sbitmap.c 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2016 Facebook
 * Copyright (C) 2013-2014 Jens Axboe
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

18
#include <linux/random.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#include <linux/sbitmap.h>

int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
		      gfp_t flags, int node)
{
	unsigned int bits_per_word;
	unsigned int i;

	if (shift < 0) {
		shift = ilog2(BITS_PER_LONG);
		/*
		 * If the bitmap is small, shrink the number of bits per word so
		 * we spread over a few cachelines, at least. If less than 4
		 * bits, just forget about it, it's not going to work optimally
		 * anyway.
		 */
		if (depth >= 4) {
			while ((4U << shift) > depth)
				shift--;
		}
	}
	bits_per_word = 1U << shift;
	if (bits_per_word > BITS_PER_LONG)
		return -EINVAL;

	sb->shift = shift;
	sb->depth = depth;
	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);

	if (depth == 0) {
		sb->map = NULL;
		return 0;
	}

	sb->map = kzalloc_node(sb->map_nr * sizeof(*sb->map), flags, node);
	if (!sb->map)
		return -ENOMEM;

	for (i = 0; i < sb->map_nr; i++) {
		sb->map[i].depth = min(depth, bits_per_word);
		depth -= sb->map[i].depth;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(sbitmap_init_node);

void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
{
	unsigned int bits_per_word = 1U << sb->shift;
	unsigned int i;

	sb->depth = depth;
	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);

	for (i = 0; i < sb->map_nr; i++) {
		sb->map[i].depth = min(depth, bits_per_word);
		depth -= sb->map[i].depth;
	}
}
EXPORT_SYMBOL_GPL(sbitmap_resize);

static int __sbitmap_get_word(struct sbitmap_word *word, unsigned int hint,
			      bool wrap)
{
	unsigned int orig_hint = hint;
	int nr;

	while (1) {
		nr = find_next_zero_bit(&word->word, word->depth, hint);
		if (unlikely(nr >= word->depth)) {
			/*
			 * We started with an offset, and we didn't reset the
			 * offset to 0 in a failure case, so start from 0 to
			 * exhaust the map.
			 */
			if (orig_hint && hint && wrap) {
				hint = orig_hint = 0;
				continue;
			}
			return -1;
		}

		if (!test_and_set_bit(nr, &word->word))
			break;

		hint = nr + 1;
		if (hint >= word->depth - 1)
			hint = 0;
	}

	return nr;
}

int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin)
{
	unsigned int i, index;
	int nr = -1;

	index = SB_NR_TO_INDEX(sb, alloc_hint);

	for (i = 0; i < sb->map_nr; i++) {
		nr = __sbitmap_get_word(&sb->map[index],
					SB_NR_TO_BIT(sb, alloc_hint),
					!round_robin);
		if (nr != -1) {
			nr += index << sb->shift;
			break;
		}

		/* Jump to next index. */
		index++;
		alloc_hint = index << sb->shift;

		if (index >= sb->map_nr) {
			index = 0;
			alloc_hint = 0;
		}
	}

	return nr;
}
EXPORT_SYMBOL_GPL(sbitmap_get);

bool sbitmap_any_bit_set(const struct sbitmap *sb)
{
	unsigned int i;

	for (i = 0; i < sb->map_nr; i++) {
		if (sb->map[i].word)
			return true;
	}
	return false;
}
EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);

bool sbitmap_any_bit_clear(const struct sbitmap *sb)
{
	unsigned int i;

	for (i = 0; i < sb->map_nr; i++) {
		const struct sbitmap_word *word = &sb->map[i];
		unsigned long ret;

		ret = find_first_zero_bit(&word->word, word->depth);
		if (ret < word->depth)
			return true;
	}
	return false;
}
EXPORT_SYMBOL_GPL(sbitmap_any_bit_clear);

unsigned int sbitmap_weight(const struct sbitmap *sb)
{
172
	unsigned int i, weight = 0;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

	for (i = 0; i < sb->map_nr; i++) {
		const struct sbitmap_word *word = &sb->map[i];

		weight += bitmap_weight(&word->word, word->depth);
	}
	return weight;
}
EXPORT_SYMBOL_GPL(sbitmap_weight);

static unsigned int sbq_calc_wake_batch(unsigned int depth)
{
	unsigned int wake_batch;

	/*
	 * For each batch, we wake up one queue. We need to make sure that our
	 * batch size is small enough that the full depth of the bitmap is
	 * enough to wake up all of the queues.
	 */
	wake_batch = SBQ_WAKE_BATCH;
	if (wake_batch > depth / SBQ_WAIT_QUEUES)
		wake_batch = max(1U, depth / SBQ_WAIT_QUEUES);

	return wake_batch;
}

int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
200
			    int shift, bool round_robin, gfp_t flags, int node)
201 202 203 204 205 206 207 208
{
	int ret;
	int i;

	ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node);
	if (ret)
		return ret;

209 210 211 212 213 214
	sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
	if (!sbq->alloc_hint) {
		sbitmap_free(&sbq->sb);
		return -ENOMEM;
	}

215 216 217 218 219
	if (depth && !round_robin) {
		for_each_possible_cpu(i)
			*per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth;
	}

220 221 222
	sbq->wake_batch = sbq_calc_wake_batch(depth);
	atomic_set(&sbq->wake_index, 0);

223
	sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
224
	if (!sbq->ws) {
225
		free_percpu(sbq->alloc_hint);
226 227 228 229 230 231 232 233
		sbitmap_free(&sbq->sb);
		return -ENOMEM;
	}

	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
		init_waitqueue_head(&sbq->ws[i].wait);
		atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
	}
234 235

	sbq->round_robin = round_robin;
236 237 238 239 240 241 242 243 244 245 246
	return 0;
}
EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);

void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
{
	sbq->wake_batch = sbq_calc_wake_batch(depth);
	sbitmap_resize(&sbq->sb, depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_resize);

247
int __sbitmap_queue_get(struct sbitmap_queue *sbq)
248
{
249
	unsigned int hint, depth;
250 251 252
	int nr;

	hint = this_cpu_read(*sbq->alloc_hint);
253 254 255 256 257
	depth = READ_ONCE(sbq->sb.depth);
	if (unlikely(hint >= depth)) {
		hint = depth ? prandom_u32() % depth : 0;
		this_cpu_write(*sbq->alloc_hint, hint);
	}
258
	nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin);
259 260 261 262

	if (nr == -1) {
		/* If the map is full, a hint won't do us much good. */
		this_cpu_write(*sbq->alloc_hint, 0);
263
	} else if (nr == hint || unlikely(sbq->round_robin)) {
264 265
		/* Only update the hint if we used it. */
		hint = nr + 1;
266
		if (hint >= depth - 1)
267 268 269 270 271 272 273 274
			hint = 0;
		this_cpu_write(*sbq->alloc_hint, hint);
	}

	return nr;
}
EXPORT_SYMBOL_GPL(__sbitmap_queue_get);

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
{
	int i, wake_index;

	wake_index = atomic_read(&sbq->wake_index);
	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
		struct sbq_wait_state *ws = &sbq->ws[wake_index];

		if (waitqueue_active(&ws->wait)) {
			int o = atomic_read(&sbq->wake_index);

			if (wake_index != o)
				atomic_cmpxchg(&sbq->wake_index, o, wake_index);
			return ws;
		}

		wake_index = sbq_index_inc(wake_index);
	}

	return NULL;
}

static void sbq_wake_up(struct sbitmap_queue *sbq)
{
	struct sbq_wait_state *ws;
	int wait_cnt;

302 303 304 305 306 307 308 309
	/*
	 * Pairs with the memory barrier in set_current_state() to ensure the
	 * proper ordering of clear_bit()/waitqueue_active() in the waker and
	 * test_and_set_bit()/prepare_to_wait()/finish_wait() in the waiter. See
	 * the comment on waitqueue_active(). This is __after_atomic because we
	 * just did clear_bit() in the caller.
	 */
	smp_mb__after_atomic();
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

	ws = sbq_wake_ptr(sbq);
	if (!ws)
		return;

	wait_cnt = atomic_dec_return(&ws->wait_cnt);
	if (unlikely(wait_cnt < 0))
		wait_cnt = atomic_inc_return(&ws->wait_cnt);
	if (wait_cnt == 0) {
		atomic_add(sbq->wake_batch, &ws->wait_cnt);
		sbq_index_atomic_inc(&sbq->wake_index);
		wake_up(&ws->wait);
	}
}

325
void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
326
			 unsigned int cpu)
327 328 329
{
	sbitmap_clear_bit(&sbq->sb, nr);
	sbq_wake_up(sbq);
330
	if (likely(!sbq->round_robin && nr < sbq->sb.depth))
331
		*per_cpu_ptr(sbq->alloc_hint, cpu) = nr;
332 333 334 335 336 337 338 339
}
EXPORT_SYMBOL_GPL(sbitmap_queue_clear);

void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
{
	int i, wake_index;

	/*
340 341
	 * Pairs with the memory barrier in set_current_state() like in
	 * sbq_wake_up().
342 343 344 345 346 347 348 349 350 351 352 353 354
	 */
	smp_mb();
	wake_index = atomic_read(&sbq->wake_index);
	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
		struct sbq_wait_state *ws = &sbq->ws[wake_index];

		if (waitqueue_active(&ws->wait))
			wake_up(&ws->wait);

		wake_index = sbq_index_inc(wake_index);
	}
}
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);