ohci.c 85.9 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/compiler.h>
23
#include <linux/delay.h>
S
Stefan Richter 已提交
24
#include <linux/device.h>
A
Andrew Morton 已提交
25
#include <linux/dma-mapping.h>
26
#include <linux/firewire.h>
S
Stefan Richter 已提交
27
#include <linux/firewire-constants.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/mutex.h>
37
#include <linux/pci.h>
38
#include <linux/pci_ids.h>
39
#include <linux/slab.h>
S
Stefan Richter 已提交
40
#include <linux/spinlock.h>
S
Stefan Richter 已提交
41
#include <linux/string.h>
42
#include <linux/time.h>
A
Andrew Morton 已提交
43

S
Stefan Richter 已提交
44
#include <asm/byteorder.h>
S
Stefan Richter 已提交
45
#include <asm/page.h>
46
#include <asm/system.h>
47

48 49 50 51
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

52 53
#include "core.h"
#include "ohci.h"
54

55 56 57 58 59 60 61 62 63 64 65 66 67
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
68 69 70 71 72 73 74 75 76 77

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

78 79 80 81
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
82

83
struct ar_buffer {
84
	struct descriptor descriptor;
85 86 87
	struct ar_buffer *next;
	__le32 data[0];
};
88

89 90 91 92 93
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
94
	u32 regs;
95 96 97
	struct tasklet_struct tasklet;
};

98 99 100 101 102
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
103 104 105 106 107 108 109 110 111 112 113 114 115

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

116
struct context {
S
Stefan Richter 已提交
117
	struct fw_ohci *ohci;
118
	u32 regs;
119
	int total_allocation;
S
Stefan Richter 已提交
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
145 146 147

	descriptor_callback_t callback;

S
Stefan Richter 已提交
148
	struct tasklet_struct tasklet;
149 150
};

151 152 153 154 155 156
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
157 158 159

struct iso_context {
	struct fw_iso_context base;
160
	struct context context;
161
	int excess_bytes;
162 163
	void *header;
	size_t header_length;
164 165 166 167 168 169 170 171
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
172
	int node_id;
173
	int generation;
174
	int request_generation;	/* for timestamping incoming requests */
175
	unsigned quirks;
176
	unsigned int pri_req_max;
177
	u32 bus_time;
178
	bool is_root;
179
	bool csr_state_setclear_abdicate;
180

181 182 183 184
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
185 186
	spinlock_t lock;

187 188
	struct mutex phy_reg_mutex;

189 190
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
191 192
	struct context at_request_ctx;
	struct context at_response_ctx;
193

194
	u32 it_context_mask;     /* unoccupied IT contexts */
195
	struct iso_context *it_context_list;
196 197
	u64 ir_context_channels; /* unoccupied channels */
	u32 ir_context_mask;     /* unoccupied IR contexts */
198
	struct iso_context *ir_context_list;
199 200
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
201 202 203 204 205 206 207 208 209 210 211 212

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
213 214
};

A
Adrian Bunk 已提交
215
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
216 217 218 219
{
	return container_of(card, struct fw_ohci, card);
}

220 221 222 223 224 225
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
226 227 228 229 230 231

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

232
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
233 234 235 236 237 238 239
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
240
#define OHCI_TCODE_PHY_PACKET		0x0e
241
#define OHCI_VERSION_1_1		0x010010
242

243 244
static char ohci_driver_name[] = KBUILD_MODNAME;

245
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
246 247
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

248 249 250
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
251
#define QUIRK_NO_1394A			8
252
#define QUIRK_NO_MSI			16
253 254 255 256 257

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
258
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
259 260
							    QUIRK_RESET_PACKET |
							    QUIRK_NO_1394A},
261 262
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
263
	{PCI_VENDOR_ID_JMICRON,	PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
264 265
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
266
	{PCI_VENDOR_ID_RICOH,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
267 268 269
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

270 271 272 273 274 275 276
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
277
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
278
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
279 280
	")");

281
#define OHCI_PARAM_DEBUG_AT_AR		1
282
#define OHCI_PARAM_DEBUG_SELFIDS	2
283 284
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
285

286 287
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

288 289 290 291
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
292 293 294
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
295 296 297 298
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
299 300 301 302 303 304
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
305 306
		return;

307
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
308 309 310 311 312 313 314 315 316
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
317
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
318
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
319 320 321 322 323 324
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
325 326
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
327
		    OHCI1394_regAccessFail | OHCI1394_busReset)
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

345
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
346 347 348 349
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

350 351
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
352 353 354

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
355 356 357 358 359 360
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
361
		else
362 363 364 365
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

413
	if (evt == OHCI1394_evt_bus_reset) {
414 415
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
416 417 418
		return;
	}

419
	if (header[0] == ~header[1]) {
420 421
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
440
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
441 442
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
443 444 445 446 447 448
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
449 450
		break;
	default:
451 452 453 454 455 456
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
457 458 459 460 461
	}
}

#else

462 463 464 465
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
466 467 468

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
469
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
470 471 472 473
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
474
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
475 476 477 478
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
479
static inline void flush_writes(const struct fw_ohci *ohci)
480 481 482 483 484
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

485
static int read_phy_reg(struct fw_ohci *ohci, int addr)
486
{
487
	u32 val;
488
	int i;
489 490

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
491
	for (i = 0; i < 3 + 100; i++) {
492 493 494 495
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

496 497 498 499 500 501
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
502
	}
503
	fw_error("failed to read phy reg\n");
504

505 506
	return -EBUSY;
}
507

508 509 510
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
511 512

	reg_write(ohci, OHCI1394_PhyControl,
513
		  OHCI1394_PhyControl_Write(addr, val));
514
	for (i = 0; i < 3 + 100; i++) {
515 516 517
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
518

519 520
		if (i >= 3)
			msleep(1);
521 522 523 524
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
525 526
}

527 528
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
529
{
530
	int ret = read_phy_reg(ohci, addr);
531 532
	if (ret < 0)
		return ret;
533

534 535 536 537 538 539 540
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

541
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
542 543
}

544
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
545
{
546
	int ret;
547

548
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
549 550
	if (ret < 0)
		return ret;
551

552
	return read_phy_reg(ohci, addr);
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
578 579
}

580 581
static void ar_context_link_page(struct ar_context *ctx,
				 struct ar_buffer *ab, dma_addr_t ab_bus)
582
{
583 584
	size_t offset;

585
	ab->next = NULL;
586
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
587 588 589
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
590 591 592 593 594 595
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

596
	wmb(); /* finish init of new descriptors before branch_address update */
597
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
598 599 600
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

601
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
602
	flush_writes(ctx->ohci);
603 604 605 606 607 608 609 610 611 612 613 614 615
}

static int ar_context_add_page(struct ar_context *ctx)
{
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t uninitialized_var(ab_bus);

	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ar_context_link_page(ctx, ab, ab_bus);
616 617

	return 0;
618 619
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

635 636
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
637
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
638 639 640 641
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

642
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
643 644
{
	struct fw_ohci *ohci = ctx->ohci;
645 646
	struct fw_packet p;
	u32 status, length, tcode;
647
	int evt;
648

649 650 651
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
652 653 654 655 656

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
657
		p.header[3] = (__force __u32) buffer[3];
658
		p.header_length = 16;
659
		p.payload_length = 0;
660 661 662
		break;

	case TCODE_READ_BLOCK_REQUEST :
663
		p.header[3] = cond_le32_to_cpu(buffer[3]);
664 665 666 667 668
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
669 670 671
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
672
		p.header[3] = cond_le32_to_cpu(buffer[3]);
673
		p.header_length = 16;
674
		p.payload_length = p.header[3] >> 16;
675 676 677 678
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
679
	case OHCI_TCODE_PHY_PACKET:
680
		p.header_length = 12;
681
		p.payload_length = 0;
682
		break;
683 684 685 686 687

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
688
	}
689

690 691 692 693
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
694
	status = cond_le32_to_cpu(buffer[length]);
695
	evt    = (status >> 16) & 0x1f;
696

697
	p.ack        = evt - 16;
698 699 700
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
701

702
	log_ar_at_event('R', p.speed, p.header, evt);
703

704
	/*
705 706 707 708 709 710 711 712 713
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
714 715 716 717 718
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
719
	 * request.
720 721 722 723
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
724
	 */
725
	if (evt == OHCI1394_evt_bus_reset) {
726
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
727 728
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
729
		fw_core_handle_request(&ohci->card, &p);
730
	} else {
731
		fw_core_handle_response(&ohci->card, &p);
732
	}
733

734 735
	return buffer + length + 1;
}
736

737 738 739 740 741 742
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;
743
	__le16 res_count;
744 745 746 747

	ab = ctx->current_buffer;
	d = &ab->descriptor;

748 749
	res_count = ACCESS_ONCE(d->res_count);
	if (res_count == 0) {
750
		size_t size, size2, rest, pktsize, size3, offset;
751 752
		dma_addr_t start_bus;
		void *start;
753

754 755
		/*
		 * This descriptor is finished and we may have a
756
		 * packet split across this and the next buffer. We
757 758
		 * reuse the page for reassembling the split packet.
		 */
759 760

		offset = offsetof(struct ar_buffer, data);
761
		start = ab;
762
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
763
		buffer = ab->data;
764 765 766

		ab = ab->next;
		d = &ab->descriptor;
767
		size = start + PAGE_SIZE - ctx->pointer;
768
		/* valid buffer data in the next page */
769
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
770
		/* what actually fits in this page */
771
		size2 = min(rest, (size_t)PAGE_SIZE - offset - size);
772
		memmove(buffer, ctx->pointer, size);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
		memcpy(buffer + size, ab->data, size2);

		while (size > 0) {
			void *next = handle_ar_packet(ctx, buffer);
			pktsize = next - buffer;
			if (pktsize >= size) {
				/*
				 * We have handled all the data that was
				 * originally in this page, so we can now
				 * continue in the next page.
				 */
				buffer = next;
				break;
			}
			/* move the next packet to the start of the buffer */
			memmove(buffer, next, size + size2 - pktsize);
			size -= pktsize;
			/* fill up this page again */
			size3 = min(rest - size2,
792
				    (size_t)PAGE_SIZE - offset - size - size2);
793 794 795 796 797
			memcpy(buffer + size + size2,
			       (void *) ab->data + size2, size3);
			size2 += size3;
		}

798 799 800 801 802
		if (rest > 0) {
			/* handle the packets that are fully in the next page */
			buffer = (void *) ab->data +
					(buffer - (start + offset + size));
			end = (void *) ab->data + rest;
803

804 805
			while (buffer < end)
				buffer = handle_ar_packet(ctx, buffer);
806

807 808 809
			ctx->current_buffer = ab;
			ctx->pointer = end;

810
			ar_context_link_page(ctx, start, start_bus);
811 812 813
		} else {
			ctx->pointer = start + PAGE_SIZE;
		}
814 815 816
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
817
			(void *) ab + PAGE_SIZE - le16_to_cpu(res_count);
818 819 820 821

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
822 823
}

824 825
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
826
{
827
	struct ar_buffer ab;
828

829 830 831
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
832 833
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

834 835 836 837 838
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

839 840 841 842 843 844 845 846 847 848
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
849
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
850 851

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
852
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
853
	flush_writes(ctx->ohci);
854
}
S
Stefan Richter 已提交
855

856
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
857 858 859 860 861 862 863 864 865 866 867 868 869
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

870 871 872 873 874 875
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
876
	struct descriptor_buffer *desc;
877

878 879 880
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
881
	while (last->branch_address != 0) {
882
		struct descriptor_buffer *old_desc = desc;
883 884
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
885 886 887 888 889 890 891 892 893
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
894
		last = find_branch_descriptor(d, z);
895 896 897 898

		if (!ctx->callback(ctx, d, last))
			break;

899 900 901 902 903 904 905 906 907 908
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
909 910 911
	}
}

912 913 914 915
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
916
static int context_add_buffer(struct context *ctx)
917 918
{
	struct descriptor_buffer *desc;
919
	dma_addr_t uninitialized_var(bus_addr);
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

945 946
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
947 948 949
{
	ctx->ohci = ohci;
	ctx->regs = regs;
950 951 952 953
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
954 955
		return -ENOMEM;

956 957 958
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

959 960 961
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

962 963
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
964
	 * branch address and looks like it's been sent.  That way we
965
	 * have a descriptor to append DMA programs to.
966
	 */
967 968 969 970 971 972
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
973 974 975 976

	return 0;
}

977
static void context_release(struct context *ctx)
978 979
{
	struct fw_card *card = &ctx->ohci->card;
980
	struct descriptor_buffer *desc, *tmp;
981

982 983 984 985
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
986 987
}

988
/* Must be called with ohci->lock held */
989 990
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
991
{
992 993 994 995 996 997 998 999 1000
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1001

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1012

1013
	d = desc->buffer + desc->used / sizeof(*d);
1014
	memset(d, 0, z * sizeof(*d));
1015
	*d_bus = desc->buffer_bus + desc->used;
1016 1017 1018 1019

	return d;
}

1020
static void context_run(struct context *ctx, u32 extra)
1021 1022 1023
{
	struct fw_ohci *ohci = ctx->ohci;

1024
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1025
		  le32_to_cpu(ctx->last->branch_address));
1026 1027
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1028 1029 1030 1031 1032 1033 1034
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1035
	struct descriptor_buffer *desc = ctx->buffer_tail;
1036

1037
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1038

1039
	desc->used += (z + extra) * sizeof(*d);
1040 1041

	wmb(); /* finish init of new descriptors before branch_address update */
1042 1043
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1044

1045
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1046 1047 1048 1049 1050 1051
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1052
	int i;
1053

1054
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1055
	flush_writes(ctx->ohci);
1056

1057
	for (i = 0; i < 10; i++) {
1058
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1059
		if ((reg & CONTEXT_ACTIVE) == 0)
1060
			return;
1061

1062
		mdelay(1);
1063
	}
1064
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1065
}
1066

1067 1068 1069
struct driver_data {
	struct fw_packet *packet;
};
1070

1071 1072
/*
 * This function apppends a packet to the DMA queue for transmission.
1073
 * Must always be called with the ochi->lock held to ensure proper
1074 1075
 * generation handling and locking around packet queue manipulation.
 */
1076 1077
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1078 1079
{
	struct fw_ohci *ohci = ctx->ohci;
1080
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1081 1082 1083
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1084
	int z, tcode;
1085
	u32 reg;
1086

1087 1088 1089 1090
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1091 1092
	}

1093
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1094 1095
	d[0].res_count = cpu_to_le16(packet->timestamp);

1096 1097
	/*
	 * The DMA format for asyncronous link packets is different
1098 1099
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1100 1101
	 * which we need to prepend an extra quadlet.
	 */
1102 1103

	header = (__le32 *) &d[1];
1104 1105 1106
	switch (packet->header_length) {
	case 16:
	case 12:
1107 1108 1109 1110 1111
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1112 1113 1114

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1115
			header[3] = cpu_to_le32(packet->header[3]);
1116
		else
1117 1118 1119
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1120 1121 1122
		break;

	case 8:
1123 1124 1125 1126 1127
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1128 1129 1130

		if (is_ping_packet(packet->header))
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1144 1145
	}

1146 1147
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1148
	packet->driver_data = driver_data;
1149

1150 1151 1152 1153
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1154
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1155 1156 1157
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1158 1159
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1160 1161 1162 1163 1164

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1165
	} else {
1166 1167
		last = &d[0];
		z = 2;
1168 1169
	}

1170 1171 1172
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1173

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1187
		if (packet->payload_mapped)
1188 1189
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1190 1191 1192 1193 1194
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1195

1196
	/* If the context isn't already running, start it up. */
1197
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1198
	if ((reg & CONTEXT_RUN) == 0)
1199 1200 1201
		context_run(ctx, 0);

	return 0;
1202 1203
}

1204 1205 1206
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1207
{
1208
	struct driver_data *driver_data;
1209
	struct fw_packet *packet;
1210
	struct fw_ohci *ohci = context->ohci;
1211 1212
	int evt;

1213 1214 1215
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1216

1217 1218 1219 1220 1221
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1222

1223
	if (packet->payload_mapped)
1224
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1225 1226
				 packet->payload_length, DMA_TO_DEVICE);

1227 1228
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1229

1230 1231
	log_ar_at_event('T', packet->speed, packet->header, evt);

1232 1233 1234 1235 1236
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1237

1238
	case OHCI1394_evt_flushed:
1239 1240 1241 1242
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1243 1244
		packet->ack = RCODE_GENERATION;
		break;
1245

1246
	case OHCI1394_evt_missing_ack:
1247 1248 1249 1250
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1251 1252
		packet->ack = RCODE_NO_ACK;
		break;
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1263

1264 1265 1266 1267
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1268

1269
	packet->callback(packet, &ohci->card, packet->ack);
1270

1271
	return 1;
1272 1273
}

1274 1275 1276 1277 1278
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1279

1280 1281
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1282 1283 1284 1285
{
	struct fw_packet response;
	int tcode, length, i;

1286
	tcode = HEADER_GET_TCODE(packet->header[0]);
1287
	if (TCODE_IS_BLOCK_PACKET(tcode))
1288
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1307 1308
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1309 1310
{
	struct fw_packet response;
1311
	int tcode, length, ext_tcode, sel, try;
1312 1313 1314
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1315 1316
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1317
	payload = packet->payload;
1318
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1350 1351 1352 1353 1354

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1355
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1356
{
1357
	u64 offset, csr;
1358

1359 1360 1361 1362
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1363 1364 1365

	offset =
		((unsigned long long)
1366
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1387 1388 1389 1390 1391

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1392
}
1393

1394
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1395 1396
{
	unsigned long flags;
1397
	int ret;
1398 1399 1400

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1401
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1402
	    ctx->ohci->generation == packet->generation) {
1403 1404 1405
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1406
	}
1407

1408
	ret = at_context_queue_packet(ctx, packet);
1409 1410
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1411
	if (ret < 0)
1412
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1413

1414 1415
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1488 1489 1490
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1491
	int self_id_count, i, j, reg;
1492 1493
	int generation, new_generation;
	unsigned long flags;
1494 1495
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1496
	bool is_new_root;
1497 1498 1499

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1500
		fw_notify("node ID not valid, new bus reset in progress\n");
1501 1502
		return;
	}
1503 1504 1505 1506 1507 1508
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1509

1510 1511 1512 1513 1514 1515
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1516 1517 1518 1519 1520
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1521 1522
	/*
	 * The count in the SelfIDCount register is the number of
1523 1524
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1525 1526
	 * bit extra to get the actual number of self IDs.
	 */
1527 1528
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1529 1530 1531
		fw_notify("inconsistent self IDs\n");
		return;
	}
1532
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1533
	rmb();
1534 1535

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1536 1537 1538 1539
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1540 1541
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1542
	}
1543
	rmb();
1544

1545 1546
	/*
	 * Check the consistency of the self IDs we just read.  The
1547 1548 1549 1550 1551 1552 1553 1554 1555
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1556 1557
	 * of self IDs.
	 */
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1570 1571
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1572 1573
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1574
	if (ohci->quirks & QUIRK_RESET_PACKET)
1575 1576
		ohci->request_generation = generation;

1577 1578
	/*
	 * This next bit is unrelated to the AT context stuff but we
1579 1580 1581 1582
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1583
	 * next_config_rom pointer so a new update can take place.
1584
	 */
1585 1586

	if (ohci->next_config_rom != NULL) {
1587 1588 1589 1590
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1591 1592 1593 1594
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1595 1596
		/*
		 * Restore config_rom image and manually update
1597 1598
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1599 1600
		 * do that last.
		 */
1601 1602
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1603 1604 1605
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1606 1607
	}

1608 1609 1610 1611 1612
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1613 1614
	spin_unlock_irqrestore(&ohci->lock, flags);

1615 1616 1617 1618
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1619 1620
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1621

1622
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1623 1624 1625
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1626 1627 1628 1629 1630
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1631
	u32 event, iso_event;
1632 1633 1634 1635
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1636
	if (!event || !~event)
1637 1638
		return IRQ_NONE;

1639 1640
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1641
	log_irqs(event);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1658
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1659 1660 1661 1662
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1663
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1664 1665 1666
		iso_event &= ~(1 << i);
	}

1667
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1668 1669 1670 1671
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1672
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1673 1674 1675
		iso_event &= ~(1 << i);
	}

1676 1677 1678 1679
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1680 1681 1682
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1683 1684 1685 1686 1687 1688 1689
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1701 1702 1703 1704 1705 1706
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
	}

1707 1708 1709
	return IRQ_HANDLED;
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1726 1727 1728 1729 1730 1731 1732 1733 1734
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1735 1736 1737
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1738
	int ret, clear, set, offset;
1739 1740 1741 1742 1743 1744 1745 1746

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1747 1748 1749 1750 1751 1752 1753 1754
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1769
	ret = update_phy_reg(ohci, 5, clear, set);
1770 1771
	if (ret < 0)
		return ret;
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1786 1787
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1788 1789 1790
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1791
	u32 lps, seconds, version, irqs;
1792
	int i, ret;
1793

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1804 1805
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1806 1807 1808 1809 1810
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1822 1823 1824 1825

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1826
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1827 1828
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
1829
		  OHCI1394_LinkControl_rcvPhyPkt |
1830 1831 1832 1833 1834 1835
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1836 1837
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
1838

1839 1840 1841 1842
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

1843 1844 1845 1846
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
1847
		card->broadcast_channel_auto_allocated = true;
1848 1849
	}

1850 1851 1852 1853
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
1854
	card->priority_budget_implemented = ohci->pri_req_max != 0;
1855 1856 1857 1858 1859 1860 1861 1862

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

1863 1864 1865
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
1866

1867
	/* Activate link_on bit and contender bit in our self ID packets.*/
1868 1869 1870
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
1871

1872 1873
	/*
	 * When the link is not yet enabled, the atomic config rom
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1891 1892 1893 1894 1895 1896 1897
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1898

1899
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1900 1901 1902 1903 1904 1905 1906 1907
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1908

1909
	ohci->next_header = ohci->next_config_rom[0];
1910 1911
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1912 1913
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1914 1915 1916 1917
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

1918 1919
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
1920
	if (request_irq(dev->irq, irq_handler,
1921 1922 1923 1924
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
1925 1926 1927 1928 1929
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

1930 1931 1932 1933 1934 1935
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
1936
		OHCI1394_cycle64Seconds |
1937 1938 1939 1940 1941 1942
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

1943 1944 1945 1946 1947
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1948 1949
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
1950 1951 1952 1953

	return 0;
}

1954
static int ohci_set_config_rom(struct fw_card *card,
1955
			       const __be32 *config_rom, size_t length)
1956 1957 1958
{
	struct fw_ohci *ohci;
	unsigned long flags;
1959
	int ret = -EBUSY;
1960
	__be32 *next_config_rom;
1961
	dma_addr_t uninitialized_var(next_config_rom_bus);
1962 1963 1964

	ohci = fw_ohci(card);

1965 1966
	/*
	 * When the OHCI controller is enabled, the config rom update
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

2004
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2005 2006 2007 2008 2009 2010

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
2011
		ret = 0;
2012 2013 2014 2015
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

2016 2017
	/*
	 * Now initiate a bus reset to have the changes take
2018 2019 2020
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2021 2022
	 * takes effect.
	 */
2023
	if (ret == 0)
2024
		fw_schedule_bus_reset(&ohci->card, true, true);
2025 2026 2027
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
2028

2029
	return ret;
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2046 2047 2048
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2049 2050
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2051
	int ret = -ENOENT;
2052

2053
	tasklet_disable(&ctx->tasklet);
2054

2055 2056
	if (packet->ack != 0)
		goto out;
2057

2058
	if (packet->payload_mapped)
2059 2060 2061
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2062
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2063 2064 2065
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2066
	ret = 0;
2067 2068
 out:
	tasklet_enable(&ctx->tasklet);
2069

2070
	return ret;
2071 2072
}

2073 2074
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2075
{
2076 2077 2078
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2079 2080
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2081
	int n, ret = 0;
2082

2083 2084 2085 2086
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2087 2088 2089 2090

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2091
		ret = -ESTALE;
2092 2093 2094
		goto out;
	}

2095 2096 2097 2098
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2099 2100 2101 2102 2103 2104 2105

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2106 2107
	flush_writes(ohci);
 out:
2108
	spin_unlock_irqrestore(&ohci->lock, flags);
2109 2110

	return ret;
2111
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2112
}
S
Stefan Richter 已提交
2113

2114
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2115
{
2116
	struct fw_ohci *ohci = fw_ohci(card);
2117 2118
	unsigned long flags;
	u32 value;
2119 2120

	switch (csr_offset) {
2121 2122 2123 2124 2125
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2126
			value = CSR_STATE_BIT_CMSTR;
2127
		else
2128 2129 2130
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2131

2132
		return value;
2133

2134 2135 2136
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2137 2138 2139
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2151 2152 2153 2154
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2155 2156 2157 2158
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2159 2160 2161 2162
	default:
		WARN_ON(1);
		return 0;
	}
2163 2164
}

2165
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2166 2167
{
	struct fw_ohci *ohci = fw_ohci(card);
2168
	unsigned long flags;
2169

2170
	switch (csr_offset) {
2171 2172 2173 2174 2175 2176
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2177 2178
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2179
		break;
2180

2181 2182 2183 2184 2185 2186
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2187 2188
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2189
		break;
2190

2191 2192 2193 2194 2195
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2196 2197 2198 2199 2200 2201 2202
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2203 2204 2205 2206 2207 2208
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2209 2210 2211 2212 2213 2214 2215
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2216 2217 2218 2219 2220
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2221 2222 2223 2224
	default:
		WARN_ON(1);
		break;
	}
2225 2226
}

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2249 2250 2251 2252 2253 2254
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2255
	struct descriptor *pd;
2256
	__le32 *ir_header;
2257
	void *p;
2258

2259
	for (pd = d; pd <= last; pd++)
2260 2261 2262
		if (pd->transfer_status)
			break;
	if (pd > last)
2263 2264 2265
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2266 2267
	p = last + 1;
	copy_iso_headers(ctx, p);
2268

2269 2270
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2271 2272 2273 2274
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2275 2276 2277 2278 2279 2280
		ctx->header_length = 0;
	}

	return 1;
}

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2303 2304 2305
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2306
{
2307 2308
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2309 2310
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2311

2312 2313 2314 2315 2316
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2317 2318
		return 0;

2319 2320 2321 2322 2323 2324 2325 2326 2327
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2328 2329 2330
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2331 2332
		ctx->header_length = 0;
	}
2333
	return 1;
2334 2335
}

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2348
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2349
				int type, int channel, size_t header_size)
2350 2351
{
	struct fw_ohci *ohci = fw_ohci(card);
2352 2353 2354 2355
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2356
	unsigned long flags;
2357
	int index, ret = -EBUSY;
2358

2359
	spin_lock_irqsave(&ohci->lock, flags);
2360

2361 2362 2363
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2364
		callback = handle_it_packet;
2365 2366 2367 2368 2369 2370 2371 2372 2373
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2374
		channels = &ohci->ir_context_channels;
2375
		mask     = &ohci->ir_context_mask;
2376
		callback = handle_ir_packet_per_buffer;
2377 2378 2379 2380 2381 2382 2383 2384
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2385

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2401
	}
2402

2403 2404 2405
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2406
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2407

2408
	memset(ctx, 0, sizeof(*ctx));
2409 2410
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2411 2412
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2413
		goto out;
2414
	}
2415 2416
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2417
		goto out_with_header;
2418

2419 2420 2421
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2422
	return &ctx->base;
2423 2424 2425 2426 2427

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2438
	*mask |= 1 << index;
2439

2440 2441
	spin_unlock_irqrestore(&ohci->lock, flags);

2442
	return ERR_PTR(ret);
2443 2444
}

2445 2446
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2447
{
S
Stefan Richter 已提交
2448
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2449
	struct fw_ohci *ohci = ctx->context.ohci;
2450
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2451 2452
	int index;

2453 2454
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2455
		index = ctx - ohci->it_context_list;
2456 2457 2458
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2459
				(cycle & 0x7fff) << 16;
2460

2461 2462
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2463
		context_run(&ctx->context, match);
2464 2465 2466 2467 2468 2469
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2470
		index = ctx - ohci->ir_context_list;
2471 2472 2473 2474 2475
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2476

2477 2478
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2479
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2480
		context_run(&ctx->context, control);
2481
		break;
2482
	}
2483 2484 2485 2486

	return 0;
}

2487 2488 2489
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2490
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2491 2492
	int index;

2493 2494
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2495 2496
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2497 2498 2499 2500
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2501 2502
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2503
		break;
2504 2505 2506 2507 2508 2509 2510
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2511 2512 2513
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2514
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2515 2516 2517
	unsigned long flags;
	int index;

2518 2519
	ohci_stop_iso(base);
	context_release(&ctx->context);
2520
	free_page((unsigned long)ctx->header);
2521

2522 2523
	spin_lock_irqsave(&ohci->lock, flags);

2524 2525
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2526 2527
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2528 2529 2530
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2531 2532
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2533
		ohci->ir_context_channels |= 1ULL << base->channel;
2534 2535 2536 2537 2538 2539 2540 2541 2542
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2543 2544 2545 2546 2547
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2582
{
2583
	struct descriptor *d, *last, *pd;
2584 2585
	struct fw_iso_packet *p;
	__le32 *header;
2586
	dma_addr_t d_bus, page_bus;
2587 2588
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2589
	int page, end_page, i, length, offset;
2590 2591

	p = packet;
2592
	payload_index = payload;
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2611
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2612

2613 2614 2615
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2616 2617

	if (!p->skip) {
2618
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2619
		d[0].req_count = cpu_to_le16(8);
2620 2621 2622 2623 2624 2625 2626 2627
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2628 2629

		header = (__le32 *) &d[1];
2630 2631 2632 2633 2634
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2635
		header[1] =
2636
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2637 2638 2639 2640 2641
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2642
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2655 2656 2657

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2658 2659 2660 2661 2662

		payload_index += length;
	}

	if (p->interrupt)
2663
		irq = DESCRIPTOR_IRQ_ALWAYS;
2664
	else
2665
		irq = DESCRIPTOR_NO_IRQ;
2666

2667
	last = z == 2 ? d : d + z - 1;
2668 2669 2670
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2671
				     irq);
2672

2673
	context_append(&ctx->context, d, z, header_z);
2674 2675 2676

	return 0;
}
S
Stefan Richter 已提交
2677

2678 2679 2680 2681
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2682
{
2683
	struct descriptor *d, *pd;
2684 2685
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2686 2687
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2688 2689

	/*
2690 2691
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2692
	 */
2693
	packet_count = packet->header_length / ctx->base.header_size;
2694
	header_size  = max(ctx->base.header_size, (size_t)8);
2695 2696 2697 2698 2699

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2700
	payload_per_buffer = packet->payload_length / packet_count;
2701 2702 2703

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2704
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2705
		d = context_get_descriptors(&ctx->context,
2706
				z + header_z, &d_bus);
2707 2708 2709
		if (d == NULL)
			return -ENOMEM;

2710 2711
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
2712
		if (packet->skip && i == 0)
2713
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2714 2715
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2716
		d->transfer_status = 0;
2717 2718
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2719
		rest = payload_per_buffer;
2720
		pd = d;
2721
		for (j = 1; j < z; j++) {
2722
			pd++;
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2742 2743 2744
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2745
		if (packet->interrupt && i == packet_count - 1)
2746 2747 2748 2749 2750 2751 2752 2753
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

2806 2807 2808 2809
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2810
{
2811
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2812
	unsigned long flags;
2813
	int ret = -ENOSYS;
2814

2815
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
2827 2828
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2829
	return ret;
2830 2831
}

2832
static const struct fw_card_driver ohci_driver = {
2833
	.enable			= ohci_enable,
2834
	.read_phy_reg		= ohci_read_phy_reg,
2835 2836 2837 2838
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2839
	.cancel_packet		= ohci_cancel_packet,
2840
	.enable_phys_dma	= ohci_enable_phys_dma,
2841 2842
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
2843 2844 2845

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
2846
	.set_iso_channels	= ohci_set_iso_channels,
2847
	.queue_iso		= ohci_queue_iso,
2848
	.start_iso		= ohci_start_iso,
2849
	.stop_iso		= ohci_stop_iso,
2850 2851
};

2852
#ifdef CONFIG_PPC_PMAC
2853
static void pmac_ohci_on(struct pci_dev *dev)
2854
{
2855 2856 2857 2858 2859 2860 2861 2862
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2863 2864
}

2865
static void pmac_ohci_off(struct pci_dev *dev)
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
2877 2878
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
2879 2880
#endif /* CONFIG_PPC_PMAC */

2881 2882
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2883 2884
{
	struct fw_ohci *ohci;
2885
	u32 bus_options, max_receive, link_speed, version;
2886
	u64 guid;
2887
	int i, err, n_ir, n_it;
2888 2889
	size_t size;

2890
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2891
	if (ohci == NULL) {
2892 2893
		err = -ENOMEM;
		goto fail;
2894 2895 2896 2897
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2898
	pmac_ohci_on(dev);
2899

2900 2901
	err = pci_enable_device(dev);
	if (err) {
2902
		fw_error("Failed to enable OHCI hardware\n");
2903
		goto fail_free;
2904 2905 2906 2907 2908 2909 2910
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
2911
	mutex_init(&ohci->phy_reg_mutex);
2912 2913 2914 2915

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2916 2917
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2918
		fw_error("MMIO resource unavailable\n");
2919
		goto fail_disable;
2920 2921 2922 2923 2924
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2925 2926
		err = -ENXIO;
		goto fail_iomem;
2927 2928
	}

2929 2930 2931 2932 2933 2934 2935
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2936 2937
	if (param_quirks)
		ohci->quirks = param_quirks;
2938

2939 2940 2941 2942 2943 2944
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2945
	context_init(&ohci->at_request_ctx, ohci,
2946
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2947

2948
	context_init(&ohci->at_response_ctx, ohci,
2949
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2950 2951

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2952 2953
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2954
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2955 2956
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2957
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2958 2959

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2960
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2961
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2962 2963
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2964
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2965 2966

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2967
		err = -ENOMEM;
2968
		goto fail_contexts;
2969 2970 2971 2972 2973 2974 2975 2976
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2977
		err = -ENOMEM;
2978
		goto fail_contexts;
2979 2980 2981 2982 2983 2984 2985 2986
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2987
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2988
	if (err)
2989
		goto fail_self_id;
2990

2991 2992 2993 2994 2995
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2996

2997
	return 0;
2998 2999 3000 3001

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
3002
 fail_contexts:
3003
	kfree(ohci->ir_context_list);
3004 3005 3006 3007 3008
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
3009 3010 3011 3012 3013
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3014 3015
 fail_free:
	kfree(&ohci->card);
3016
	pmac_ohci_off(dev);
3017 3018 3019
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3020 3021

	return err;
3022 3023 3024 3025 3026 3027 3028
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3029 3030
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3031 3032
	fw_core_remove_card(&ohci->card);

3033 3034 3035 3036
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3037 3038 3039

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3040 3041 3042 3043 3044 3045 3046

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
3047 3048
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
3049 3050 3051 3052
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3053 3054
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3055
	pci_disable_msi(dev);
3056 3057 3058
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3059
	kfree(&ohci->card);
3060
	pmac_ohci_off(dev);
3061

3062 3063 3064
	fw_notify("Removed fw-ohci device.\n");
}

3065
#ifdef CONFIG_PM
3066
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3067
{
3068
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3069 3070 3071
	int err;

	software_reset(ohci);
3072
	free_irq(dev->irq, ohci);
3073
	pci_disable_msi(dev);
3074
	err = pci_save_state(dev);
3075
	if (err) {
3076
		fw_error("pci_save_state failed\n");
3077 3078
		return err;
	}
3079
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3080 3081
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3082
	pmac_ohci_off(dev);
3083

3084 3085 3086
	return 0;
}

3087
static int pci_resume(struct pci_dev *dev)
3088
{
3089
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3090 3091
	int err;

3092
	pmac_ohci_on(dev);
3093 3094 3095
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3096
	if (err) {
3097
		fw_error("pci_enable_device failed\n");
3098 3099 3100
		return err;
	}

3101
	return ohci_enable(&ohci->card, NULL, 0);
3102 3103 3104
}
#endif

3105
static const struct pci_device_id pci_table[] = {
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3117 3118 3119 3120
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3121 3122 3123 3124 3125 3126
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3127 3128 3129 3130 3131
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);