pagemap.txt 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
pagemap, from the userspace perspective
---------------------------------------

pagemap is a new (as of 2.6.25) set of interfaces in the kernel that allow
userspace programs to examine the page tables and related information by
reading files in /proc.

There are three components to pagemap:

 * /proc/pid/pagemap.  This file lets a userspace process find out which
   physical frame each virtual page is mapped to.  It contains one 64-bit
   value for each virtual page, containing the following data (from
   fs/proc/task_mmu.c, above pagemap_read):

W
Wu Fengguang 已提交
15
    * Bits 0-54  page frame number (PFN) if present
16
    * Bits 0-4   swap type if swapped
W
Wu Fengguang 已提交
17
    * Bits 5-54  swap offset if swapped
18
    * Bits 55-60 page shift (page size = 1<<page shift)
19
    * Bit  61    page is file-page or shared-anon
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
    * Bit  62    page swapped
    * Bit  63    page present

   If the page is not present but in swap, then the PFN contains an
   encoding of the swap file number and the page's offset into the
   swap. Unmapped pages return a null PFN. This allows determining
   precisely which pages are mapped (or in swap) and comparing mapped
   pages between processes.

   Efficient users of this interface will use /proc/pid/maps to
   determine which areas of memory are actually mapped and llseek to
   skip over unmapped regions.

 * /proc/kpagecount.  This file contains a 64-bit count of the number of
   times each page is mapped, indexed by PFN.

 * /proc/kpageflags.  This file contains a 64-bit set of flags for each
   page, indexed by PFN.

W
Wu Fengguang 已提交
39
   The flags are (from fs/proc/page.c, above kpageflags_read):
40 41 42 43 44 45 46 47 48 49 50 51

     0. LOCKED
     1. ERROR
     2. REFERENCED
     3. UPTODATE
     4. DIRTY
     5. LRU
     6. ACTIVE
     7. SLAB
     8. WRITEBACK
     9. RECLAIM
    10. BUDDY
52 53 54 55 56 57 58 59
    11. MMAP
    12. ANON
    13. SWAPCACHE
    14. SWAPBACKED
    15. COMPOUND_HEAD
    16. COMPOUND_TAIL
    16. HUGE
    18. UNEVICTABLE
W
Wu Fengguang 已提交
60
    19. HWPOISON
61
    20. NOPAGE
62
    21. KSM
63
    22. THP
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

Short descriptions to the page flags:

 0. LOCKED
    page is being locked for exclusive access, eg. by undergoing read/write IO

 7. SLAB
    page is managed by the SLAB/SLOB/SLUB/SLQB kernel memory allocator
    When compound page is used, SLUB/SLQB will only set this flag on the head
    page; SLOB will not flag it at all.

10. BUDDY
    a free memory block managed by the buddy system allocator
    The buddy system organizes free memory in blocks of various orders.
    An order N block has 2^N physically contiguous pages, with the BUDDY flag
    set for and _only_ for the first page.

15. COMPOUND_HEAD
16. COMPOUND_TAIL
    A compound page with order N consists of 2^N physically contiguous pages.
    A compound page with order 2 takes the form of "HTTT", where H donates its
    head page and T donates its tail page(s).  The major consumers of compound
    pages are hugeTLB pages (Documentation/vm/hugetlbpage.txt), the SLUB etc.
    memory allocators and various device drivers. However in this interface,
    only huge/giga pages are made visible to end users.
17. HUGE
    this is an integral part of a HugeTLB page

W
Wu Fengguang 已提交
92 93 94
19. HWPOISON
    hardware detected memory corruption on this page: don't touch the data!

95 96 97
20. NOPAGE
    no page frame exists at the requested address

98 99 100
21. KSM
    identical memory pages dynamically shared between one or more processes

101 102 103
22. THP
    contiguous pages which construct transparent hugepages

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    [IO related page flags]
 1. ERROR     IO error occurred
 3. UPTODATE  page has up-to-date data
              ie. for file backed page: (in-memory data revision >= on-disk one)
 4. DIRTY     page has been written to, hence contains new data
              ie. for file backed page: (in-memory data revision >  on-disk one)
 8. WRITEBACK page is being synced to disk

    [LRU related page flags]
 5. LRU         page is in one of the LRU lists
 6. ACTIVE      page is in the active LRU list
18. UNEVICTABLE page is in the unevictable (non-)LRU list
                It is somehow pinned and not a candidate for LRU page reclaims,
		eg. ramfs pages, shmctl(SHM_LOCK) and mlock() memory segments
 2. REFERENCED  page has been referenced since last LRU list enqueue/requeue
 9. RECLAIM     page will be reclaimed soon after its pageout IO completed
11. MMAP        a memory mapped page
12. ANON        a memory mapped page that is not part of a file
13. SWAPCACHE   page is mapped to swap space, ie. has an associated swap entry
14. SWAPBACKED  page is backed by swap/RAM

The page-types tool in this directory can be used to query the above flags.
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

Using pagemap to do something useful:

The general procedure for using pagemap to find out about a process' memory
usage goes like this:

 1. Read /proc/pid/maps to determine which parts of the memory space are
    mapped to what.
 2. Select the maps you are interested in -- all of them, or a particular
    library, or the stack or the heap, etc.
 3. Open /proc/pid/pagemap and seek to the pages you would like to examine.
 4. Read a u64 for each page from pagemap.
 5. Open /proc/kpagecount and/or /proc/kpageflags.  For each PFN you just
    read, seek to that entry in the file, and read the data you want.

For example, to find the "unique set size" (USS), which is the amount of
memory that a process is using that is not shared with any other process,
you can go through every map in the process, find the PFNs, look those up
in kpagecount, and tally up the number of pages that are only referenced
once.

Other notes:

Reading from any of the files will return -EINVAL if you are not starting
150
the read on an 8-byte boundary (e.g., if you sought an odd number of bytes
151
into the file), or if the size of the read is not a multiple of 8 bytes.