dpu_hw_top.c 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include "dpu_hwio.h"
#include "dpu_hw_catalog.h"
#include "dpu_hw_top.h"
#include "dpu_dbg.h"
#include "dpu_kms.h"

#define SSPP_SPARE                        0x28
#define UBWC_STATIC                       0x144

#define FLD_SPLIT_DISPLAY_CMD             BIT(1)
#define FLD_SMART_PANEL_FREE_RUN          BIT(2)
#define FLD_INTF_1_SW_TRG_MUX             BIT(4)
#define FLD_INTF_2_SW_TRG_MUX             BIT(8)
#define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF

#define DANGER_STATUS                     0x360
#define SAFE_STATUS                       0x364

#define TE_LINE_INTERVAL                  0x3F4

#define TRAFFIC_SHAPER_EN                 BIT(31)
#define TRAFFIC_SHAPER_RD_CLIENT(num)     (0x030 + (num * 4))
#define TRAFFIC_SHAPER_WR_CLIENT(num)     (0x060 + (num * 4))
#define TRAFFIC_SHAPER_FIXPOINT_FACTOR    4

#define MDP_WD_TIMER_0_CTL                0x380
#define MDP_WD_TIMER_0_CTL2               0x384
#define MDP_WD_TIMER_0_LOAD_VALUE         0x388
#define MDP_WD_TIMER_1_CTL                0x390
#define MDP_WD_TIMER_1_CTL2               0x394
#define MDP_WD_TIMER_1_LOAD_VALUE         0x398
#define MDP_WD_TIMER_2_CTL                0x420
#define MDP_WD_TIMER_2_CTL2               0x424
#define MDP_WD_TIMER_2_LOAD_VALUE         0x428
#define MDP_WD_TIMER_3_CTL                0x430
#define MDP_WD_TIMER_3_CTL2               0x434
#define MDP_WD_TIMER_3_LOAD_VALUE         0x438
#define MDP_WD_TIMER_4_CTL                0x440
#define MDP_WD_TIMER_4_CTL2               0x444
#define MDP_WD_TIMER_4_LOAD_VALUE         0x448

#define MDP_TICK_COUNT                    16
#define XO_CLK_RATE                       19200
#define MS_TICKS_IN_SEC                   1000

#define CALCULATE_WD_LOAD_VALUE(fps) \
	((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))

#define DCE_SEL                           0x450

static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp,
		struct split_pipe_cfg *cfg)
{
	struct dpu_hw_blk_reg_map *c;
	u32 upper_pipe = 0;
	u32 lower_pipe = 0;

	if (!mdp || !cfg)
		return;

	c = &mdp->hw;

	if (cfg->en) {
		if (cfg->mode == INTF_MODE_CMD) {
			lower_pipe = FLD_SPLIT_DISPLAY_CMD;
			/* interface controlling sw trigger */
			if (cfg->intf == INTF_2)
				lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
			else
				lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
			upper_pipe = lower_pipe;
		} else {
			if (cfg->intf == INTF_2) {
				lower_pipe = FLD_INTF_1_SW_TRG_MUX;
				upper_pipe = FLD_INTF_2_SW_TRG_MUX;
			} else {
				lower_pipe = FLD_INTF_2_SW_TRG_MUX;
				upper_pipe = FLD_INTF_1_SW_TRG_MUX;
			}
		}
	}

	DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
	DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
	DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
	DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
}

static void dpu_hw_setup_cdm_output(struct dpu_hw_mdp *mdp,
		struct cdm_output_cfg *cfg)
{
	struct dpu_hw_blk_reg_map *c;
	u32 out_ctl = 0;

	if (!mdp || !cfg)
		return;

	c = &mdp->hw;

	if (cfg->intf_en)
		out_ctl |= BIT(19);

	DPU_REG_WRITE(c, MDP_OUT_CTL_0, out_ctl);
}

static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp,
		enum dpu_clk_ctrl_type clk_ctrl, bool enable)
{
	struct dpu_hw_blk_reg_map *c;
	u32 reg_off, bit_off;
	u32 reg_val, new_val;
	bool clk_forced_on;

	if (!mdp)
		return false;

	c = &mdp->hw;

	if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX)
		return false;

	reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
	bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;

	reg_val = DPU_REG_READ(c, reg_off);

	if (enable)
		new_val = reg_val | BIT(bit_off);
	else
		new_val = reg_val & ~BIT(bit_off);

	DPU_REG_WRITE(c, reg_off, new_val);

	clk_forced_on = !(reg_val & BIT(bit_off));

	return clk_forced_on;
}


static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp,
		struct dpu_danger_safe_status *status)
{
	struct dpu_hw_blk_reg_map *c;
	u32 value;

	if (!mdp || !status)
		return;

	c = &mdp->hw;

	value = DPU_REG_READ(c, DANGER_STATUS);
	status->mdp = (value >> 0) & 0x3;
	status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
	status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
	status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
	status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
	status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
	status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
	status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
	status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
	status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
	status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
	status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
	status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
	status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
	status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
}

static void dpu_hw_setup_vsync_source(struct dpu_hw_mdp *mdp,
		struct dpu_vsync_source_cfg *cfg)
{
	struct dpu_hw_blk_reg_map *c;
	u32 reg, wd_load_value, wd_ctl, wd_ctl2, i;
	static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};

	if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
		return;

	c = &mdp->hw;
	reg = DPU_REG_READ(c, MDP_VSYNC_SEL);
	for (i = 0; i < cfg->pp_count; i++) {
		int pp_idx = cfg->ppnumber[i] - PINGPONG_0;

		if (pp_idx >= ARRAY_SIZE(pp_offset))
			continue;

		reg &= ~(0xf << pp_offset[pp_idx]);
		reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
	}
	DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg);

	if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 &&
			cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) {
		switch (cfg->vsync_source) {
		case DPU_VSYNC_SOURCE_WD_TIMER_4:
			wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
			wd_ctl = MDP_WD_TIMER_4_CTL;
			wd_ctl2 = MDP_WD_TIMER_4_CTL2;
			break;
		case DPU_VSYNC_SOURCE_WD_TIMER_3:
			wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
			wd_ctl = MDP_WD_TIMER_3_CTL;
			wd_ctl2 = MDP_WD_TIMER_3_CTL2;
			break;
		case DPU_VSYNC_SOURCE_WD_TIMER_2:
			wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
			wd_ctl = MDP_WD_TIMER_2_CTL;
			wd_ctl2 = MDP_WD_TIMER_2_CTL2;
			break;
		case DPU_VSYNC_SOURCE_WD_TIMER_1:
			wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
			wd_ctl = MDP_WD_TIMER_1_CTL;
			wd_ctl2 = MDP_WD_TIMER_1_CTL2;
			break;
		case DPU_VSYNC_SOURCE_WD_TIMER_0:
		default:
			wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
			wd_ctl = MDP_WD_TIMER_0_CTL;
			wd_ctl2 = MDP_WD_TIMER_0_CTL2;
			break;
		}

		DPU_REG_WRITE(c, wd_load_value,
			CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));

		DPU_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
		reg = DPU_REG_READ(c, wd_ctl2);
		reg |= BIT(8);		/* enable heartbeat timer */
		reg |= BIT(0);		/* enable WD timer */
		DPU_REG_WRITE(c, wd_ctl2, reg);

		/* make sure that timers are enabled/disabled for vsync state */
		wmb();
	}
}

static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp,
		struct dpu_danger_safe_status *status)
{
	struct dpu_hw_blk_reg_map *c;
	u32 value;

	if (!mdp || !status)
		return;

	c = &mdp->hw;

	value = DPU_REG_READ(c, SAFE_STATUS);
	status->mdp = (value >> 0) & 0x1;
	status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
	status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
	status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
	status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
	status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
	status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
	status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
	status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
	status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
	status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
	status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
	status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
	status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
	status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
}

278
static void dpu_hw_reset_ubwc(struct dpu_hw_mdp *mdp, struct dpu_mdss_cfg *m)
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
{
	struct dpu_hw_blk_reg_map c;

	if (!mdp || !m)
		return;

	if (!IS_UBWC_20_SUPPORTED(m->caps->ubwc_version))
		return;

	/* force blk offset to zero to access beginning of register region */
	c = mdp->hw;
	c.blk_off = 0x0;
	DPU_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static);
}

static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp)
{
	struct dpu_hw_blk_reg_map *c;

	if (!mdp)
		return;

	c = &mdp->hw;

	DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
}

static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops,
		unsigned long cap)
{
	ops->setup_split_pipe = dpu_hw_setup_split_pipe;
	ops->setup_cdm_output = dpu_hw_setup_cdm_output;
	ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl;
	ops->get_danger_status = dpu_hw_get_danger_status;
	ops->setup_vsync_source = dpu_hw_setup_vsync_source;
	ops->get_safe_status = dpu_hw_get_safe_status;
	ops->reset_ubwc = dpu_hw_reset_ubwc;
	ops->intf_audio_select = dpu_hw_intf_audio_select;
}

static const struct dpu_mdp_cfg *_top_offset(enum dpu_mdp mdp,
		const struct dpu_mdss_cfg *m,
		void __iomem *addr,
		struct dpu_hw_blk_reg_map *b)
{
	int i;

	if (!m || !addr || !b)
		return ERR_PTR(-EINVAL);

	for (i = 0; i < m->mdp_count; i++) {
		if (mdp == m->mdp[i].id) {
			b->base_off = addr;
			b->blk_off = m->mdp[i].base;
			b->length = m->mdp[i].len;
			b->hwversion = m->hwversion;
			b->log_mask = DPU_DBG_MASK_TOP;
			return &m->mdp[i];
		}
	}

	return ERR_PTR(-EINVAL);
}

static struct dpu_hw_blk_ops dpu_hw_ops = {
	.start = NULL,
	.stop = NULL,
};

struct dpu_hw_mdp *dpu_hw_mdptop_init(enum dpu_mdp idx,
		void __iomem *addr,
		const struct dpu_mdss_cfg *m)
{
	struct dpu_hw_mdp *mdp;
	const struct dpu_mdp_cfg *cfg;
	int rc;

	if (!addr || !m)
		return ERR_PTR(-EINVAL);

	mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
	if (!mdp)
		return ERR_PTR(-ENOMEM);

	cfg = _top_offset(idx, m, addr, &mdp->hw);
	if (IS_ERR_OR_NULL(cfg)) {
		kfree(mdp);
		return ERR_PTR(-EINVAL);
	}

	/*
	 * Assign ops
	 */
	mdp->idx = idx;
	mdp->caps = cfg;
	_setup_mdp_ops(&mdp->ops, mdp->caps->features);

	rc = dpu_hw_blk_init(&mdp->base, DPU_HW_BLK_TOP, idx, &dpu_hw_ops);
	if (rc) {
		DPU_ERROR("failed to init hw blk %d\n", rc);
		goto blk_init_error;
	}

	dpu_dbg_set_dpu_top_offset(mdp->hw.blk_off);

	return mdp;

blk_init_error:
	kzfree(mdp);

	return ERR_PTR(rc);
}

void dpu_hw_mdp_destroy(struct dpu_hw_mdp *mdp)
{
	if (mdp)
		dpu_hw_blk_destroy(&mdp->base);
	kfree(mdp);
}