nfc = platform_get_drvdata(pdev);

	sunxi_nand_chips_cleanup(nfc);
2276

2277
	reset_control_assert(nfc->reset);
2278

2279 2280
	if (nfc->dmac)
		dma_release_channel(nfc->dmac);
2281 2282
	clk_disable_unprepare(nfc->mod_clk);
	clk_disable_unprepare(nfc->ahb_clk);
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

	return 0;
}

static const struct of_device_id sunxi_nfc_ids[] = {
	{ .compatible = "allwinner,sun4i-a10-nand" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);

static struct platform_driver sunxi_nfc_driver = {
	.driver = {
		.name = "sunxi_nand",
		.of_match_table = sunxi_nfc_ids,
	},
	.probe = sunxi_nfc_probe,
	.remove = sunxi_nfc_remove,
};
module_platform_driver(sunxi_nfc_driver);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Boris BREZILLON");
MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
MODULE_ALIAS("platform:sunxi_nand");