fault.c 14.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 *  linux/arch/x86-64/mm/fault.c
 *
 *  Copyright (C) 1995  Linus Torvalds
 *  Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
 */

#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/tty.h>
#include <linux/vt_kern.h>		/* For unblank_screen() */
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/kprobes.h>

#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgalloc.h>
#include <asm/smp.h>
#include <asm/tlbflush.h>
#include <asm/proto.h>
#include <asm/kdebug.h>
#include <asm-generic/sections.h>
#include <asm/kdebug.h>

void bust_spinlocks(int yes)
{
	int loglevel_save = console_loglevel;
	if (yes) {
		oops_in_progress = 1;
	} else {
#ifdef CONFIG_VT
		unblank_screen();
#endif
		oops_in_progress = 0;
		/*
		 * OK, the message is on the console.  Now we call printk()
		 * without oops_in_progress set so that printk will give klogd
		 * a poke.  Hold onto your hats...
		 */
		console_loglevel = 15;		/* NMI oopser may have shut the console up */
		printk(" ");
		console_loglevel = loglevel_save;
	}
}

/* Sometimes the CPU reports invalid exceptions on prefetch.
   Check that here and ignore.
   Opcode checker based on code by Richard Brunner */
static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
				unsigned long error_code)
{ 
65
	unsigned char *instr;
L
Linus Torvalds 已提交
66 67
	int scan_more = 1;
	int prefetch = 0; 
68
	unsigned char *max_instr;
L
Linus Torvalds 已提交
69 70 71 72 73

	/* If it was a exec fault ignore */
	if (error_code & (1<<4))
		return 0;
	
74 75
	instr = (unsigned char *)convert_rip_to_linear(current, regs);
	max_instr = instr + 15;
L
Linus Torvalds 已提交
76

77
	if ((regs->cs & 3) != 0 && instr >= (unsigned char *)TASK_SIZE)
L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		return 0;

	while (scan_more && instr < max_instr) { 
		unsigned char opcode;
		unsigned char instr_hi;
		unsigned char instr_lo;

		if (__get_user(opcode, instr))
			break; 

		instr_hi = opcode & 0xf0; 
		instr_lo = opcode & 0x0f; 
		instr++;

		switch (instr_hi) { 
		case 0x20:
		case 0x30:
			/* Values 0x26,0x2E,0x36,0x3E are valid x86
			   prefixes.  In long mode, the CPU will signal
			   invalid opcode if some of these prefixes are
			   present so we will never get here anyway */
			scan_more = ((instr_lo & 7) == 0x6);
			break;
			
		case 0x40:
			/* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
			   Need to figure out under what instruction mode the
			   instruction was issued ... */
			/* Could check the LDT for lm, but for now it's good
			   enough to assume that long mode only uses well known
			   segments or kernel. */
			scan_more = ((regs->cs & 3) == 0) || (regs->cs == __USER_CS);
			break;
			
		case 0x60:
			/* 0x64 thru 0x67 are valid prefixes in all modes. */
			scan_more = (instr_lo & 0xC) == 0x4;
			break;		
		case 0xF0:
			/* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
			scan_more = !instr_lo || (instr_lo>>1) == 1;
			break;			
		case 0x00:
			/* Prefetch instruction is 0x0F0D or 0x0F18 */
			scan_more = 0;
			if (__get_user(opcode, instr)) 
				break;
			prefetch = (instr_lo == 0xF) &&
				(opcode == 0x0D || opcode == 0x18);
			break;			
		default:
			scan_more = 0;
			break;
		} 
	}
	return prefetch;
}

static int bad_address(void *p) 
{ 
	unsigned long dummy;
	return __get_user(dummy, (unsigned long *)p);
} 

void dump_pagetable(unsigned long address)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	asm("movq %%cr3,%0" : "=r" (pgd));

	pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); 
	pgd += pgd_index(address);
	printk("PGD %lx ", pgd_val(*pgd));
	if (bad_address(pgd)) goto bad;
	if (!pgd_present(*pgd)) goto ret; 

	pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address);
	if (bad_address(pud)) goto bad;
	printk("PUD %lx ", pud_val(*pud));
	if (!pud_present(*pud))	goto ret;

	pmd = pmd_offset(pud, address);
	if (bad_address(pmd)) goto bad;
	printk("PMD %lx ", pmd_val(*pmd));
	if (!pmd_present(*pmd))	goto ret;	 

	pte = pte_offset_kernel(pmd, address);
	if (bad_address(pte)) goto bad;
	printk("PTE %lx", pte_val(*pte)); 
ret:
	printk("\n");
	return;
bad:
	printk("BAD\n");
}

static const char errata93_warning[] = 
KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
KERN_ERR "******* Please consider a BIOS update.\n"
KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";

/* Workaround for K8 erratum #93 & buggy BIOS.
   BIOS SMM functions are required to use a specific workaround
   to avoid corruption of the 64bit RIP register on C stepping K8. 
   A lot of BIOS that didn't get tested properly miss this. 
   The OS sees this as a page fault with the upper 32bits of RIP cleared.
   Try to work around it here.
   Note we only handle faults in kernel here. */

static int is_errata93(struct pt_regs *regs, unsigned long address) 
{
	static int warned;
	if (address != regs->rip)
		return 0;
	if ((address >> 32) != 0) 
		return 0;
	address |= 0xffffffffUL << 32;
	if ((address >= (u64)_stext && address <= (u64)_etext) || 
	    (address >= MODULES_VADDR && address <= MODULES_END)) { 
		if (!warned) {
			printk(errata93_warning); 		
			warned = 1;
		}
		regs->rip = address;
		return 1;
	}
	return 0;
} 

int unhandled_signal(struct task_struct *tsk, int sig)
{
	if (tsk->pid == 1)
		return 1;
	/* Warn for strace, but not for gdb */
	if (!test_ti_thread_flag(tsk->thread_info, TIF_SYSCALL_TRACE) &&
	    (tsk->ptrace & PT_PTRACED))
		return 0;
	return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
		(tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
}

static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
				 unsigned long error_code)
{
	oops_begin();
	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
	       current->comm, address);
	dump_pagetable(address);
	__die("Bad pagetable", regs, error_code);
	oops_end();
	do_exit(SIGKILL);
}

/*
 * Handle a fault on the vmalloc or module mapping area
 */
static int vmalloc_fault(unsigned long address)
{
	pgd_t *pgd, *pgd_ref;
	pud_t *pud, *pud_ref;
	pmd_t *pmd, *pmd_ref;
	pte_t *pte, *pte_ref;

	/* Copy kernel mappings over when needed. This can also
	   happen within a race in page table update. In the later
	   case just flush. */

	pgd = pgd_offset(current->mm ?: &init_mm, address);
	pgd_ref = pgd_offset_k(address);
	if (pgd_none(*pgd_ref))
		return -1;
	if (pgd_none(*pgd))
		set_pgd(pgd, *pgd_ref);

	/* Below here mismatches are bugs because these lower tables
	   are shared */

	pud = pud_offset(pgd, address);
	pud_ref = pud_offset(pgd_ref, address);
	if (pud_none(*pud_ref))
		return -1;
	if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref))
		BUG();
	pmd = pmd_offset(pud, address);
	pmd_ref = pmd_offset(pud_ref, address);
	if (pmd_none(*pmd_ref))
		return -1;
	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
		BUG();
	pte_ref = pte_offset_kernel(pmd_ref, address);
	if (!pte_present(*pte_ref))
		return -1;
	pte = pte_offset_kernel(pmd, address);
	if (!pte_present(*pte) || pte_page(*pte) != pte_page(*pte_ref))
		BUG();
	__flush_tlb_all();
	return 0;
}

int page_fault_trace = 0;
int exception_trace = 1;

/*
 * This routine handles page faults.  It determines the address,
 * and the problem, and then passes it off to one of the appropriate
 * routines.
 *
 * error_code:
 *	bit 0 == 0 means no page found, 1 means protection fault
 *	bit 1 == 0 means read, 1 means write
 *	bit 2 == 0 means kernel, 1 means user-mode
 *      bit 3 == 1 means fault was an instruction fetch
 */
asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code)
{
	struct task_struct *tsk;
	struct mm_struct *mm;
	struct vm_area_struct * vma;
	unsigned long address;
	const struct exception_table_entry *fixup;
	int write;
	siginfo_t info;

#ifdef CONFIG_CHECKING
	{ 
		unsigned long gs; 
		struct x8664_pda *pda = cpu_pda + stack_smp_processor_id(); 
		rdmsrl(MSR_GS_BASE, gs); 
		if (gs != (unsigned long)pda) { 
			wrmsrl(MSR_GS_BASE, pda); 
			printk("page_fault: wrong gs %lx expected %p\n", gs, pda);
		}
	}
#endif

	/* get the address */
	__asm__("movq %%cr2,%0":"=r" (address));
	if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
					SIGSEGV) == NOTIFY_STOP)
		return;

	if (likely(regs->eflags & X86_EFLAGS_IF))
		local_irq_enable();

	if (unlikely(page_fault_trace))
		printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
		       regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code); 

	tsk = current;
	mm = tsk->mm;
	info.si_code = SEGV_MAPERR;


	/*
	 * We fault-in kernel-space virtual memory on-demand. The
	 * 'reference' page table is init_mm.pgd.
	 *
	 * NOTE! We MUST NOT take any locks for this case. We may
	 * be in an interrupt or a critical region, and should
	 * only copy the information from the master page table,
	 * nothing more.
	 *
	 * This verifies that the fault happens in kernel space
	 * (error_code & 4) == 0, and that the fault was not a
	 * protection error (error_code & 1) == 0.
	 */
	if (unlikely(address >= TASK_SIZE)) {
		if (!(error_code & 5)) {
			if (vmalloc_fault(address) < 0)
				goto bad_area_nosemaphore;
			return;
		}
		/*
		 * Don't take the mm semaphore here. If we fixup a prefetch
		 * fault we could otherwise deadlock.
		 */
		goto bad_area_nosemaphore;
	}

	if (unlikely(error_code & (1 << 3)))
		pgtable_bad(address, regs, error_code);

	/*
	 * If we're in an interrupt or have no user
	 * context, we must not take the fault..
	 */
	if (unlikely(in_atomic() || !mm))
		goto bad_area_nosemaphore;

 again:
	/* When running in the kernel we expect faults to occur only to
	 * addresses in user space.  All other faults represent errors in the
	 * kernel and should generate an OOPS.  Unfortunatly, in the case of an
	 * erroneous fault occuring in a code path which already holds mmap_sem
	 * we will deadlock attempting to validate the fault against the
	 * address space.  Luckily the kernel only validly references user
	 * space from well defined areas of code, which are listed in the
	 * exceptions table.
	 *
	 * As the vast majority of faults will be valid we will only perform
	 * the source reference check when there is a possibilty of a deadlock.
	 * Attempt to lock the address space, if we cannot we then validate the
	 * source.  If this is invalid we can skip the address space check,
	 * thus avoiding the deadlock.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if ((error_code & 4) == 0 &&
		    !search_exception_tables(regs->rip))
			goto bad_area_nosemaphore;
		down_read(&mm->mmap_sem);
	}

	vma = find_vma(mm, address);
	if (!vma)
		goto bad_area;
	if (likely(vma->vm_start <= address))
		goto good_area;
	if (!(vma->vm_flags & VM_GROWSDOWN))
		goto bad_area;
	if (error_code & 4) {
		// XXX: align red zone size with ABI 
		if (address + 128 < regs->rsp)
			goto bad_area;
	}
	if (expand_stack(vma, address))
		goto bad_area;
/*
 * Ok, we have a good vm_area for this memory access, so
 * we can handle it..
 */
good_area:
	info.si_code = SEGV_ACCERR;
	write = 0;
	switch (error_code & 3) {
		default:	/* 3: write, present */
			/* fall through */
		case 2:		/* write, not present */
			if (!(vma->vm_flags & VM_WRITE))
				goto bad_area;
			write++;
			break;
		case 1:		/* read, present */
			goto bad_area;
		case 0:		/* read, not present */
			if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
				goto bad_area;
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
	 * the fault.
	 */
	switch (handle_mm_fault(mm, vma, address, write)) {
	case 1:
		tsk->min_flt++;
		break;
	case 2:
		tsk->maj_flt++;
		break;
	case 0:
		goto do_sigbus;
	default:
		goto out_of_memory;
	}

	up_read(&mm->mmap_sem);
	return;

/*
 * Something tried to access memory that isn't in our memory map..
 * Fix it, but check if it's kernel or user first..
 */
bad_area:
	up_read(&mm->mmap_sem);

bad_area_nosemaphore:
	/* User mode accesses just cause a SIGSEGV */
	if (error_code & 4) {
		if (is_prefetch(regs, address, error_code))
			return;

		/* Work around K8 erratum #100 K8 in compat mode
		   occasionally jumps to illegal addresses >4GB.  We
		   catch this here in the page fault handler because
		   these addresses are not reachable. Just detect this
		   case and return.  Any code segment in LDT is
		   compatibility mode. */
		if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
		    (address >> 32))
			return;

		if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {
			printk(
		       "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
					tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
					tsk->comm, tsk->pid, address, regs->rip,
					regs->rsp, error_code);
		}
       
		tsk->thread.cr2 = address;
		/* Kernel addresses are always protection faults */
		tsk->thread.error_code = error_code | (address >= TASK_SIZE);
		tsk->thread.trap_no = 14;
		info.si_signo = SIGSEGV;
		info.si_errno = 0;
		/* info.si_code has been set above */
		info.si_addr = (void __user *)address;
		force_sig_info(SIGSEGV, &info, tsk);
		return;
	}

no_context:
	
	/* Are we prepared to handle this kernel fault?  */
	fixup = search_exception_tables(regs->rip);
	if (fixup) {
		regs->rip = fixup->fixup;
		return;
	}

	/* 
	 * Hall of shame of CPU/BIOS bugs.
	 */

 	if (is_prefetch(regs, address, error_code))
 		return;

	if (is_errata93(regs, address))
		return; 

/*
 * Oops. The kernel tried to access some bad page. We'll have to
 * terminate things with extreme prejudice.
 */

	oops_begin(); 

	if (address < PAGE_SIZE)
		printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
	else
		printk(KERN_ALERT "Unable to handle kernel paging request");
	printk(" at %016lx RIP: \n" KERN_ALERT,address);
	printk_address(regs->rip);
	printk("\n");
	dump_pagetable(address);
	__die("Oops", regs, error_code);
	/* Executive summary in case the body of the oops scrolled away */
	printk(KERN_EMERG "CR2: %016lx\n", address);
	oops_end(); 
	do_exit(SIGKILL);

/*
 * We ran out of memory, or some other thing happened to us that made
 * us unable to handle the page fault gracefully.
 */
out_of_memory:
	up_read(&mm->mmap_sem);
	if (current->pid == 1) { 
		yield();
		goto again;
	}
	printk("VM: killing process %s\n", tsk->comm);
	if (error_code & 4)
		do_exit(SIGKILL);
	goto no_context;

do_sigbus:
	up_read(&mm->mmap_sem);

	/* Kernel mode? Handle exceptions or die */
	if (!(error_code & 4))
		goto no_context;

	tsk->thread.cr2 = address;
	tsk->thread.error_code = error_code;
	tsk->thread.trap_no = 14;
	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code = BUS_ADRERR;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGBUS, &info, tsk);
	return;
}