arm_arch_timer.c 26.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12 13

#define pr_fmt(fmt)	"arm_arch_timer: " fmt

14 15 16 17 18
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
19
#include <linux/cpu_pm.h>
20
#include <linux/clockchips.h>
21
#include <linux/clocksource.h>
22 23
#include <linux/interrupt.h>
#include <linux/of_irq.h>
24
#include <linux/of_address.h>
25
#include <linux/io.h>
26
#include <linux/slab.h>
27
#include <linux/sched_clock.h>
28
#include <linux/acpi.h>
29 30

#include <asm/arch_timer.h>
31
#include <asm/virt.h>
32 33 34

#include <clocksource/arm_arch_timer.h>

35 36 37
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

38 39 40 41 42 43 44 45
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

#define ARCH_CP15_TIMER	BIT(0)
#define ARCH_MEM_TIMER	BIT(1)
static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

67 68 69 70 71 72 73 74 75 76 77 78 79 80
static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

81
static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82
static bool arch_timer_c3stop;
83
static bool arch_timer_mem_use_virtual;
84

85 86 87 88 89 90 91 92
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

93 94 95 96
/*
 * Architected system timer support.
 */

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#ifdef CONFIG_FSL_ERRATUM_A008585
DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);

static int fsl_a008585_enable = -1;

static int __init early_fsl_a008585_cfg(char *buf)
{
	int ret;
	bool val;

	ret = strtobool(buf, &val);
	if (ret)
		return ret;

	fsl_a008585_enable = val;
	return 0;
}
early_param("clocksource.arm_arch_timer.fsl-a008585", early_fsl_a008585_cfg);

u32 __fsl_a008585_read_cntp_tval_el0(void)
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

u32 __fsl_a008585_read_cntv_tval_el0(void)
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

u64 __fsl_a008585_read_cntvct_el0(void)
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
EXPORT_SYMBOL(__fsl_a008585_read_cntvct_el0);
#endif /* CONFIG_FSL_ERRATUM_A008585 */

134 135
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
136
			  struct clock_event_device *clk)
137
{
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
161 162 163 164
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
165
			struct clock_event_device *clk)
166
{
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
194 195
}

196
static __always_inline irqreturn_t timer_handler(const int access,
197 198 199
					struct clock_event_device *evt)
{
	unsigned long ctrl;
200

201
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
202 203
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
204
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

240 241
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
242 243
{
	unsigned long ctrl;
244 245 246 247 248 249

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
250 251
}

252
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
253
{
254
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
255 256
}

257
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
258
{
259
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
260 261
}

262
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
263
{
264
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
265 266
}

267
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
268
{
269
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
270 271
}

272
static __always_inline void set_next_event(const int access, unsigned long evt,
273
					   struct clock_event_device *clk)
274 275
{
	unsigned long ctrl;
276
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
277 278
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
279 280
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
281 282
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
#ifdef CONFIG_FSL_ERRATUM_A008585
static __always_inline void fsl_a008585_set_next_event(const int access,
		unsigned long evt, struct clock_event_device *clk)
{
	unsigned long ctrl;
	u64 cval = evt + arch_counter_get_cntvct();

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

	if (access == ARCH_TIMER_PHYS_ACCESS)
		write_sysreg(cval, cntp_cval_el0);
	else if (access == ARCH_TIMER_VIRT_ACCESS)
		write_sysreg(cval, cntv_cval_el0);

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

static int fsl_a008585_set_next_event_virt(unsigned long evt,
					   struct clock_event_device *clk)
{
	fsl_a008585_set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
	return 0;
}

static int fsl_a008585_set_next_event_phys(unsigned long evt,
					   struct clock_event_device *clk)
{
	fsl_a008585_set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
	return 0;
}
#endif /* CONFIG_FSL_ERRATUM_A008585 */

317
static int arch_timer_set_next_event_virt(unsigned long evt,
318
					  struct clock_event_device *clk)
319
{
320
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
321 322 323 324
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
325
					  struct clock_event_device *clk)
326
{
327
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
328 329 330
	return 0;
}

331 332
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
333
{
334 335 336 337 338 339 340 341 342 343 344
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

345 346 347 348 349 350 351 352 353 354 355 356 357
static void fsl_a008585_set_sne(struct clock_event_device *clk)
{
#ifdef CONFIG_FSL_ERRATUM_A008585
	if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
		return;

	if (arch_timer_uses_ppi == VIRT_PPI)
		clk->set_next_event = fsl_a008585_set_next_event_virt;
	else
		clk->set_next_event = fsl_a008585_set_next_event_phys;
#endif
}

358 359
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
360 361 362 363
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

	if (type == ARCH_CP15_TIMER) {
364 365
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
366 367 368
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
369 370 371
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
		case VIRT_PPI:
372
			clk->set_state_shutdown = arch_timer_shutdown_virt;
373
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
374
			clk->set_next_event = arch_timer_set_next_event_virt;
375 376 377 378
			break;
		case PHYS_SECURE_PPI:
		case PHYS_NONSECURE_PPI:
		case HYP_PPI:
379
			clk->set_state_shutdown = arch_timer_shutdown_phys;
380
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
381
			clk->set_next_event = arch_timer_set_next_event_phys;
382 383 384
			break;
		default:
			BUG();
385
		}
386 387

		fsl_a008585_set_sne(clk);
388
	} else {
389
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
390 391 392 393
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
394
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
395
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
396 397 398
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
399
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
400
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
401 402 403
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
404 405
	}

406
	clk->set_state_shutdown(clk);
407

408 409
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

426 427 428 429 430 431 432 433 434 435 436 437 438
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	/* Disable user access to the timers and the physical counter */
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

	/* Enable user access to the virtual counter */
	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;

	arch_timer_set_cntkctl(cntkctl);
}

456 457 458 459 460 461
static bool arch_timer_has_nonsecure_ppi(void)
{
	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
		arch_timer_ppi[PHYS_NONSECURE_PPI]);
}

462 463 464 465 466 467 468 469 470 471 472 473 474
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

475
static int arch_timer_starting_cpu(unsigned int cpu)
476
{
477
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
478
	u32 flags;
479

480
	__arch_timer_setup(ARCH_CP15_TIMER, clk);
481

482 483
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
484

485 486 487 488
	if (arch_timer_has_nonsecure_ppi()) {
		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
	}
489 490

	arch_counter_set_user_access();
491
	if (evtstrm_enable)
492
		arch_timer_configure_evtstream();
493 494 495 496

	return 0;
}

497 498
static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
499
{
500 501 502
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
503

504 505 506 507 508 509
	/*
	 * Try to determine the frequency from the device tree or CNTFRQ,
	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
	 */
	if (!acpi_disabled ||
	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
510 511 512 513
		if (cntbase)
			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
		else
			arch_timer_rate = arch_timer_get_cntfrq();
514 515
	}

516 517 518 519 520 521 522 523 524 525 526
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
		pr_warn("Architected timer frequency not available\n");
}

static void arch_timer_banner(unsigned type)
{
	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
		     type & ARCH_CP15_TIMER ? "cp15" : "",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
		     type & ARCH_MEM_TIMER ? "mmio" : "",
527 528
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
529
		     type & ARCH_CP15_TIMER ?
530
		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
531 532 533 534 535
			"",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
		     type & ARCH_MEM_TIMER ?
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
536 537 538 539 540 541 542
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

543
static u64 arch_counter_get_cntvct_mem(void)
544
{
545 546 547 548 549 550 551 552 553
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
554 555
}

556 557 558 559 560 561 562 563
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

564 565
static cycle_t arch_counter_read(struct clocksource *cs)
{
566
	return arch_timer_read_counter();
567 568 569 570
}

static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
{
571
	return arch_timer_read_counter();
572 573 574 575 576 577 578
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
579
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
580 581 582 583 584 585 586
};

static struct cyclecounter cyclecounter = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

587 588 589 590 591 592
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
593

594 595 596 597 598
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
599
	if (type & ARCH_CP15_TIMER) {
600
		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
601 602 603
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
604 605 606 607 608 609 610 611 612

#ifdef CONFIG_FSL_ERRATUM_A008585
		/*
		 * Don't use the vdso fastpath if errata require using
		 * the out-of-line counter accessor.
		 */
		if (static_branch_unlikely(&arch_timer_read_ool_enabled))
			clocksource_counter.name = "arch_sys_counter_ool";
#endif
613
	} else {
614 615
		arch_timer_read_counter = arch_counter_get_cntvct_mem;

616 617 618 619 620 621 622 623
		/* If the clocksource name is "arch_sys_counter" the
		 * VDSO will attempt to read the CP15-based counter.
		 * Ensure this does not happen when CP15-based
		 * counter is not available.
		 */
		clocksource_counter.name = "arch_mem_counter";
	}

624 625 626 627
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
628 629
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
630 631 632

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
633 634
}

635
static void arch_timer_stop(struct clock_event_device *clk)
636 637 638 639
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

640 641 642
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
643

644
	clk->set_state_shutdown(clk);
645 646
}

647
static int arch_timer_dying_cpu(unsigned int cpu)
648
{
649
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
650

651 652
	arch_timer_stop(clk);
	return 0;
653 654
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
#ifdef CONFIG_CPU_PM
static unsigned int saved_cntkctl;
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
		saved_cntkctl = arch_timer_get_cntkctl();
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
		arch_timer_set_cntkctl(saved_cntkctl);
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
675 676 677 678 679 680

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

681 682 683 684 685
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
686 687 688 689

static void __init arch_timer_cpu_pm_deinit(void)
{
}
690 691
#endif

692 693 694 695 696 697 698 699 700 701 702
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

703 704 705
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
	case VIRT_PPI:
706 707
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
708 709 710
		break;
	case PHYS_SECURE_PPI:
	case PHYS_NONSECURE_PPI:
711 712 713 714 715 716 717 718 719 720
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
721 722 723 724 725 726 727
		break;
	case HYP_PPI:
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
728 729 730 731 732 733 734 735
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

736 737 738 739
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

740

741 742 743 744 745 746
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
				"AP_ARM_ARCH_TIMER_STARTING",
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
747 748
	return 0;

749 750 751
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

752
out_unreg_notify:
753 754 755
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
756 757 758 759 760 761 762 763
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
		pr_err("arch_timer: Failed to request mem timer irq\n");
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

803
static bool __init
804
arch_timer_needs_probing(int type, const struct of_device_id *matches)
805 806
{
	struct device_node *dn;
807
	bool needs_probing = false;
808 809

	dn = of_find_matching_node(NULL, matches);
810
	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
811
		needs_probing = true;
812 813
	of_node_put(dn);

814
	return needs_probing;
815 816
}

817
static int __init arch_timer_common_init(void)
818 819 820 821 822
{
	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;

	/* Wait until both nodes are probed if we have two timers */
	if ((arch_timers_present & mask) != mask) {
823
		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
824
			return 0;
825
		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
826
			return 0;
827 828 829 830
	}

	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
831
	return arch_timer_arch_init();
832 833
}

834
static int __init arch_timer_init(void)
835
{
836
	int ret;
837
	/*
838 839 840 841
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
842 843
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
844 845 846 847 848
	 *
	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
	 * accesses to CNTP_*_EL1 registers are silently redirected to
	 * their CNTHP_*_EL2 counterparts, and use a different PPI
	 * number.
849
	 */
850
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
851 852 853 854 855 856 857 858 859 860
		bool has_ppi;

		if (is_kernel_in_hyp_mode()) {
			arch_timer_uses_ppi = HYP_PPI;
			has_ppi = !!arch_timer_ppi[HYP_PPI];
		} else {
			arch_timer_uses_ppi = PHYS_SECURE_PPI;
			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
		}
861

862
		if (!has_ppi) {
863
			pr_warn("arch_timer: No interrupt available, giving up\n");
864
			return -EINVAL;
865 866 867
		}
	}

868 869 870 871 872 873 874
	ret = arch_timer_register();
	if (ret)
		return ret;

	ret = arch_timer_common_init();
	if (ret)
		return ret;
875 876

	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
877 878
	
	return 0;
879
}
880

881
static int __init arch_timer_of_init(struct device_node *np)
882 883 884 885 886
{
	int i;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
887
		return 0;
888 889 890 891 892 893 894 895 896 897
	}

	arch_timers_present |= ARCH_CP15_TIMER;
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	arch_timer_detect_rate(NULL, np);

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

898 899 900 901 902 903 904 905 906
#ifdef CONFIG_FSL_ERRATUM_A008585
	if (fsl_a008585_enable < 0)
		fsl_a008585_enable = of_property_read_bool(np, "fsl,erratum-a008585");
	if (fsl_a008585_enable) {
		static_branch_enable(&arch_timer_read_ool_enabled);
		pr_info("Enabling workaround for FSL erratum A-008585\n");
	}
#endif

907 908 909 910 911 912
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
913
		arch_timer_uses_ppi = PHYS_SECURE_PPI;
914

915
	return arch_timer_init();
916
}
917 918
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
919

920
static int __init arch_timer_mem_init(struct device_node *np)
921 922 923
{
	struct device_node *frame, *best_frame = NULL;
	void __iomem *cntctlbase, *base;
924
	unsigned int irq, ret = -EINVAL;
925 926 927 928 929 930
	u32 cnttidr;

	arch_timers_present |= ARCH_MEM_TIMER;
	cntctlbase = of_iomap(np, 0);
	if (!cntctlbase) {
		pr_err("arch_timer: Can't find CNTCTLBase\n");
931
		return -ENXIO;
932 933 934 935 936 937 938 939 940 941
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
	for_each_available_child_of_node(np, frame) {
		int n;
942
		u32 cntacr;
943 944 945 946

		if (of_property_read_u32(frame, "frame-number", &n)) {
			pr_err("arch_timer: Missing frame-number\n");
			of_node_put(frame);
947
			goto out;
948 949
		}

950 951 952 953 954 955 956 957
		/* Try enabling everything, and see what sticks */
		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
		cntacr = readl_relaxed(cntctlbase + CNTACR(n));

		if ((cnttidr & CNTTIDR_VIRT(n)) &&
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
958 959 960 961 962
			of_node_put(best_frame);
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
963 964 965 966

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

967 968 969 970
		of_node_put(best_frame);
		best_frame = of_node_get(frame);
	}

971
	ret= -ENXIO;
972 973 974
	base = arch_counter_base = of_iomap(best_frame, 0);
	if (!base) {
		pr_err("arch_timer: Can't map frame's registers\n");
975
		goto out;
976 977 978 979 980 981
	}

	if (arch_timer_mem_use_virtual)
		irq = irq_of_parse_and_map(best_frame, 1);
	else
		irq = irq_of_parse_and_map(best_frame, 0);
982

983
	ret = -EINVAL;
984 985
	if (!irq) {
		pr_err("arch_timer: Frame missing %s irq",
986
		       arch_timer_mem_use_virtual ? "virt" : "phys");
987
		goto out;
988 989 990
	}

	arch_timer_detect_rate(base, np);
991 992 993 994 995
	ret = arch_timer_mem_register(base, irq);
	if (ret)
		goto out;

	return arch_timer_common_init();
996 997 998
out:
	iounmap(cntctlbase);
	of_node_put(best_frame);
999
	return ret;
1000
}
1001
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1002
		       arch_timer_mem_init);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

#ifdef CONFIG_ACPI
static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
{
	int trigger, polarity;

	if (!interrupt)
		return 0;

	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
			: ACPI_LEVEL_SENSITIVE;

	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
			: ACPI_ACTIVE_HIGH;

	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
}

/* Initialize per-processor generic timer */
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
	struct acpi_table_gtdt *gtdt;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: already initialized, skipping\n");
		return -EINVAL;
	}

	gtdt = container_of(table, struct acpi_table_gtdt, header);

	arch_timers_present |= ARCH_CP15_TIMER;

	arch_timer_ppi[PHYS_SECURE_PPI] =
		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
		gtdt->secure_el1_flags);

	arch_timer_ppi[PHYS_NONSECURE_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
		gtdt->non_secure_el1_flags);

	arch_timer_ppi[VIRT_PPI] =
		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
		gtdt->virtual_timer_flags);

	arch_timer_ppi[HYP_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
		gtdt->non_secure_el2_flags);

	/* Get the frequency from CNTFRQ */
	arch_timer_detect_rate(NULL, NULL);

	/* Always-on capability */
	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);

	arch_timer_init();
	return 0;
}
1060
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1061
#endif