sparse.c 13.9 KB
Newer Older
A
Andy Whitcroft 已提交
1 2 3 4 5 6
/*
 * sparse memory mappings.
 */
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
7
#include <linux/highmem.h>
A
Andy Whitcroft 已提交
8
#include <linux/module.h>
9
#include <linux/spinlock.h>
10
#include <linux/vmalloc.h>
11
#include "internal.h"
A
Andy Whitcroft 已提交
12
#include <asm/dma.h>
13 14
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
15
#include "internal.h"
A
Andy Whitcroft 已提交
16 17 18 19 20 21

/*
 * Permanent SPARSEMEM data:
 *
 * 1) mem_section	- memory sections, mem_map's for valid memory
 */
22
#ifdef CONFIG_SPARSEMEM_EXTREME
B
Bob Picco 已提交
23
struct mem_section *mem_section[NR_SECTION_ROOTS]
24
	____cacheline_internodealigned_in_smp;
25 26
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27
	____cacheline_internodealigned_in_smp;
28 29 30
#endif
EXPORT_SYMBOL(mem_section);

31 32 33 34 35 36 37 38 39 40 41 42
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
 * If we did not store the node number in the page then we have to
 * do a lookup in the section_to_node_table in order to find which
 * node the page belongs to.
 */
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif

43
int page_to_nid(struct page *page)
44 45 46 47
{
	return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
48 49 50 51 52 53 54 55 56

static void set_section_nid(unsigned long section_nr, int nid)
{
	section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
57 58
#endif

59
#ifdef CONFIG_SPARSEMEM_EXTREME
S
Sam Ravnborg 已提交
60
static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61 62 63 64 65
{
	struct mem_section *section = NULL;
	unsigned long array_size = SECTIONS_PER_ROOT *
				   sizeof(struct mem_section);

66
	if (slab_is_available())
67 68 69
		section = kmalloc_node(array_size, GFP_KERNEL, nid);
	else
		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
70 71 72 73 74

	if (section)
		memset(section, 0, array_size);

	return section;
75
}
B
Bob Picco 已提交
76

77
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
B
Bob Picco 已提交
78
{
I
Ingo Molnar 已提交
79
	static DEFINE_SPINLOCK(index_init_lock);
80 81 82
	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
	struct mem_section *section;
	int ret = 0;
B
Bob Picco 已提交
83 84

	if (mem_section[root])
85
		return -EEXIST;
86

87
	section = sparse_index_alloc(nid);
88 89
	if (!section)
		return -ENOMEM;
90 91 92 93 94
	/*
	 * This lock keeps two different sections from
	 * reallocating for the same index
	 */
	spin_lock(&index_init_lock);
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109
	if (mem_section[root]) {
		ret = -EEXIST;
		goto out;
	}

	mem_section[root] = section;
out:
	spin_unlock(&index_init_lock);
	return ret;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
	return 0;
B
Bob Picco 已提交
110
}
111 112
#endif

113 114
/*
 * Although written for the SPARSEMEM_EXTREME case, this happens
115
 * to also work for the flat array case because
116 117 118 119 120 121 122
 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
 */
int __section_nr(struct mem_section* ms)
{
	unsigned long root_nr;
	struct mem_section* root;

123 124
	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
125 126 127 128 129 130 131 132 133 134
		if (!root)
			continue;

		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
		     break;
	}

	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * During early boot, before section_mem_map is used for an actual
 * mem_map, we use section_mem_map to store the section's NUMA
 * node.  This keeps us from having to use another data structure.  The
 * node information is cleared just before we store the real mem_map.
 */
static inline unsigned long sparse_encode_early_nid(int nid)
{
	return (nid << SECTION_NID_SHIFT);
}

static inline int sparse_early_nid(struct mem_section *section)
{
	return (section->section_mem_map >> SECTION_NID_SHIFT);
}

151 152 153
/* Validate the physical addressing limitations of the model */
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
						unsigned long *end_pfn)
A
Andy Whitcroft 已提交
154
{
155
	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
A
Andy Whitcroft 已提交
156

I
Ingo Molnar 已提交
157 158 159 160
	/*
	 * Sanity checks - do not allow an architecture to pass
	 * in larger pfns than the maximum scope of sparsemem:
	 */
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
	if (*start_pfn > max_sparsemem_pfn) {
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*start_pfn = max_sparsemem_pfn;
		*end_pfn = max_sparsemem_pfn;
	}

	if (*end_pfn > max_sparsemem_pfn) {
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*end_pfn = max_sparsemem_pfn;
	}
}

/* Record a memory area against a node. */
void __init memory_present(int nid, unsigned long start, unsigned long end)
{
	unsigned long pfn;
I
Ingo Molnar 已提交
183

A
Andy Whitcroft 已提交
184
	start &= PAGE_SECTION_MASK;
185
	mminit_validate_memmodel_limits(&start, &end);
A
Andy Whitcroft 已提交
186 187
	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
		unsigned long section = pfn_to_section_nr(pfn);
B
Bob Picco 已提交
188 189 190
		struct mem_section *ms;

		sparse_index_init(section, nid);
191
		set_section_nid(section, nid);
B
Bob Picco 已提交
192 193 194

		ms = __nr_to_section(section);
		if (!ms->section_mem_map)
195 196
			ms->section_mem_map = sparse_encode_early_nid(nid) |
							SECTION_MARKED_PRESENT;
A
Andy Whitcroft 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209
	}
}

/*
 * Only used by the i386 NUMA architecures, but relatively
 * generic code.
 */
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
						     unsigned long end_pfn)
{
	unsigned long pfn;
	unsigned long nr_pages = 0;

210
	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
A
Andy Whitcroft 已提交
211 212 213 214
	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
		if (nid != early_pfn_to_nid(pfn))
			continue;

215
		if (pfn_present(pfn))
A
Andy Whitcroft 已提交
216 217 218 219 220 221
			nr_pages += PAGES_PER_SECTION;
	}

	return nr_pages * sizeof(struct page);
}

A
Andy Whitcroft 已提交
222 223 224 225 226 227 228 229 230 231 232
/*
 * Subtle, we encode the real pfn into the mem_map such that
 * the identity pfn - section_mem_map will return the actual
 * physical page frame number.
 */
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
}

/*
233
 * Decode mem_map from the coded memmap
A
Andy Whitcroft 已提交
234 235 236
 */
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
237 238
	/* mask off the extra low bits of information */
	coded_mem_map &= SECTION_MAP_MASK;
A
Andy Whitcroft 已提交
239 240 241
	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}

242
static int __meminit sparse_init_one_section(struct mem_section *ms,
243 244
		unsigned long pnum, struct page *mem_map,
		unsigned long *pageblock_bitmap)
A
Andy Whitcroft 已提交
245
{
246
	if (!present_section(ms))
A
Andy Whitcroft 已提交
247 248
		return -EINVAL;

249
	ms->section_mem_map &= ~SECTION_MAP_MASK;
250 251
	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
							SECTION_HAS_MEM_MAP;
252
 	ms->pageblock_flags = pageblock_bitmap;
A
Andy Whitcroft 已提交
253 254 255 256

	return 1;
}

257
unsigned long usemap_size(void)
258 259 260 261 262 263 264 265 266 267 268 269 270 271
{
	unsigned long size_bytes;
	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
	size_bytes = roundup(size_bytes, sizeof(unsigned long));
	return size_bytes;
}

#ifdef CONFIG_MEMORY_HOTPLUG
static unsigned long *__kmalloc_section_usemap(void)
{
	return kmalloc(usemap_size(), GFP_KERNEL);
}
#endif /* CONFIG_MEMORY_HOTPLUG */

272
static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
273
{
274
	unsigned long *usemap;
275 276 277
	struct mem_section *ms = __nr_to_section(pnum);
	int nid = sparse_early_nid(ms);

278
	usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
279 280 281 282 283 284
	if (usemap)
		return usemap;

	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
	nid = 0;

285
	printk(KERN_WARNING "%s: allocation failed\n", __func__);
286 287 288
	return NULL;
}

289
#ifndef CONFIG_SPARSEMEM_VMEMMAP
290
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
A
Andy Whitcroft 已提交
291 292 293 294 295 296 297
{
	struct page *map;

	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
	if (map)
		return map;

298 299
	map = alloc_bootmem_pages_node(NODE_DATA(nid),
		       PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
300 301 302 303 304 305 306 307 308 309
	return map;
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */

struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
{
	struct page *map;
	struct mem_section *ms = __nr_to_section(pnum);
	int nid = sparse_early_nid(ms);

310
	map = sparse_mem_map_populate(pnum, nid);
A
Andy Whitcroft 已提交
311 312 313
	if (map)
		return map;

314
	printk(KERN_ERR "%s: sparsemem memory map backing failed "
315
			"some memory will not be available.\n", __func__);
B
Bob Picco 已提交
316
	ms->section_mem_map = 0;
A
Andy Whitcroft 已提交
317 318 319
	return NULL;
}

320 321 322
void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
{
}
323 324 325 326 327 328 329 330
/*
 * Allocate the accumulated non-linear sections, allocate a mem_map
 * for each and record the physical to section mapping.
 */
void __init sparse_init(void)
{
	unsigned long pnum;
	struct page *map;
331
	unsigned long *usemap;
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
	unsigned long **usemap_map;
	int size;

	/*
	 * map is using big page (aka 2M in x86 64 bit)
	 * usemap is less one page (aka 24 bytes)
	 * so alloc 2M (with 2M align) and 24 bytes in turn will
	 * make next 2M slip to one more 2M later.
	 * then in big system, the memory will have a lot of holes...
	 * here try to allocate 2M pages continously.
	 *
	 * powerpc need to call sparse_init_one_section right after each
	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
	 */
	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
	usemap_map = alloc_bootmem(size);
	if (!usemap_map)
		panic("can not allocate usemap_map\n");
350 351

	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
352
		if (!present_section_nr(pnum))
353
			continue;
354 355
		usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
	}
356

357 358
	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
		if (!present_section_nr(pnum))
359
			continue;
360

361
		usemap = usemap_map[pnum];
362 363 364
		if (!usemap)
			continue;

365 366 367 368
		map = sparse_early_mem_map_alloc(pnum);
		if (!map)
			continue;

369 370
		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
								usemap);
371
	}
372

373 374
	vmemmap_populate_print_last();

375
	free_bootmem(__pa(usemap_map), size);
376 377 378
}

#ifdef CONFIG_MEMORY_HOTPLUG
379 380 381 382 383 384 385 386 387 388 389
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
						 unsigned long nr_pages)
{
	/* This will make the necessary allocations eventually. */
	return sparse_mem_map_populate(pnum, nid);
}
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
	return; /* XXX: Not implemented yet */
}
390 391 392
static void free_map_bootmem(struct page *page, unsigned long nr_pages)
{
}
393
#else
394 395 396 397 398
static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
{
	struct page *page, *ret;
	unsigned long memmap_size = sizeof(struct page) * nr_pages;

399
	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	if (page)
		goto got_map_page;

	ret = vmalloc(memmap_size);
	if (ret)
		goto got_map_ptr;

	return NULL;
got_map_page:
	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
got_map_ptr:
	memset(ret, 0, memmap_size);

	return ret;
}

416 417 418 419 420 421
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
						  unsigned long nr_pages)
{
	return __kmalloc_section_memmap(nr_pages);
}

422 423
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
424
	if (is_vmalloc_addr(memmap))
425 426 427 428 429
		vfree(memmap);
	else
		free_pages((unsigned long)memmap,
			   get_order(sizeof(struct page) * nr_pages));
}
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

static void free_map_bootmem(struct page *page, unsigned long nr_pages)
{
	unsigned long maps_section_nr, removing_section_nr, i;
	int magic;

	for (i = 0; i < nr_pages; i++, page++) {
		magic = atomic_read(&page->_mapcount);

		BUG_ON(magic == NODE_INFO);

		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
		removing_section_nr = page->private;

		/*
		 * When this function is called, the removing section is
		 * logical offlined state. This means all pages are isolated
		 * from page allocator. If removing section's memmap is placed
		 * on the same section, it must not be freed.
		 * If it is freed, page allocator may allocate it which will
		 * be removed physically soon.
		 */
		if (maps_section_nr != removing_section_nr)
			put_page_bootmem(page);
	}
}
456
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
457

458 459
static void free_section_usemap(struct page *memmap, unsigned long *usemap)
{
460 461 462
	struct page *usemap_page;
	unsigned long nr_pages;

463 464 465
	if (!usemap)
		return;

466
	usemap_page = virt_to_page(usemap);
467 468 469
	/*
	 * Check to see if allocation came from hot-plug-add
	 */
470
	if (PageSlab(usemap_page)) {
471 472 473 474 475 476 477
		kfree(usemap);
		if (memmap)
			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
		return;
	}

	/*
478 479
	 * The usemap came from bootmem. This is packed with other usemaps
	 * on the section which has pgdat at boot time. Just keep it as is now.
480
	 */
481 482 483 484 485 486 487 488 489 490

	if (memmap) {
		struct page *memmap_page;
		memmap_page = virt_to_page(memmap);

		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
			>> PAGE_SHIFT;

		free_map_bootmem(memmap_page, nr_pages);
	}
491 492
}

A
Andy Whitcroft 已提交
493 494 495 496 497
/*
 * returns the number of sections whose mem_maps were properly
 * set.  If this is <=0, then that means that the passed-in
 * map was not consumed and must be freed.
 */
498 499
int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
			   int nr_pages)
A
Andy Whitcroft 已提交
500
{
501 502 503 504
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
	struct pglist_data *pgdat = zone->zone_pgdat;
	struct mem_section *ms;
	struct page *memmap;
505
	unsigned long *usemap;
506 507
	unsigned long flags;
	int ret;
A
Andy Whitcroft 已提交
508

509 510 511 512
	/*
	 * no locking for this, because it does its own
	 * plus, it does a kmalloc
	 */
513 514 515
	ret = sparse_index_init(section_nr, pgdat->node_id);
	if (ret < 0 && ret != -EEXIST)
		return ret;
516
	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
517 518
	if (!memmap)
		return -ENOMEM;
519
	usemap = __kmalloc_section_usemap();
520 521 522 523
	if (!usemap) {
		__kfree_section_memmap(memmap, nr_pages);
		return -ENOMEM;
	}
524 525

	pgdat_resize_lock(pgdat, &flags);
A
Andy Whitcroft 已提交
526

527 528 529 530 531
	ms = __pfn_to_section(start_pfn);
	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
		ret = -EEXIST;
		goto out;
	}
532

A
Andy Whitcroft 已提交
533 534
	ms->section_mem_map |= SECTION_MARKED_PRESENT;

535
	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
536 537 538

out:
	pgdat_resize_unlock(pgdat, &flags);
539 540
	if (ret <= 0) {
		kfree(usemap);
541
		__kfree_section_memmap(memmap, nr_pages);
542
	}
543
	return ret;
A
Andy Whitcroft 已提交
544
}
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
{
	struct page *memmap = NULL;
	unsigned long *usemap = NULL;

	if (ms->section_mem_map) {
		usemap = ms->pageblock_flags;
		memmap = sparse_decode_mem_map(ms->section_mem_map,
						__section_nr(ms));
		ms->section_mem_map = 0;
		ms->pageblock_flags = NULL;
	}

	free_section_usemap(memmap, usemap);
}
561
#endif