mtdcore.c 49.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * Core registration and callback routines for MTD
 * drivers and users.
 *
D
David Woodhouse 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
 * Copyright © 2006      Red Hat UK Limited 
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
L
Linus Torvalds 已提交
22 23 24 25 26
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/ptrace.h>
27
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
28 29 30 31
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/major.h>
#include <linux/fs.h>
32
#include <linux/err.h>
L
Linus Torvalds 已提交
33 34
#include <linux/ioctl.h>
#include <linux/init.h>
35
#include <linux/of.h>
L
Linus Torvalds 已提交
36
#include <linux/proc_fs.h>
37
#include <linux/idr.h>
38
#include <linux/backing-dev.h>
T
Tejun Heo 已提交
39
#include <linux/gfp.h>
40
#include <linux/slab.h>
41
#include <linux/reboot.h>
42
#include <linux/leds.h>
L
Linus Torvalds 已提交
43 44

#include <linux/mtd/mtd.h>
45
#include <linux/mtd/partitions.h>
L
Linus Torvalds 已提交
46

47
#include "mtdcore.h"
48

49
struct backing_dev_info *mtd_bdi;
50

L
Lars-Peter Clausen 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
#ifdef CONFIG_PM_SLEEP

static int mtd_cls_suspend(struct device *dev)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return mtd ? mtd_suspend(mtd) : 0;
}

static int mtd_cls_resume(struct device *dev)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	if (mtd)
		mtd_resume(mtd);
	return 0;
}

static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
#else
#define MTD_CLS_PM_OPS NULL
#endif
74 75 76 77

static struct class mtd_class = {
	.name = "mtd",
	.owner = THIS_MODULE,
L
Lars-Peter Clausen 已提交
78
	.pm = MTD_CLS_PM_OPS,
79
};
D
David Brownell 已提交
80

81 82
static DEFINE_IDR(mtd_idr);

83
/* These are exported solely for the purpose of mtd_blkdevs.c. You
L
Linus Torvalds 已提交
84
   should not use them for _anything_ else */
I
Ingo Molnar 已提交
85
DEFINE_MUTEX(mtd_table_mutex);
L
Linus Torvalds 已提交
86
EXPORT_SYMBOL_GPL(mtd_table_mutex);
87 88 89 90 91 92

struct mtd_info *__mtd_next_device(int i)
{
	return idr_get_next(&mtd_idr, &i);
}
EXPORT_SYMBOL_GPL(__mtd_next_device);
L
Linus Torvalds 已提交
93 94 95

static LIST_HEAD(mtd_notifiers);

D
David Brownell 已提交
96 97 98 99 100 101 102 103

#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)

/* REVISIT once MTD uses the driver model better, whoever allocates
 * the mtd_info will probably want to use the release() hook...
 */
static void mtd_release(struct device *dev)
{
B
Brian Norris 已提交
104
	struct mtd_info *mtd = dev_get_drvdata(dev);
A
Artem Bityutskiy 已提交
105
	dev_t index = MTD_DEVT(mtd->index);
D
David Brownell 已提交
106

B
Brian Norris 已提交
107 108
	/* remove /dev/mtdXro node */
	device_destroy(&mtd_class, index + 1);
109 110
}

D
David Brownell 已提交
111 112 113
static ssize_t mtd_type_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
114
	struct mtd_info *mtd = dev_get_drvdata(dev);
D
David Brownell 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	char *type;

	switch (mtd->type) {
	case MTD_ABSENT:
		type = "absent";
		break;
	case MTD_RAM:
		type = "ram";
		break;
	case MTD_ROM:
		type = "rom";
		break;
	case MTD_NORFLASH:
		type = "nor";
		break;
	case MTD_NANDFLASH:
		type = "nand";
		break;
	case MTD_DATAFLASH:
		type = "dataflash";
		break;
	case MTD_UBIVOLUME:
		type = "ubi";
		break;
139 140 141
	case MTD_MLCNANDFLASH:
		type = "mlc-nand";
		break;
D
David Brownell 已提交
142 143 144 145 146 147
	default:
		type = "unknown";
	}

	return snprintf(buf, PAGE_SIZE, "%s\n", type);
}
148 149 150 151 152
static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);

static ssize_t mtd_flags_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
153
	struct mtd_info *mtd = dev_get_drvdata(dev);
154 155 156 157 158 159 160 161 162

	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);

}
static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);

static ssize_t mtd_size_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
163
	struct mtd_info *mtd = dev_get_drvdata(dev);
164 165 166 167 168 169 170 171 172 173

	return snprintf(buf, PAGE_SIZE, "%llu\n",
		(unsigned long long)mtd->size);

}
static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);

static ssize_t mtd_erasesize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
174
	struct mtd_info *mtd = dev_get_drvdata(dev);
175 176 177 178 179 180 181 182 183

	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);

}
static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);

static ssize_t mtd_writesize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
184
	struct mtd_info *mtd = dev_get_drvdata(dev);
185 186 187 188 189 190

	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);

}
static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);

191 192 193
static ssize_t mtd_subpagesize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
194
	struct mtd_info *mtd = dev_get_drvdata(dev);
195 196 197 198 199 200 201
	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;

	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);

}
static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);

202 203 204
static ssize_t mtd_oobsize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
205
	struct mtd_info *mtd = dev_get_drvdata(dev);
206 207 208 209 210 211 212 213 214

	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);

}
static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);

static ssize_t mtd_numeraseregions_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
215
	struct mtd_info *mtd = dev_get_drvdata(dev);
216 217 218 219 220 221 222 223 224 225

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);

}
static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
	NULL);

static ssize_t mtd_name_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
226
	struct mtd_info *mtd = dev_get_drvdata(dev);
227 228 229 230 231

	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);

}
static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
D
David Brownell 已提交
232

233 234 235 236 237 238 239 240 241
static ssize_t mtd_ecc_strength_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
}
static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
static ssize_t mtd_bitflip_threshold_show(struct device *dev,
					  struct device_attribute *attr,
					  char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
}

static ssize_t mtd_bitflip_threshold_store(struct device *dev,
					   struct device_attribute *attr,
					   const char *buf, size_t count)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	unsigned int bitflip_threshold;
	int retval;

	retval = kstrtouint(buf, 0, &bitflip_threshold);
	if (retval)
		return retval;

	mtd->bitflip_threshold = bitflip_threshold;
	return count;
}
static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
		   mtd_bitflip_threshold_show,
		   mtd_bitflip_threshold_store);

270 271 272 273 274 275 276 277 278 279
static ssize_t mtd_ecc_step_size_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);

}
static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;

	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
}
static DEVICE_ATTR(corrected_bits, S_IRUGO,
		   mtd_ecc_stats_corrected_show, NULL);

static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;

	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
}
static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);

static ssize_t mtd_badblocks_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;

	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
}
static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);

static ssize_t mtd_bbtblocks_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;

	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
}
static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);

D
David Brownell 已提交
321
static struct attribute *mtd_attrs[] = {
322 323 324 325 326
	&dev_attr_type.attr,
	&dev_attr_flags.attr,
	&dev_attr_size.attr,
	&dev_attr_erasesize.attr,
	&dev_attr_writesize.attr,
327
	&dev_attr_subpagesize.attr,
328 329 330
	&dev_attr_oobsize.attr,
	&dev_attr_numeraseregions.attr,
	&dev_attr_name.attr,
331
	&dev_attr_ecc_strength.attr,
332
	&dev_attr_ecc_step_size.attr,
333 334 335 336
	&dev_attr_corrected_bits.attr,
	&dev_attr_ecc_failures.attr,
	&dev_attr_bad_blocks.attr,
	&dev_attr_bbt_blocks.attr,
337
	&dev_attr_bitflip_threshold.attr,
D
David Brownell 已提交
338 339
	NULL,
};
A
Axel Lin 已提交
340
ATTRIBUTE_GROUPS(mtd);
D
David Brownell 已提交
341 342 343 344 345 346 347

static struct device_type mtd_devtype = {
	.name		= "mtd",
	.groups		= mtd_groups,
	.release	= mtd_release,
};

348 349 350 351 352 353 354 355 356 357 358 359 360 361
#ifndef CONFIG_MMU
unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
{
	switch (mtd->type) {
	case MTD_RAM:
		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
	case MTD_ROM:
		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
			NOMMU_MAP_READ;
	default:
		return NOMMU_MAP_COPY;
	}
}
362
EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
363 364
#endif

365 366 367 368 369 370 371 372 373 374 375
static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
			       void *cmd)
{
	struct mtd_info *mtd;

	mtd = container_of(n, struct mtd_info, reboot_notifier);
	mtd->_reboot(mtd);

	return NOTIFY_DONE;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * mtd_wunit_to_pairing_info - get pairing information of a wunit
 * @mtd: pointer to new MTD device info structure
 * @wunit: write unit we are interested in
 * @info: returned pairing information
 *
 * Retrieve pairing information associated to the wunit.
 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
 * paired together, and where programming a page may influence the page it is
 * paired with.
 * The notion of page is replaced by the term wunit (write-unit) to stay
 * consistent with the ->writesize field.
 *
 * The @wunit argument can be extracted from an absolute offset using
 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
 * to @wunit.
 *
 * From the pairing info the MTD user can find all the wunits paired with
 * @wunit using the following loop:
 *
 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
 *	info.pair = i;
 *	mtd_pairing_info_to_wunit(mtd, &info);
 *	...
 * }
 */
int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
			      struct mtd_pairing_info *info)
{
	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);

	if (wunit < 0 || wunit >= npairs)
		return -EINVAL;

	if (mtd->pairing && mtd->pairing->get_info)
		return mtd->pairing->get_info(mtd, wunit, info);

	info->group = 0;
	info->pair = wunit;

	return 0;
}
EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);

/**
 * mtd_wunit_to_pairing_info - get wunit from pairing information
 * @mtd: pointer to new MTD device info structure
 * @info: pairing information struct
 *
 * Returns a positive number representing the wunit associated to the info
 * struct, or a negative error code.
 *
 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
 * doc).
 *
 * It can also be used to only program the first page of each pair (i.e.
 * page attached to group 0), which allows one to use an MLC NAND in
 * software-emulated SLC mode:
 *
 * info.group = 0;
 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 * for (info.pair = 0; info.pair < npairs; info.pair++) {
 *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
 *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
 *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
 * }
 */
int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
			      const struct mtd_pairing_info *info)
{
	int ngroups = mtd_pairing_groups(mtd);
	int npairs = mtd_wunit_per_eb(mtd) / ngroups;

	if (!info || info->pair < 0 || info->pair >= npairs ||
	    info->group < 0 || info->group >= ngroups)
		return -EINVAL;

	if (mtd->pairing && mtd->pairing->get_wunit)
		return mtd->pairing->get_wunit(mtd, info);

	return info->pair;
}
EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);

/**
 * mtd_pairing_groups - get the number of pairing groups
 * @mtd: pointer to new MTD device info structure
 *
 * Returns the number of pairing groups.
 *
 * This number is usually equal to the number of bits exposed by a single
 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
 * to iterate over all pages of a given pair.
 */
int mtd_pairing_groups(struct mtd_info *mtd)
{
	if (!mtd->pairing || !mtd->pairing->ngroups)
		return 1;

	return mtd->pairing->ngroups;
}
EXPORT_SYMBOL_GPL(mtd_pairing_groups);

L
Linus Torvalds 已提交
480 481 482 483 484 485
/**
 *	add_mtd_device - register an MTD device
 *	@mtd: pointer to new MTD device info structure
 *
 *	Add a device to the list of MTD devices present in the system, and
 *	notify each currently active MTD 'user' of its arrival. Returns
486
 *	zero on success or non-zero on failure.
L
Linus Torvalds 已提交
487 488 489 490
 */

int add_mtd_device(struct mtd_info *mtd)
{
491 492
	struct mtd_notifier *not;
	int i, error;
L
Linus Torvalds 已提交
493

494 495 496 497 498
	/*
	 * May occur, for instance, on buggy drivers which call
	 * mtd_device_parse_register() multiple times on the same master MTD,
	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
	 */
499
	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
500 501
		return -EEXIST;

502
	BUG_ON(mtd->writesize == 0);
I
Ingo Molnar 已提交
503
	mutex_lock(&mtd_table_mutex);
L
Linus Torvalds 已提交
504

T
Tejun Heo 已提交
505
	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
506 507
	if (i < 0) {
		error = i;
508
		goto fail_locked;
509
	}
D
David Brownell 已提交
510

511 512 513
	mtd->index = i;
	mtd->usecount = 0;

514 515 516 517
	/* default value if not set by driver */
	if (mtd->bitflip_threshold == 0)
		mtd->bitflip_threshold = mtd->ecc_strength;

518 519 520 521 522 523 524 525 526 527 528 529 530 531
	if (is_power_of_2(mtd->erasesize))
		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
	else
		mtd->erasesize_shift = 0;

	if (is_power_of_2(mtd->writesize))
		mtd->writesize_shift = ffs(mtd->writesize) - 1;
	else
		mtd->writesize_shift = 0;

	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;

	/* Some chips always power up locked. Unlock them now */
532 533 534
	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
		error = mtd_unlock(mtd, 0, mtd->size);
		if (error && error != -EOPNOTSUPP)
535 536 537
			printk(KERN_WARNING
			       "%s: unlock failed, writes may not work\n",
			       mtd->name);
538 539
		/* Ignore unlock failures? */
		error = 0;
540 541 542
	}

	/* Caller should have set dev.parent to match the
543
	 * physical device, if appropriate.
544 545 546 547 548 549
	 */
	mtd->dev.type = &mtd_devtype;
	mtd->dev.class = &mtd_class;
	mtd->dev.devt = MTD_DEVT(i);
	dev_set_name(&mtd->dev, "mtd%d", i);
	dev_set_drvdata(&mtd->dev, mtd);
550
	of_node_get(mtd_get_of_node(mtd));
551 552
	error = device_register(&mtd->dev);
	if (error)
553 554
		goto fail_added;

B
Brian Norris 已提交
555 556
	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
		      "mtd%dro", i);
557

558
	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
559 560 561 562 563 564 565 566 567 568 569 570
	/* No need to get a refcount on the module containing
	   the notifier, since we hold the mtd_table_mutex */
	list_for_each_entry(not, &mtd_notifiers, list)
		not->add(mtd);

	mutex_unlock(&mtd_table_mutex);
	/* We _know_ we aren't being removed, because
	   our caller is still holding us here. So none
	   of this try_ nonsense, and no bitching about it
	   either. :) */
	__module_get(THIS_MODULE);
	return 0;
571

572
fail_added:
573
	of_node_put(mtd_get_of_node(mtd));
574 575
	idr_remove(&mtd_idr, i);
fail_locked:
I
Ingo Molnar 已提交
576
	mutex_unlock(&mtd_table_mutex);
577
	return error;
L
Linus Torvalds 已提交
578 579 580 581 582 583 584 585 586 587 588 589
}

/**
 *	del_mtd_device - unregister an MTD device
 *	@mtd: pointer to MTD device info structure
 *
 *	Remove a device from the list of MTD devices present in the system,
 *	and notify each currently active MTD 'user' of its departure.
 *	Returns zero on success or 1 on failure, which currently will happen
 *	if the requested device does not appear to be present in the list.
 */

590
int del_mtd_device(struct mtd_info *mtd)
L
Linus Torvalds 已提交
591 592
{
	int ret;
593
	struct mtd_notifier *not;
594

I
Ingo Molnar 已提交
595
	mutex_lock(&mtd_table_mutex);
L
Linus Torvalds 已提交
596

597
	if (idr_find(&mtd_idr, mtd->index) != mtd) {
L
Linus Torvalds 已提交
598
		ret = -ENODEV;
599 600 601 602 603 604 605 606 607
		goto out_error;
	}

	/* No need to get a refcount on the module containing
		the notifier, since we hold the mtd_table_mutex */
	list_for_each_entry(not, &mtd_notifiers, list)
		not->remove(mtd);

	if (mtd->usecount) {
608
		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
L
Linus Torvalds 已提交
609 610 611
		       mtd->index, mtd->name, mtd->usecount);
		ret = -EBUSY;
	} else {
612 613
		device_unregister(&mtd->dev);

614
		idr_remove(&mtd_idr, mtd->index);
615
		of_node_put(mtd_get_of_node(mtd));
L
Linus Torvalds 已提交
616 617 618 619 620

		module_put(THIS_MODULE);
		ret = 0;
	}

621
out_error:
I
Ingo Molnar 已提交
622
	mutex_unlock(&mtd_table_mutex);
L
Linus Torvalds 已提交
623 624 625
	return ret;
}

626
static int mtd_add_device_partitions(struct mtd_info *mtd,
627
				     struct mtd_partitions *parts)
628
{
629 630
	const struct mtd_partition *real_parts = parts->parts;
	int nbparts = parts->nr_parts;
631 632 633 634
	int ret;

	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
		ret = add_mtd_device(mtd);
635 636
		if (ret)
			return ret;
637 638 639 640 641 642 643 644 645 646 647 648
	}

	if (nbparts > 0) {
		ret = add_mtd_partitions(mtd, real_parts, nbparts);
		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
			del_mtd_device(mtd);
		return ret;
	}

	return 0;
}

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
/*
 * Set a few defaults based on the parent devices, if not provided by the
 * driver
 */
static void mtd_set_dev_defaults(struct mtd_info *mtd)
{
	if (mtd->dev.parent) {
		if (!mtd->owner && mtd->dev.parent->driver)
			mtd->owner = mtd->dev.parent->driver->owner;
		if (!mtd->name)
			mtd->name = dev_name(mtd->dev.parent);
	} else {
		pr_debug("mtd device won't show a device symlink in sysfs\n");
	}
}
664

665 666 667 668 669 670
/**
 * mtd_device_parse_register - parse partitions and register an MTD device.
 *
 * @mtd: the MTD device to register
 * @types: the list of MTD partition probes to try, see
 *         'parse_mtd_partitions()' for more information
671
 * @parser_data: MTD partition parser-specific data
672 673 674 675 676 677 678 679 680 681 682 683 684 685
 * @parts: fallback partition information to register, if parsing fails;
 *         only valid if %nr_parts > %0
 * @nr_parts: the number of partitions in parts, if zero then the full
 *            MTD device is registered if no partition info is found
 *
 * This function aggregates MTD partitions parsing (done by
 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 * basically follows the most common pattern found in many MTD drivers:
 *
 * * It first tries to probe partitions on MTD device @mtd using parsers
 *   specified in @types (if @types is %NULL, then the default list of parsers
 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 *   found this functions tries to fallback to information specified in
 *   @parts/@nr_parts.
B
Brian Norris 已提交
686
 * * If any partitioning info was found, this function registers the found
687 688
 *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
 *   as a whole is registered first.
689 690 691 692 693
 * * If no partitions were found this function just registers the MTD device
 *   @mtd and exits.
 *
 * Returns zero in case of success and a negative error code in case of failure.
 */
694
int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
695
			      struct mtd_part_parser_data *parser_data,
696 697 698
			      const struct mtd_partition *parts,
			      int nr_parts)
{
699
	struct mtd_partitions parsed;
700
	int ret;
701

702 703
	mtd_set_dev_defaults(mtd);

704 705 706 707 708 709 710 711 712 713 714
	memset(&parsed, 0, sizeof(parsed));

	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
	if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
		/* Fall back to driver-provided partitions */
		parsed = (struct mtd_partitions){
			.parts		= parts,
			.nr_parts	= nr_parts,
		};
	} else if (ret < 0) {
		/* Didn't come up with parsed OR fallback partitions */
715 716 717
		pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
			ret);
		/* Don't abort on errors; we can still use unpartitioned MTD */
718
		memset(&parsed, 0, sizeof(parsed));
719
	}
720

721
	ret = mtd_add_device_partitions(mtd, &parsed);
722 723
	if (ret)
		goto out;
724

725 726 727 728 729 730 731 732
	/*
	 * FIXME: some drivers unfortunately call this function more than once.
	 * So we have to check if we've already assigned the reboot notifier.
	 *
	 * Generally, we can make multiple calls work for most cases, but it
	 * does cause problems with parse_mtd_partitions() above (e.g.,
	 * cmdlineparts will register partitions more than once).
	 */
733 734
	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
		  "MTD already registered\n");
735
	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
736 737 738 739
		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
		register_reboot_notifier(&mtd->reboot_notifier);
	}

740
out:
B
Brian Norris 已提交
741
	/* Cleanup any parsed partitions */
742
	mtd_part_parser_cleanup(&parsed);
743
	return ret;
744 745 746
}
EXPORT_SYMBOL_GPL(mtd_device_parse_register);

747 748 749 750 751 752 753 754 755 756
/**
 * mtd_device_unregister - unregister an existing MTD device.
 *
 * @master: the MTD device to unregister.  This will unregister both the master
 *          and any partitions if registered.
 */
int mtd_device_unregister(struct mtd_info *master)
{
	int err;

757 758 759
	if (master->_reboot)
		unregister_reboot_notifier(&master->reboot_notifier);

760 761 762 763 764 765 766 767 768 769 770
	err = del_mtd_partitions(master);
	if (err)
		return err;

	if (!device_is_registered(&master->dev))
		return 0;

	return del_mtd_device(master);
}
EXPORT_SYMBOL_GPL(mtd_device_unregister);

L
Linus Torvalds 已提交
771 772 773 774 775 776 777 778 779 780
/**
 *	register_mtd_user - register a 'user' of MTD devices.
 *	@new: pointer to notifier info structure
 *
 *	Registers a pair of callbacks function to be called upon addition
 *	or removal of MTD devices. Causes the 'add' callback to be immediately
 *	invoked for each MTD device currently present in the system.
 */
void register_mtd_user (struct mtd_notifier *new)
{
781
	struct mtd_info *mtd;
L
Linus Torvalds 已提交
782

I
Ingo Molnar 已提交
783
	mutex_lock(&mtd_table_mutex);
L
Linus Torvalds 已提交
784 785 786

	list_add(&new->list, &mtd_notifiers);

787
	__module_get(THIS_MODULE);
788

789 790
	mtd_for_each_device(mtd)
		new->add(mtd);
L
Linus Torvalds 已提交
791

I
Ingo Molnar 已提交
792
	mutex_unlock(&mtd_table_mutex);
L
Linus Torvalds 已提交
793
}
794
EXPORT_SYMBOL_GPL(register_mtd_user);
L
Linus Torvalds 已提交
795 796

/**
797 798
 *	unregister_mtd_user - unregister a 'user' of MTD devices.
 *	@old: pointer to notifier info structure
L
Linus Torvalds 已提交
799 800 801 802 803 804 805 806
 *
 *	Removes a callback function pair from the list of 'users' to be
 *	notified upon addition or removal of MTD devices. Causes the
 *	'remove' callback to be immediately invoked for each MTD device
 *	currently present in the system.
 */
int unregister_mtd_user (struct mtd_notifier *old)
{
807
	struct mtd_info *mtd;
L
Linus Torvalds 已提交
808

I
Ingo Molnar 已提交
809
	mutex_lock(&mtd_table_mutex);
L
Linus Torvalds 已提交
810 811 812

	module_put(THIS_MODULE);

813 814
	mtd_for_each_device(mtd)
		old->remove(mtd);
815

L
Linus Torvalds 已提交
816
	list_del(&old->list);
I
Ingo Molnar 已提交
817
	mutex_unlock(&mtd_table_mutex);
L
Linus Torvalds 已提交
818 819
	return 0;
}
820
EXPORT_SYMBOL_GPL(unregister_mtd_user);
L
Linus Torvalds 已提交
821 822 823 824 825 826 827 828 829

/**
 *	get_mtd_device - obtain a validated handle for an MTD device
 *	@mtd: last known address of the required MTD device
 *	@num: internal device number of the required MTD device
 *
 *	Given a number and NULL address, return the num'th entry in the device
 *	table, if any.	Given an address and num == -1, search the device table
 *	for a device with that address and return if it's still present. Given
830 831
 *	both, return the num'th driver only if its address matches. Return
 *	error code if not.
L
Linus Torvalds 已提交
832 833 834
 */
struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
{
835 836
	struct mtd_info *ret = NULL, *other;
	int err = -ENODEV;
L
Linus Torvalds 已提交
837

I
Ingo Molnar 已提交
838
	mutex_lock(&mtd_table_mutex);
L
Linus Torvalds 已提交
839 840

	if (num == -1) {
841 842 843 844 845 846
		mtd_for_each_device(other) {
			if (other == mtd) {
				ret = mtd;
				break;
			}
		}
847 848
	} else if (num >= 0) {
		ret = idr_find(&mtd_idr, num);
L
Linus Torvalds 已提交
849 850 851 852
		if (mtd && mtd != ret)
			ret = NULL;
	}

853 854 855
	if (!ret) {
		ret = ERR_PTR(err);
		goto out;
A
Artem Bityutskiy 已提交
856
	}
L
Linus Torvalds 已提交
857

858 859 860 861
	err = __get_mtd_device(ret);
	if (err)
		ret = ERR_PTR(err);
out:
862 863
	mutex_unlock(&mtd_table_mutex);
	return ret;
864
}
865
EXPORT_SYMBOL_GPL(get_mtd_device);
L
Linus Torvalds 已提交
866

867 868 869 870 871 872 873 874

int __get_mtd_device(struct mtd_info *mtd)
{
	int err;

	if (!try_module_get(mtd->owner))
		return -ENODEV;

875 876
	if (mtd->_get_device) {
		err = mtd->_get_device(mtd);
877 878 879 880 881 882 883 884

		if (err) {
			module_put(mtd->owner);
			return err;
		}
	}
	mtd->usecount++;
	return 0;
L
Linus Torvalds 已提交
885
}
886
EXPORT_SYMBOL_GPL(__get_mtd_device);
L
Linus Torvalds 已提交
887

888 889 890 891 892 893 894 895 896 897
/**
 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
 *	device name
 *	@name: MTD device name to open
 *
 * 	This function returns MTD device description structure in case of
 * 	success and an error code in case of failure.
 */
struct mtd_info *get_mtd_device_nm(const char *name)
{
898 899
	int err = -ENODEV;
	struct mtd_info *mtd = NULL, *other;
900 901 902

	mutex_lock(&mtd_table_mutex);

903 904 905
	mtd_for_each_device(other) {
		if (!strcmp(name, other->name)) {
			mtd = other;
906 907 908 909
			break;
		}
	}

A
Artem Bityutskiy 已提交
910
	if (!mtd)
911 912
		goto out_unlock;

913 914
	err = __get_mtd_device(mtd);
	if (err)
915 916
		goto out_unlock;

A
Artem Bityutskiy 已提交
917 918
	mutex_unlock(&mtd_table_mutex);
	return mtd;
919 920 921

out_unlock:
	mutex_unlock(&mtd_table_mutex);
A
Artem Bityutskiy 已提交
922
	return ERR_PTR(err);
923
}
924
EXPORT_SYMBOL_GPL(get_mtd_device_nm);
925

L
Linus Torvalds 已提交
926 927
void put_mtd_device(struct mtd_info *mtd)
{
I
Ingo Molnar 已提交
928
	mutex_lock(&mtd_table_mutex);
929 930 931 932
	__put_mtd_device(mtd);
	mutex_unlock(&mtd_table_mutex);

}
933
EXPORT_SYMBOL_GPL(put_mtd_device);
934 935 936 937 938 939

void __put_mtd_device(struct mtd_info *mtd)
{
	--mtd->usecount;
	BUG_ON(mtd->usecount < 0);

940 941
	if (mtd->_put_device)
		mtd->_put_device(mtd);
L
Linus Torvalds 已提交
942 943 944

	module_put(mtd->owner);
}
945
EXPORT_SYMBOL_GPL(__put_mtd_device);
L
Linus Torvalds 已提交
946

947 948 949 950 951 952 953 954 955
/*
 * Erase is an asynchronous operation.  Device drivers are supposed
 * to call instr->callback() whenever the operation completes, even
 * if it completes with a failure.
 * Callers are supposed to pass a callback function and wait for it
 * to be called before writing to the block.
 */
int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
{
956
	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
957
		return -EINVAL;
958 959
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
960
	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
961 962 963 964 965
	if (!instr->len) {
		instr->state = MTD_ERASE_DONE;
		mtd_erase_callback(instr);
		return 0;
	}
966
	ledtrig_mtd_activity();
967 968 969 970 971 972 973 974 975 976 977
	return mtd->_erase(mtd, instr);
}
EXPORT_SYMBOL_GPL(mtd_erase);

/*
 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
 */
int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
	      void **virt, resource_size_t *phys)
{
	*retlen = 0;
978 979 980
	*virt = NULL;
	if (phys)
		*phys = 0;
981 982
	if (!mtd->_point)
		return -EOPNOTSUPP;
983
	if (from < 0 || from >= mtd->size || len > mtd->size - from)
984
		return -EINVAL;
985 986
	if (!len)
		return 0;
987 988 989 990 991 992 993 994 995
	return mtd->_point(mtd, from, len, retlen, virt, phys);
}
EXPORT_SYMBOL_GPL(mtd_point);

/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
{
	if (!mtd->_point)
		return -EOPNOTSUPP;
996
	if (from < 0 || from >= mtd->size || len > mtd->size - from)
997
		return -EINVAL;
998 999
	if (!len)
		return 0;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	return mtd->_unpoint(mtd, from, len);
}
EXPORT_SYMBOL_GPL(mtd_unpoint);

/*
 * Allow NOMMU mmap() to directly map the device (if not NULL)
 * - return the address to which the offset maps
 * - return -ENOSYS to indicate refusal to do the mapping
 */
unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
				    unsigned long offset, unsigned long flags)
{
	if (!mtd->_get_unmapped_area)
		return -EOPNOTSUPP;
1014
	if (offset >= mtd->size || len > mtd->size - offset)
1015 1016 1017 1018 1019 1020 1021 1022
		return -EINVAL;
	return mtd->_get_unmapped_area(mtd, len, offset, flags);
}
EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);

int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
	     u_char *buf)
{
1023
	int ret_code;
1024
	*retlen = 0;
1025
	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1026
		return -EINVAL;
1027 1028
	if (!len)
		return 0;
1029

1030
	ledtrig_mtd_activity();
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	/*
	 * In the absence of an error, drivers return a non-negative integer
	 * representing the maximum number of bitflips that were corrected on
	 * any one ecc region (if applicable; zero otherwise).
	 */
	ret_code = mtd->_read(mtd, from, len, retlen, buf);
	if (unlikely(ret_code < 0))
		return ret_code;
	if (mtd->ecc_strength == 0)
		return 0;	/* device lacks ecc */
	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1042 1043 1044 1045 1046 1047 1048
}
EXPORT_SYMBOL_GPL(mtd_read);

int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
	      const u_char *buf)
{
	*retlen = 0;
1049
	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1050
		return -EINVAL;
1051 1052
	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
1053 1054
	if (!len)
		return 0;
1055
	ledtrig_mtd_activity();
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	return mtd->_write(mtd, to, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_write);

/*
 * In blackbox flight recorder like scenarios we want to make successful writes
 * in interrupt context. panic_write() is only intended to be called when its
 * known the kernel is about to panic and we need the write to succeed. Since
 * the kernel is not going to be running for much longer, this function can
 * break locks and delay to ensure the write succeeds (but not sleep).
 */
int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
		    const u_char *buf)
{
	*retlen = 0;
	if (!mtd->_panic_write)
		return -EOPNOTSUPP;
1073
	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1074
		return -EINVAL;
1075 1076
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
1077 1078
	if (!len)
		return 0;
1079 1080 1081 1082
	return mtd->_panic_write(mtd, to, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_panic_write);

1083 1084
int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
{
1085
	int ret_code;
1086 1087 1088
	ops->retlen = ops->oobretlen = 0;
	if (!mtd->_read_oob)
		return -EOPNOTSUPP;
1089 1090

	ledtrig_mtd_activity();
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	/*
	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
	 * similar to mtd->_read(), returning a non-negative integer
	 * representing max bitflips. In other cases, mtd->_read_oob() may
	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
	 */
	ret_code = mtd->_read_oob(mtd, from, ops);
	if (unlikely(ret_code < 0))
		return ret_code;
	if (mtd->ecc_strength == 0)
		return 0;	/* device lacks ecc */
	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1103 1104 1105
}
EXPORT_SYMBOL_GPL(mtd_read_oob);

1106 1107 1108 1109 1110 1111 1112 1113
int mtd_write_oob(struct mtd_info *mtd, loff_t to,
				struct mtd_oob_ops *ops)
{
	ops->retlen = ops->oobretlen = 0;
	if (!mtd->_write_oob)
		return -EOPNOTSUPP;
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
1114
	ledtrig_mtd_activity();
1115 1116 1117 1118
	return mtd->_write_oob(mtd, to, ops);
}
EXPORT_SYMBOL_GPL(mtd_write_oob);

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
/**
 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
 * @mtd: MTD device structure
 * @section: ECC section. Depending on the layout you may have all the ECC
 *	     bytes stored in a single contiguous section, or one section
 *	     per ECC chunk (and sometime several sections for a single ECC
 *	     ECC chunk)
 * @oobecc: OOB region struct filled with the appropriate ECC position
 *	    information
 *
1129
 * This function returns ECC section information in the OOB area. If you want
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
 * to get all the ECC bytes information, then you should call
 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
		      struct mtd_oob_region *oobecc)
{
	memset(oobecc, 0, sizeof(*oobecc));

	if (!mtd || section < 0)
		return -EINVAL;

1143
	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1144 1145
		return -ENOTSUPP;

1146
	return mtd->ooblayout->ecc(mtd, section, oobecc);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);

/**
 * mtd_ooblayout_free - Get the OOB region definition of a specific free
 *			section
 * @mtd: MTD device structure
 * @section: Free section you are interested in. Depending on the layout
 *	     you may have all the free bytes stored in a single contiguous
 *	     section, or one section per ECC chunk plus an extra section
 *	     for the remaining bytes (or other funky layout).
 * @oobfree: OOB region struct filled with the appropriate free position
 *	     information
 *
1161
 * This function returns free bytes position in the OOB area. If you want
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
 * to get all the free bytes information, then you should call
 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_free(struct mtd_info *mtd, int section,
		       struct mtd_oob_region *oobfree)
{
	memset(oobfree, 0, sizeof(*oobfree));

	if (!mtd || section < 0)
		return -EINVAL;

1175
	if (!mtd->ooblayout || !mtd->ooblayout->free)
1176 1177
		return -ENOTSUPP;

1178
	return mtd->ooblayout->free(mtd, section, oobfree);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_free);

/**
 * mtd_ooblayout_find_region - Find the region attached to a specific byte
 * @mtd: mtd info structure
 * @byte: the byte we are searching for
 * @sectionp: pointer where the section id will be stored
 * @oobregion: used to retrieve the ECC position
 * @iter: iterator function. Should be either mtd_ooblayout_free or
 *	  mtd_ooblayout_ecc depending on the region type you're searching for
 *
1191
 * This function returns the section id and oobregion information of a
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
 * specific byte. For example, say you want to know where the 4th ECC byte is
 * stored, you'll use:
 *
 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
 *
 * Returns zero on success, a negative error code otherwise.
 */
static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
				int *sectionp, struct mtd_oob_region *oobregion,
				int (*iter)(struct mtd_info *,
					    int section,
					    struct mtd_oob_region *oobregion))
{
	int pos = 0, ret, section = 0;

	memset(oobregion, 0, sizeof(*oobregion));

	while (1) {
		ret = iter(mtd, section, oobregion);
		if (ret)
			return ret;

		if (pos + oobregion->length > byte)
			break;

		pos += oobregion->length;
		section++;
	}

	/*
	 * Adjust region info to make it start at the beginning at the
	 * 'start' ECC byte.
	 */
	oobregion->offset += byte - pos;
	oobregion->length -= byte - pos;
	*sectionp = section;

	return 0;
}

/**
 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
 *				  ECC byte
 * @mtd: mtd info structure
 * @eccbyte: the byte we are searching for
 * @sectionp: pointer where the section id will be stored
 * @oobregion: OOB region information
 *
 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
 * byte.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
				 int *section,
				 struct mtd_oob_region *oobregion)
{
	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
					 mtd_ooblayout_ecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);

/**
 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
 * @mtd: mtd info structure
 * @buf: destination buffer to store OOB bytes
 * @oobbuf: OOB buffer
 * @start: first byte to retrieve
 * @nbytes: number of bytes to retrieve
 * @iter: section iterator
 *
 * Extract bytes attached to a specific category (ECC or free)
 * from the OOB buffer and copy them into buf.
 *
 * Returns zero on success, a negative error code otherwise.
 */
static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
				const u8 *oobbuf, int start, int nbytes,
				int (*iter)(struct mtd_info *,
					    int section,
					    struct mtd_oob_region *oobregion))
{
1274 1275
	struct mtd_oob_region oobregion;
	int section, ret;
1276 1277 1278 1279 1280 1281 1282

	ret = mtd_ooblayout_find_region(mtd, start, &section,
					&oobregion, iter);

	while (!ret) {
		int cnt;

1283
		cnt = min_t(int, nbytes, oobregion.length);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		memcpy(buf, oobbuf + oobregion.offset, cnt);
		buf += cnt;
		nbytes -= cnt;

		if (!nbytes)
			break;

		ret = iter(mtd, ++section, &oobregion);
	}

	return ret;
}

/**
 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
 * @mtd: mtd info structure
 * @buf: source buffer to get OOB bytes from
 * @oobbuf: OOB buffer
 * @start: first OOB byte to set
 * @nbytes: number of OOB bytes to set
 * @iter: section iterator
 *
 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
 * is selected by passing the appropriate iterator.
 *
 * Returns zero on success, a negative error code otherwise.
 */
static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
				u8 *oobbuf, int start, int nbytes,
				int (*iter)(struct mtd_info *,
					    int section,
					    struct mtd_oob_region *oobregion))
{
1317 1318
	struct mtd_oob_region oobregion;
	int section, ret;
1319 1320 1321 1322 1323 1324 1325

	ret = mtd_ooblayout_find_region(mtd, start, &section,
					&oobregion, iter);

	while (!ret) {
		int cnt;

1326
		cnt = min_t(int, nbytes, oobregion.length);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		memcpy(oobbuf + oobregion.offset, buf, cnt);
		buf += cnt;
		nbytes -= cnt;

		if (!nbytes)
			break;

		ret = iter(mtd, ++section, &oobregion);
	}

	return ret;
}

/**
 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
 * @mtd: mtd info structure
 * @iter: category iterator
 *
 * Count the number of bytes in a given category.
 *
 * Returns a positive value on success, a negative error code otherwise.
 */
static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
				int (*iter)(struct mtd_info *,
					    int section,
					    struct mtd_oob_region *oobregion))
{
1354
	struct mtd_oob_region oobregion;
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	int section = 0, ret, nbytes = 0;

	while (1) {
		ret = iter(mtd, section++, &oobregion);
		if (ret) {
			if (ret == -ERANGE)
				ret = nbytes;
			break;
		}

		nbytes += oobregion.length;
	}

	return ret;
}

/**
 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
 * @mtd: mtd info structure
 * @eccbuf: destination buffer to store ECC bytes
 * @oobbuf: OOB buffer
 * @start: first ECC byte to retrieve
 * @nbytes: number of ECC bytes to retrieve
 *
 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
			       const u8 *oobbuf, int start, int nbytes)
{
	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
				       mtd_ooblayout_ecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);

/**
 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
 * @mtd: mtd info structure
 * @eccbuf: source buffer to get ECC bytes from
 * @oobbuf: OOB buffer
 * @start: first ECC byte to set
 * @nbytes: number of ECC bytes to set
 *
 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
			       u8 *oobbuf, int start, int nbytes)
{
	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
				       mtd_ooblayout_ecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);

/**
 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
 * @mtd: mtd info structure
 * @databuf: destination buffer to store ECC bytes
 * @oobbuf: OOB buffer
 * @start: first ECC byte to retrieve
 * @nbytes: number of ECC bytes to retrieve
 *
 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
				const u8 *oobbuf, int start, int nbytes)
{
	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
				       mtd_ooblayout_free);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);

/**
 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
 * @mtd: mtd info structure
 * @eccbuf: source buffer to get data bytes from
 * @oobbuf: OOB buffer
 * @start: first ECC byte to set
 * @nbytes: number of ECC bytes to set
 *
 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
				u8 *oobbuf, int start, int nbytes)
{
	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
				       mtd_ooblayout_free);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);

/**
 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
 * @mtd: mtd info structure
 *
 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
{
	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);

/**
 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
 * @mtd: mtd info structure
 *
 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
{
	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);

1479 1480 1481 1482 1483
/*
 * Method to access the protection register area, present in some flash
 * devices. The user data is one time programmable but the factory data is read
 * only.
 */
1484 1485
int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
			   struct otp_info *buf)
1486 1487 1488 1489 1490
{
	if (!mtd->_get_fact_prot_info)
		return -EOPNOTSUPP;
	if (!len)
		return 0;
1491
	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
}
EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);

int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
			   size_t *retlen, u_char *buf)
{
	*retlen = 0;
	if (!mtd->_read_fact_prot_reg)
		return -EOPNOTSUPP;
	if (!len)
		return 0;
	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);

1507 1508
int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
			   struct otp_info *buf)
1509 1510 1511 1512 1513
{
	if (!mtd->_get_user_prot_info)
		return -EOPNOTSUPP;
	if (!len)
		return 0;
1514
	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
}
EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);

int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
			   size_t *retlen, u_char *buf)
{
	*retlen = 0;
	if (!mtd->_read_user_prot_reg)
		return -EOPNOTSUPP;
	if (!len)
		return 0;
	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);

int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
			    size_t *retlen, u_char *buf)
{
1533 1534
	int ret;

1535 1536 1537 1538 1539
	*retlen = 0;
	if (!mtd->_write_user_prot_reg)
		return -EOPNOTSUPP;
	if (!len)
		return 0;
1540 1541 1542 1543 1544 1545 1546 1547 1548
	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
	if (ret)
		return ret;

	/*
	 * If no data could be written at all, we are out of memory and
	 * must return -ENOSPC.
	 */
	return (*retlen) ? 0 : -ENOSPC;
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
}
EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);

int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
{
	if (!mtd->_lock_user_prot_reg)
		return -EOPNOTSUPP;
	if (!len)
		return 0;
	return mtd->_lock_user_prot_reg(mtd, from, len);
}
EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);

1562 1563 1564 1565 1566
/* Chip-supported device locking */
int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	if (!mtd->_lock)
		return -EOPNOTSUPP;
1567
	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1568
		return -EINVAL;
1569 1570
	if (!len)
		return 0;
1571 1572 1573 1574 1575 1576 1577 1578
	return mtd->_lock(mtd, ofs, len);
}
EXPORT_SYMBOL_GPL(mtd_lock);

int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	if (!mtd->_unlock)
		return -EOPNOTSUPP;
1579
	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1580
		return -EINVAL;
1581 1582
	if (!len)
		return 0;
1583 1584 1585 1586 1587 1588 1589 1590
	return mtd->_unlock(mtd, ofs, len);
}
EXPORT_SYMBOL_GPL(mtd_unlock);

int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	if (!mtd->_is_locked)
		return -EOPNOTSUPP;
1591
	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1592
		return -EINVAL;
1593 1594
	if (!len)
		return 0;
1595 1596 1597 1598
	return mtd->_is_locked(mtd, ofs, len);
}
EXPORT_SYMBOL_GPL(mtd_is_locked);

1599
int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1600
{
1601
	if (ofs < 0 || ofs >= mtd->size)
1602 1603
		return -EINVAL;
	if (!mtd->_block_isreserved)
1604
		return 0;
1605 1606 1607 1608 1609 1610
	return mtd->_block_isreserved(mtd, ofs);
}
EXPORT_SYMBOL_GPL(mtd_block_isreserved);

int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
1611
	if (ofs < 0 || ofs >= mtd->size)
1612
		return -EINVAL;
1613 1614
	if (!mtd->_block_isbad)
		return 0;
1615 1616 1617 1618 1619 1620 1621 1622
	return mtd->_block_isbad(mtd, ofs);
}
EXPORT_SYMBOL_GPL(mtd_block_isbad);

int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	if (!mtd->_block_markbad)
		return -EOPNOTSUPP;
1623
	if (ofs < 0 || ofs >= mtd->size)
1624
		return -EINVAL;
1625 1626
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
1627 1628 1629 1630
	return mtd->_block_markbad(mtd, ofs);
}
EXPORT_SYMBOL_GPL(mtd_block_markbad);

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
/*
 * default_mtd_writev - the default writev method
 * @mtd: mtd device description object pointer
 * @vecs: the vectors to write
 * @count: count of vectors in @vecs
 * @to: the MTD device offset to write to
 * @retlen: on exit contains the count of bytes written to the MTD device.
 *
 * This function returns zero in case of success and a negative error code in
 * case of failure.
L
Linus Torvalds 已提交
1641
 */
1642 1643
static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
			      unsigned long count, loff_t to, size_t *retlen)
L
Linus Torvalds 已提交
1644 1645 1646 1647 1648
{
	unsigned long i;
	size_t totlen = 0, thislen;
	int ret = 0;

1649 1650 1651 1652 1653 1654 1655 1656 1657
	for (i = 0; i < count; i++) {
		if (!vecs[i].iov_len)
			continue;
		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
				vecs[i].iov_base);
		totlen += thislen;
		if (ret || thislen != vecs[i].iov_len)
			break;
		to += vecs[i].iov_len;
L
Linus Torvalds 已提交
1658
	}
1659
	*retlen = totlen;
L
Linus Torvalds 已提交
1660 1661
	return ret;
}
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

/*
 * mtd_writev - the vector-based MTD write method
 * @mtd: mtd device description object pointer
 * @vecs: the vectors to write
 * @count: count of vectors in @vecs
 * @to: the MTD device offset to write to
 * @retlen: on exit contains the count of bytes written to the MTD device.
 *
 * This function returns zero in case of success and a negative error code in
 * case of failure.
 */
int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
	       unsigned long count, loff_t to, size_t *retlen)
{
	*retlen = 0;
1678 1679
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
1680
	if (!mtd->_writev)
1681
		return default_mtd_writev(mtd, vecs, count, to, retlen);
1682
	return mtd->_writev(mtd, vecs, count, to, retlen);
1683 1684
}
EXPORT_SYMBOL_GPL(mtd_writev);
L
Linus Torvalds 已提交
1685

1686 1687
/**
 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1688 1689
 * @mtd: mtd device description object pointer
 * @size: a pointer to the ideal or maximum size of the allocation, points
1690 1691 1692 1693 1694 1695 1696
 *        to the actual allocation size on success.
 *
 * This routine attempts to allocate a contiguous kernel buffer up to
 * the specified size, backing off the size of the request exponentially
 * until the request succeeds or until the allocation size falls below
 * the system page size. This attempts to make sure it does not adversely
 * impact system performance, so when allocating more than one page, we
1697 1698
 * ask the memory allocator to avoid re-trying, swapping, writing back
 * or performing I/O.
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
 *
 * Note, this function also makes sure that the allocated buffer is aligned to
 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
 *
 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
 * to handle smaller (i.e. degraded) buffer allocations under low- or
 * fragmented-memory situations where such reduced allocations, from a
 * requested ideal, are allowed.
 *
 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
 */
void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
{
1712
	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
	void *kbuf;

	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);

	while (*size > min_alloc) {
		kbuf = kmalloc(*size, flags);
		if (kbuf)
			return kbuf;

		*size >>= 1;
		*size = ALIGN(*size, mtd->writesize);
	}

	/*
	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
	 */
	return kmalloc(*size, GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
L
Linus Torvalds 已提交
1734

P
Pavel Machek 已提交
1735 1736
#ifdef CONFIG_PROC_FS

L
Linus Torvalds 已提交
1737 1738 1739
/*====================================================================*/
/* Support for /proc/mtd */

1740
static int mtd_proc_show(struct seq_file *m, void *v)
L
Linus Torvalds 已提交
1741
{
1742
	struct mtd_info *mtd;
L
Linus Torvalds 已提交
1743

1744
	seq_puts(m, "dev:    size   erasesize  name\n");
I
Ingo Molnar 已提交
1745
	mutex_lock(&mtd_table_mutex);
1746
	mtd_for_each_device(mtd) {
1747 1748 1749
		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
			   mtd->index, (unsigned long long)mtd->size,
			   mtd->erasesize, mtd->name);
1750
	}
I
Ingo Molnar 已提交
1751
	mutex_unlock(&mtd_table_mutex);
1752
	return 0;
L
Linus Torvalds 已提交
1753 1754
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
static int mtd_proc_open(struct inode *inode, struct file *file)
{
	return single_open(file, mtd_proc_show, NULL);
}

static const struct file_operations mtd_proc_ops = {
	.open		= mtd_proc_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
1766 1767
#endif /* CONFIG_PROC_FS */

L
Linus Torvalds 已提交
1768 1769 1770
/*====================================================================*/
/* Init code */

1771
static struct backing_dev_info * __init mtd_bdi_init(char *name)
1772
{
1773
	struct backing_dev_info *bdi;
1774 1775
	int ret;

1776
	bdi = bdi_alloc(GFP_KERNEL);
1777 1778
	if (!bdi)
		return ERR_PTR(-ENOMEM);
1779

1780 1781 1782 1783 1784 1785
	bdi->name = name;
	/*
	 * We put '-0' suffix to the name to get the same name format as we
	 * used to get. Since this is called only once, we get a unique name. 
	 */
	ret = bdi_register(bdi, NULL, "%.28s-0", name);
1786
	if (ret)
1787
		bdi_put(bdi);
1788

1789
	return ret ? ERR_PTR(ret) : bdi;
1790 1791
}

1792 1793
static struct proc_dir_entry *proc_mtd;

L
Linus Torvalds 已提交
1794 1795
static int __init init_mtd(void)
{
1796
	int ret;
1797

1798
	ret = class_register(&mtd_class);
1799 1800 1801
	if (ret)
		goto err_reg;

1802 1803 1804
	mtd_bdi = mtd_bdi_init("mtd");
	if (IS_ERR(mtd_bdi)) {
		ret = PTR_ERR(mtd_bdi);
1805
		goto err_bdi;
1806
	}
1807

1808
	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1809

1810 1811 1812 1813
	ret = init_mtdchar();
	if (ret)
		goto out_procfs;

L
Linus Torvalds 已提交
1814
	return 0;
1815

1816 1817 1818
out_procfs:
	if (proc_mtd)
		remove_proc_entry("mtd", NULL);
1819
	bdi_put(mtd_bdi);
1820
err_bdi:
1821 1822 1823 1824
	class_unregister(&mtd_class);
err_reg:
	pr_err("Error registering mtd class or bdi: %d\n", ret);
	return ret;
L
Linus Torvalds 已提交
1825 1826 1827 1828
}

static void __exit cleanup_mtd(void)
{
1829
	cleanup_mtdchar();
1830
	if (proc_mtd)
1831
		remove_proc_entry("mtd", NULL);
1832
	class_unregister(&mtd_class);
1833
	bdi_put(mtd_bdi);
1834
	idr_destroy(&mtd_idr);
L
Linus Torvalds 已提交
1835 1836 1837 1838 1839 1840 1841 1842
}

module_init(init_mtd);
module_exit(cleanup_mtd);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("Core MTD registration and access routines");