dma-buf.c 33.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Framework for buffer objects that can be shared across devices/subsystems.
 *
 * Copyright(C) 2011 Linaro Limited. All rights reserved.
 * Author: Sumit Semwal <sumit.semwal@ti.com>
 *
 * Many thanks to linaro-mm-sig list, and specially
 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
 * refining of this idea.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/dma-buf.h>
28
#include <linux/dma-fence.h>
29 30
#include <linux/anon_inodes.h>
#include <linux/export.h>
S
Sumit Semwal 已提交
31
#include <linux/debugfs.h>
32
#include <linux/module.h>
S
Sumit Semwal 已提交
33
#include <linux/seq_file.h>
34
#include <linux/poll.h>
35
#include <linux/reservation.h>
M
Muhammad Falak R Wani 已提交
36
#include <linux/mm.h>
37

38 39
#include <uapi/linux/dma-buf.h>

40 41
static inline int is_dma_buf_file(struct file *);

S
Sumit Semwal 已提交
42 43 44 45 46 47 48
struct dma_buf_list {
	struct list_head head;
	struct mutex lock;
};

static struct dma_buf_list db_list;

49 50 51 52 53 54 55 56 57
static int dma_buf_release(struct inode *inode, struct file *file)
{
	struct dma_buf *dmabuf;

	if (!is_dma_buf_file(file))
		return -EINVAL;

	dmabuf = file->private_data;

58 59
	BUG_ON(dmabuf->vmapping_counter);

60 61 62 63 64 65 66 67 68 69
	/*
	 * Any fences that a dma-buf poll can wait on should be signaled
	 * before releasing dma-buf. This is the responsibility of each
	 * driver that uses the reservation objects.
	 *
	 * If you hit this BUG() it means someone dropped their ref to the
	 * dma-buf while still having pending operation to the buffer.
	 */
	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);

70
	dmabuf->ops->release(dmabuf);
S
Sumit Semwal 已提交
71 72 73 74 75

	mutex_lock(&db_list.lock);
	list_del(&dmabuf->list_node);
	mutex_unlock(&db_list.lock);

76 77 78
	if (dmabuf->resv == (struct reservation_object *)&dmabuf[1])
		reservation_object_fini(dmabuf->resv);

79
	module_put(dmabuf->owner);
80 81 82 83
	kfree(dmabuf);
	return 0;
}

D
Daniel Vetter 已提交
84 85 86 87 88 89 90 91 92 93
static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
{
	struct dma_buf *dmabuf;

	if (!is_dma_buf_file(file))
		return -EINVAL;

	dmabuf = file->private_data;

	/* check for overflowing the buffer's size */
M
Muhammad Falak R Wani 已提交
94
	if (vma->vm_pgoff + vma_pages(vma) >
D
Daniel Vetter 已提交
95 96 97 98 99 100
	    dmabuf->size >> PAGE_SHIFT)
		return -EINVAL;

	return dmabuf->ops->mmap(dmabuf, vma);
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
{
	struct dma_buf *dmabuf;
	loff_t base;

	if (!is_dma_buf_file(file))
		return -EBADF;

	dmabuf = file->private_data;

	/* only support discovering the end of the buffer,
	   but also allow SEEK_SET to maintain the idiomatic
	   SEEK_END(0), SEEK_CUR(0) pattern */
	if (whence == SEEK_END)
		base = dmabuf->size;
	else if (whence == SEEK_SET)
		base = 0;
	else
		return -EINVAL;

	if (offset != 0)
		return -EINVAL;

	return base + offset;
}

D
Daniel Vetter 已提交
127 128 129 130
/**
 * DOC: fence polling
 *
 * To support cross-device and cross-driver synchronization of buffer access
131
 * implicit fences (represented internally in the kernel with &struct fence) can
D
Daniel Vetter 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
 * be attached to a &dma_buf. The glue for that and a few related things are
 * provided in the &reservation_object structure.
 *
 * Userspace can query the state of these implicitly tracked fences using poll()
 * and related system calls:
 *
 * - Checking for POLLIN, i.e. read access, can be use to query the state of the
 *   most recent write or exclusive fence.
 *
 * - Checking for POLLOUT, i.e. write access, can be used to query the state of
 *   all attached fences, shared and exclusive ones.
 *
 * Note that this only signals the completion of the respective fences, i.e. the
 * DMA transfers are complete. Cache flushing and any other necessary
 * preparations before CPU access can begin still need to happen.
 */

149
static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
150 151 152 153 154 155 156 157 158 159 160 161 162 163
{
	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
	unsigned long flags;

	spin_lock_irqsave(&dcb->poll->lock, flags);
	wake_up_locked_poll(dcb->poll, dcb->active);
	dcb->active = 0;
	spin_unlock_irqrestore(&dcb->poll->lock, flags);
}

static unsigned int dma_buf_poll(struct file *file, poll_table *poll)
{
	struct dma_buf *dmabuf;
	struct reservation_object *resv;
164
	struct reservation_object_list *fobj;
165
	struct dma_fence *fence_excl;
166
	unsigned long events;
167
	unsigned shared_count, seq;
168 169 170 171 172 173 174 175 176 177 178 179 180

	dmabuf = file->private_data;
	if (!dmabuf || !dmabuf->resv)
		return POLLERR;

	resv = dmabuf->resv;

	poll_wait(file, &dmabuf->poll, poll);

	events = poll_requested_events(poll) & (POLLIN | POLLOUT);
	if (!events)
		return 0;

181 182 183
retry:
	seq = read_seqcount_begin(&resv->seq);
	rcu_read_lock();
184

185 186 187 188 189 190 191 192 193 194
	fobj = rcu_dereference(resv->fence);
	if (fobj)
		shared_count = fobj->shared_count;
	else
		shared_count = 0;
	fence_excl = rcu_dereference(resv->fence_excl);
	if (read_seqcount_retry(&resv->seq, seq)) {
		rcu_read_unlock();
		goto retry;
	}
195 196

	if (fence_excl && (!(events & POLLOUT) || shared_count == 0)) {
197 198 199
		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
		unsigned long pevents = POLLIN;

200
		if (shared_count == 0)
201 202 203 204 205 206 207 208 209 210 211
			pevents |= POLLOUT;

		spin_lock_irq(&dmabuf->poll.lock);
		if (dcb->active) {
			dcb->active |= pevents;
			events &= ~pevents;
		} else
			dcb->active = pevents;
		spin_unlock_irq(&dmabuf->poll.lock);

		if (events & pevents) {
212
			if (!dma_fence_get_rcu(fence_excl)) {
213 214 215
				/* force a recheck */
				events &= ~pevents;
				dma_buf_poll_cb(NULL, &dcb->cb);
216 217
			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
							   dma_buf_poll_cb)) {
218
				events &= ~pevents;
219
				dma_fence_put(fence_excl);
220
			} else {
221 222 223 224
				/*
				 * No callback queued, wake up any additional
				 * waiters.
				 */
225
				dma_fence_put(fence_excl);
226
				dma_buf_poll_cb(NULL, &dcb->cb);
227
			}
228 229 230
		}
	}

231
	if ((events & POLLOUT) && shared_count > 0) {
232 233 234 235 236 237 238 239 240 241 242 243 244 245
		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
		int i;

		/* Only queue a new callback if no event has fired yet */
		spin_lock_irq(&dmabuf->poll.lock);
		if (dcb->active)
			events &= ~POLLOUT;
		else
			dcb->active = POLLOUT;
		spin_unlock_irq(&dmabuf->poll.lock);

		if (!(events & POLLOUT))
			goto out;

246
		for (i = 0; i < shared_count; ++i) {
247
			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
248

249
			if (!dma_fence_get_rcu(fence)) {
250 251 252 253 254 255 256 257 258 259
				/*
				 * fence refcount dropped to zero, this means
				 * that fobj has been freed
				 *
				 * call dma_buf_poll_cb and force a recheck!
				 */
				events &= ~POLLOUT;
				dma_buf_poll_cb(NULL, &dcb->cb);
				break;
			}
260 261 262
			if (!dma_fence_add_callback(fence, &dcb->cb,
						    dma_buf_poll_cb)) {
				dma_fence_put(fence);
263 264 265
				events &= ~POLLOUT;
				break;
			}
266
			dma_fence_put(fence);
267
		}
268 269

		/* No callback queued, wake up any additional waiters. */
270
		if (i == shared_count)
271 272 273 274
			dma_buf_poll_cb(NULL, &dcb->cb);
	}

out:
275
	rcu_read_unlock();
276 277 278
	return events;
}

279 280 281 282 283 284
static long dma_buf_ioctl(struct file *file,
			  unsigned int cmd, unsigned long arg)
{
	struct dma_buf *dmabuf;
	struct dma_buf_sync sync;
	enum dma_data_direction direction;
285
	int ret;
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

	dmabuf = file->private_data;

	switch (cmd) {
	case DMA_BUF_IOCTL_SYNC:
		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
			return -EFAULT;

		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
			return -EINVAL;

		switch (sync.flags & DMA_BUF_SYNC_RW) {
		case DMA_BUF_SYNC_READ:
			direction = DMA_FROM_DEVICE;
			break;
		case DMA_BUF_SYNC_WRITE:
			direction = DMA_TO_DEVICE;
			break;
		case DMA_BUF_SYNC_RW:
			direction = DMA_BIDIRECTIONAL;
			break;
		default:
			return -EINVAL;
		}

		if (sync.flags & DMA_BUF_SYNC_END)
312
			ret = dma_buf_end_cpu_access(dmabuf, direction);
313
		else
314
			ret = dma_buf_begin_cpu_access(dmabuf, direction);
315

316
		return ret;
317 318 319 320 321
	default:
		return -ENOTTY;
	}
}

322 323
static const struct file_operations dma_buf_fops = {
	.release	= dma_buf_release,
D
Daniel Vetter 已提交
324
	.mmap		= dma_buf_mmap_internal,
325
	.llseek		= dma_buf_llseek,
326
	.poll		= dma_buf_poll,
327
	.unlocked_ioctl	= dma_buf_ioctl,
328 329 330 331 332 333 334 335 336 337
};

/*
 * is_dma_buf_file - Check if struct file* is associated with dma_buf
 */
static inline int is_dma_buf_file(struct file *file)
{
	return file->f_op == &dma_buf_fops;
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
/**
 * DOC: dma buf device access
 *
 * For device DMA access to a shared DMA buffer the usual sequence of operations
 * is fairly simple:
 *
 * 1. The exporter defines his exporter instance using
 *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
 *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
 *    as a file descriptor by calling dma_buf_fd().
 *
 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
 *    to share with: First the filedescriptor is converted to a &dma_buf using
 *    dma_buf_get(). The the buffer is attached to the device using
 *    dma_buf_attach().
 *
 *    Up to this stage the exporter is still free to migrate or reallocate the
 *    backing storage.
 *
 * 3. Once the buffer is attached to all devices userspace can inniate DMA
 *    access to the shared buffer. In the kernel this is done by calling
 *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
 *
 * 4. Once a driver is done with a shared buffer it needs to call
 *    dma_buf_detach() (after cleaning up any mappings) and then release the
 *    reference acquired with dma_buf_get by calling dma_buf_put().
 *
 * For the detailed semantics exporters are expected to implement see
 * &dma_buf_ops.
 */

369
/**
370
 * dma_buf_export - Creates a new dma_buf, and associates an anon file
371 372
 * with this buffer, so it can be exported.
 * Also connect the allocator specific data and ops to the buffer.
373
 * Additionally, provide a name string for exporter; useful in debugging.
374
 *
375
 * @exp_info:	[in]	holds all the export related information provided
376
 *			by the exporter. see &struct dma_buf_export_info
377
 *			for further details.
378 379 380 381 382
 *
 * Returns, on success, a newly created dma_buf object, which wraps the
 * supplied private data and operations for dma_buf_ops. On either missing
 * ops, or error in allocating struct dma_buf, will return negative error.
 *
383 384
 * For most cases the easiest way to create @exp_info is through the
 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
385
 */
386
struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
387 388
{
	struct dma_buf *dmabuf;
389
	struct reservation_object *resv = exp_info->resv;
390
	struct file *file;
391
	size_t alloc_size = sizeof(struct dma_buf);
392
	int ret;
J
Jagan Teki 已提交
393

394
	if (!exp_info->resv)
395 396 397 398
		alloc_size += sizeof(struct reservation_object);
	else
		/* prevent &dma_buf[1] == dma_buf->resv */
		alloc_size += 1;
399

400 401 402 403 404 405 406 407
	if (WARN_ON(!exp_info->priv
			  || !exp_info->ops
			  || !exp_info->ops->map_dma_buf
			  || !exp_info->ops->unmap_dma_buf
			  || !exp_info->ops->release
			  || !exp_info->ops->kmap_atomic
			  || !exp_info->ops->kmap
			  || !exp_info->ops->mmap)) {
408 409 410
		return ERR_PTR(-EINVAL);
	}

411 412 413
	if (!try_module_get(exp_info->owner))
		return ERR_PTR(-ENOENT);

414
	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
415
	if (!dmabuf) {
416 417
		ret = -ENOMEM;
		goto err_module;
418
	}
419

420 421 422 423
	dmabuf->priv = exp_info->priv;
	dmabuf->ops = exp_info->ops;
	dmabuf->size = exp_info->size;
	dmabuf->exp_name = exp_info->exp_name;
424
	dmabuf->owner = exp_info->owner;
425 426 427 428
	init_waitqueue_head(&dmabuf->poll);
	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;

429 430 431 432 433
	if (!resv) {
		resv = (struct reservation_object *)&dmabuf[1];
		reservation_object_init(resv);
	}
	dmabuf->resv = resv;
434

435 436
	file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf,
					exp_info->flags);
437
	if (IS_ERR(file)) {
438 439
		ret = PTR_ERR(file);
		goto err_dmabuf;
440
	}
441 442

	file->f_mode |= FMODE_LSEEK;
443 444 445 446 447
	dmabuf->file = file;

	mutex_init(&dmabuf->lock);
	INIT_LIST_HEAD(&dmabuf->attachments);

S
Sumit Semwal 已提交
448 449 450 451
	mutex_lock(&db_list.lock);
	list_add(&dmabuf->list_node, &db_list.head);
	mutex_unlock(&db_list.lock);

452
	return dmabuf;
453 454 455 456 457 458

err_dmabuf:
	kfree(dmabuf);
err_module:
	module_put(exp_info->owner);
	return ERR_PTR(ret);
459
}
460
EXPORT_SYMBOL_GPL(dma_buf_export);
461 462 463 464

/**
 * dma_buf_fd - returns a file descriptor for the given dma_buf
 * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
465
 * @flags:      [in]    flags to give to fd
466 467 468
 *
 * On success, returns an associated 'fd'. Else, returns error.
 */
469
int dma_buf_fd(struct dma_buf *dmabuf, int flags)
470
{
B
Borislav Petkov 已提交
471
	int fd;
472 473 474 475

	if (!dmabuf || !dmabuf->file)
		return -EINVAL;

B
Borislav Petkov 已提交
476 477 478
	fd = get_unused_fd_flags(flags);
	if (fd < 0)
		return fd;
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

	fd_install(fd, dmabuf->file);

	return fd;
}
EXPORT_SYMBOL_GPL(dma_buf_fd);

/**
 * dma_buf_get - returns the dma_buf structure related to an fd
 * @fd:	[in]	fd associated with the dma_buf to be returned
 *
 * On success, returns the dma_buf structure associated with an fd; uses
 * file's refcounting done by fget to increase refcount. returns ERR_PTR
 * otherwise.
 */
struct dma_buf *dma_buf_get(int fd)
{
	struct file *file;

	file = fget(fd);

	if (!file)
		return ERR_PTR(-EBADF);

	if (!is_dma_buf_file(file)) {
		fput(file);
		return ERR_PTR(-EINVAL);
	}

	return file->private_data;
}
EXPORT_SYMBOL_GPL(dma_buf_get);

/**
 * dma_buf_put - decreases refcount of the buffer
 * @dmabuf:	[in]	buffer to reduce refcount of
 *
516 517 518 519
 * Uses file's refcounting done implicitly by fput().
 *
 * If, as a result of this call, the refcount becomes 0, the 'release' file
 * operation related to this fd is called. It calls the release operation of
520
 * &struct dma_buf_ops in turn, and frees the memory allocated for dmabuf when
521
 * exported.
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
 */
void dma_buf_put(struct dma_buf *dmabuf)
{
	if (WARN_ON(!dmabuf || !dmabuf->file))
		return;

	fput(dmabuf->file);
}
EXPORT_SYMBOL_GPL(dma_buf_put);

/**
 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
 * calls attach() of dma_buf_ops to allow device-specific attach functionality
 * @dmabuf:	[in]	buffer to attach device to.
 * @dev:	[in]	device to be attached.
 *
538 539 540 541 542 543 544 545 546 547 548
 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
 * must be cleaned up by calling dma_buf_detach().
 *
 * Returns:
 *
 * A pointer to newly created &dma_buf_attachment on success, or a negative
 * error code wrapped into a pointer on failure.
 *
 * Note that this can fail if the backing storage of @dmabuf is in a place not
 * accessible to @dev, and cannot be moved to a more suitable place. This is
 * indicated with the error code -EBUSY.
549 550 551 552 553 554 555
 */
struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
					  struct device *dev)
{
	struct dma_buf_attachment *attach;
	int ret;

556
	if (WARN_ON(!dmabuf || !dev))
557 558 559 560
		return ERR_PTR(-EINVAL);

	attach = kzalloc(sizeof(struct dma_buf_attachment), GFP_KERNEL);
	if (attach == NULL)
561
		return ERR_PTR(-ENOMEM);
562 563 564

	attach->dev = dev;
	attach->dmabuf = dmabuf;
565 566 567

	mutex_lock(&dmabuf->lock);

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	if (dmabuf->ops->attach) {
		ret = dmabuf->ops->attach(dmabuf, dev, attach);
		if (ret)
			goto err_attach;
	}
	list_add(&attach->node, &dmabuf->attachments);

	mutex_unlock(&dmabuf->lock);
	return attach;

err_attach:
	kfree(attach);
	mutex_unlock(&dmabuf->lock);
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(dma_buf_attach);

/**
 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
 * optionally calls detach() of dma_buf_ops for device-specific detach
 * @dmabuf:	[in]	buffer to detach from.
 * @attach:	[in]	attachment to be detached; is free'd after this call.
 *
591
 * Clean up a device attachment obtained by calling dma_buf_attach().
592 593 594
 */
void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
{
595
	if (WARN_ON(!dmabuf || !attach))
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
		return;

	mutex_lock(&dmabuf->lock);
	list_del(&attach->node);
	if (dmabuf->ops->detach)
		dmabuf->ops->detach(dmabuf, attach);

	mutex_unlock(&dmabuf->lock);
	kfree(attach);
}
EXPORT_SYMBOL_GPL(dma_buf_detach);

/**
 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
 * dma_buf_ops.
 * @attach:	[in]	attachment whose scatterlist is to be returned
 * @direction:	[in]	direction of DMA transfer
 *
615
 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
616 617 618 619 620 621
 * on error. May return -EINTR if it is interrupted by a signal.
 *
 * A mapping must be unmapped again using dma_buf_map_attachment(). Note that
 * the underlying backing storage is pinned for as long as a mapping exists,
 * therefore users/importers should not hold onto a mapping for undue amounts of
 * time.
622 623 624 625 626 627 628 629
 */
struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
					enum dma_data_direction direction)
{
	struct sg_table *sg_table = ERR_PTR(-EINVAL);

	might_sleep();

630
	if (WARN_ON(!attach || !attach->dmabuf))
631 632
		return ERR_PTR(-EINVAL);

633
	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
634 635
	if (!sg_table)
		sg_table = ERR_PTR(-ENOMEM);
636 637 638 639 640 641 642 643 644 645 646

	return sg_table;
}
EXPORT_SYMBOL_GPL(dma_buf_map_attachment);

/**
 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
 * dma_buf_ops.
 * @attach:	[in]	attachment to unmap buffer from
 * @sg_table:	[in]	scatterlist info of the buffer to unmap
647
 * @direction:  [in]    direction of DMA transfer
648
 *
649
 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
650 651
 */
void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
652 653
				struct sg_table *sg_table,
				enum dma_data_direction direction)
654
{
655 656
	might_sleep();

657
	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
658 659
		return;

660 661
	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
						direction);
662 663
}
EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
664

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/**
 * DOC: cpu access
 *
 * There are mutliple reasons for supporting CPU access to a dma buffer object:
 *
 * - Fallback operations in the kernel, for example when a device is connected
 *   over USB and the kernel needs to shuffle the data around first before
 *   sending it away. Cache coherency is handled by braketing any transactions
 *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
 *   access.
 *
 *   To support dma_buf objects residing in highmem cpu access is page-based
 *   using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
 *   of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
 *   returns a pointer in kernel virtual address space. Afterwards the chunk
 *   needs to be unmapped again. There is no limit on how often a given chunk
 *   can be mapped and unmapped, i.e. the importer does not need to call
 *   begin_cpu_access again before mapping the same chunk again.
 *
 *   Interfaces::
 *      void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
 *      void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
 *
 *   There are also atomic variants of these interfaces. Like for kmap they
 *   facilitate non-blocking fast-paths. Neither the importer nor the exporter
 *   (in the callback) is allowed to block when using these.
 *
 *   Interfaces::
 *      void \*dma_buf_kmap_atomic(struct dma_buf \*, unsigned long);
 *      void dma_buf_kunmap_atomic(struct dma_buf \*, unsigned long, void \*);
 *
 *   For importers all the restrictions of using kmap apply, like the limited
 *   supply of kmap_atomic slots. Hence an importer shall only hold onto at
 *   max 2 atomic dma_buf kmaps at the same time (in any given process context).
 *
 *   dma_buf kmap calls outside of the range specified in begin_cpu_access are
 *   undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
 *   the partial chunks at the beginning and end but may return stale or bogus
 *   data outside of the range (in these partial chunks).
 *
 *   Note that these calls need to always succeed. The exporter needs to
 *   complete any preparations that might fail in begin_cpu_access.
 *
 *   For some cases the overhead of kmap can be too high, a vmap interface
 *   is introduced. This interface should be used very carefully, as vmalloc
 *   space is a limited resources on many architectures.
 *
 *   Interfaces::
 *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
 *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
 *
 *   The vmap call can fail if there is no vmap support in the exporter, or if
 *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
 *   that the dma-buf layer keeps a reference count for all vmap access and
 *   calls down into the exporter's vmap function only when no vmapping exists,
 *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
 *   provided by taking the dma_buf->lock mutex.
 *
 * - For full compatibility on the importer side with existing userspace
 *   interfaces, which might already support mmap'ing buffers. This is needed in
 *   many processing pipelines (e.g. feeding a software rendered image into a
 *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
 *   framework already supported this and for DMA buffer file descriptors to
 *   replace ION buffers mmap support was needed.
 *
 *   There is no special interfaces, userspace simply calls mmap on the dma-buf
 *   fd. But like for CPU access there's a need to braket the actual access,
 *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
 *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
 *   be restarted.
 *
 *   Some systems might need some sort of cache coherency management e.g. when
 *   CPU and GPU domains are being accessed through dma-buf at the same time.
 *   To circumvent this problem there are begin/end coherency markers, that
 *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
 *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
 *   sequence would be used like following:
 *
 *     - mmap dma-buf fd
 *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
 *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
 *       want (with the new data being consumed by say the GPU or the scanout
 *       device)
 *     - munmap once you don't need the buffer any more
 *
 *    For correctness and optimal performance, it is always required to use
 *    SYNC_START and SYNC_END before and after, respectively, when accessing the
 *    mapped address. Userspace cannot rely on coherent access, even when there
 *    are systems where it just works without calling these ioctls.
 *
 * - And as a CPU fallback in userspace processing pipelines.
 *
 *   Similar to the motivation for kernel cpu access it is again important that
 *   the userspace code of a given importing subsystem can use the same
 *   interfaces with a imported dma-buf buffer object as with a native buffer
 *   object. This is especially important for drm where the userspace part of
 *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
 *   use a different way to mmap a buffer rather invasive.
 *
 *   The assumption in the current dma-buf interfaces is that redirecting the
 *   initial mmap is all that's needed. A survey of some of the existing
 *   subsystems shows that no driver seems to do any nefarious thing like
 *   syncing up with outstanding asynchronous processing on the device or
 *   allocating special resources at fault time. So hopefully this is good
 *   enough, since adding interfaces to intercept pagefaults and allow pte
 *   shootdowns would increase the complexity quite a bit.
 *
 *   Interface::
 *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
 *		       unsigned long);
 *
 *   If the importing subsystem simply provides a special-purpose mmap call to
 *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
 *   equally achieve that for a dma-buf object.
 */

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
				      enum dma_data_direction direction)
{
	bool write = (direction == DMA_BIDIRECTIONAL ||
		      direction == DMA_TO_DEVICE);
	struct reservation_object *resv = dmabuf->resv;
	long ret;

	/* Wait on any implicit rendering fences */
	ret = reservation_object_wait_timeout_rcu(resv, write, true,
						  MAX_SCHEDULE_TIMEOUT);
	if (ret < 0)
		return ret;

	return 0;
}
797 798 799 800 801 802

/**
 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
 * preparations. Coherency is only guaranteed in the specified range for the
 * specified access direction.
803
 * @dmabuf:	[in]	buffer to prepare cpu access for.
804 805
 * @direction:	[in]	length of range for cpu access.
 *
806 807 808 809
 * After the cpu access is complete the caller should call
 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
 * it guaranteed to be coherent with other DMA access.
 *
810 811
 * Can return negative error values, returns 0 on success.
 */
812
int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
813 814 815 816 817 818 819 820
			     enum dma_data_direction direction)
{
	int ret = 0;

	if (WARN_ON(!dmabuf))
		return -EINVAL;

	if (dmabuf->ops->begin_cpu_access)
821
		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
822

823 824 825 826 827 828 829
	/* Ensure that all fences are waited upon - but we first allow
	 * the native handler the chance to do so more efficiently if it
	 * chooses. A double invocation here will be reasonably cheap no-op.
	 */
	if (ret == 0)
		ret = __dma_buf_begin_cpu_access(dmabuf, direction);

830 831 832 833 834 835 836 837 838
	return ret;
}
EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);

/**
 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
 * actions. Coherency is only guaranteed in the specified range for the
 * specified access direction.
839
 * @dmabuf:	[in]	buffer to complete cpu access for.
840 841
 * @direction:	[in]	length of range for cpu access.
 *
842 843
 * This terminates CPU access started with dma_buf_begin_cpu_access().
 *
844
 * Can return negative error values, returns 0 on success.
845
 */
846 847
int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
			   enum dma_data_direction direction)
848
{
849 850
	int ret = 0;

851 852 853
	WARN_ON(!dmabuf);

	if (dmabuf->ops->end_cpu_access)
854 855 856
		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);

	return ret;
857 858 859 860 861 862
}
EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);

/**
 * dma_buf_kmap_atomic - Map a page of the buffer object into kernel address
 * space. The same restrictions as for kmap_atomic and friends apply.
863
 * @dmabuf:	[in]	buffer to map page from.
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
 * @page_num:	[in]	page in PAGE_SIZE units to map.
 *
 * This call must always succeed, any necessary preparations that might fail
 * need to be done in begin_cpu_access.
 */
void *dma_buf_kmap_atomic(struct dma_buf *dmabuf, unsigned long page_num)
{
	WARN_ON(!dmabuf);

	return dmabuf->ops->kmap_atomic(dmabuf, page_num);
}
EXPORT_SYMBOL_GPL(dma_buf_kmap_atomic);

/**
 * dma_buf_kunmap_atomic - Unmap a page obtained by dma_buf_kmap_atomic.
879
 * @dmabuf:	[in]	buffer to unmap page from.
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
 * @page_num:	[in]	page in PAGE_SIZE units to unmap.
 * @vaddr:	[in]	kernel space pointer obtained from dma_buf_kmap_atomic.
 *
 * This call must always succeed.
 */
void dma_buf_kunmap_atomic(struct dma_buf *dmabuf, unsigned long page_num,
			   void *vaddr)
{
	WARN_ON(!dmabuf);

	if (dmabuf->ops->kunmap_atomic)
		dmabuf->ops->kunmap_atomic(dmabuf, page_num, vaddr);
}
EXPORT_SYMBOL_GPL(dma_buf_kunmap_atomic);

/**
 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
 * same restrictions as for kmap and friends apply.
898
 * @dmabuf:	[in]	buffer to map page from.
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
 * @page_num:	[in]	page in PAGE_SIZE units to map.
 *
 * This call must always succeed, any necessary preparations that might fail
 * need to be done in begin_cpu_access.
 */
void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
{
	WARN_ON(!dmabuf);

	return dmabuf->ops->kmap(dmabuf, page_num);
}
EXPORT_SYMBOL_GPL(dma_buf_kmap);

/**
 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
914
 * @dmabuf:	[in]	buffer to unmap page from.
915 916 917 918 919 920 921 922 923 924 925 926 927 928
 * @page_num:	[in]	page in PAGE_SIZE units to unmap.
 * @vaddr:	[in]	kernel space pointer obtained from dma_buf_kmap.
 *
 * This call must always succeed.
 */
void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
		    void *vaddr)
{
	WARN_ON(!dmabuf);

	if (dmabuf->ops->kunmap)
		dmabuf->ops->kunmap(dmabuf, page_num, vaddr);
}
EXPORT_SYMBOL_GPL(dma_buf_kunmap);
D
Daniel Vetter 已提交
929 930 931 932


/**
 * dma_buf_mmap - Setup up a userspace mmap with the given vma
933
 * @dmabuf:	[in]	buffer that should back the vma
D
Daniel Vetter 已提交
934 935
 * @vma:	[in]	vma for the mmap
 * @pgoff:	[in]	offset in pages where this mmap should start within the
J
Jagan Teki 已提交
936
 *			dma-buf buffer.
D
Daniel Vetter 已提交
937 938
 *
 * This function adjusts the passed in vma so that it points at the file of the
939
 * dma_buf operation. It also adjusts the starting pgoff and does bounds
D
Daniel Vetter 已提交
940 941 942 943 944 945 946 947
 * checking on the size of the vma. Then it calls the exporters mmap function to
 * set up the mapping.
 *
 * Can return negative error values, returns 0 on success.
 */
int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
		 unsigned long pgoff)
{
948 949 950
	struct file *oldfile;
	int ret;

D
Daniel Vetter 已提交
951 952 953 954
	if (WARN_ON(!dmabuf || !vma))
		return -EINVAL;

	/* check for offset overflow */
M
Muhammad Falak R Wani 已提交
955
	if (pgoff + vma_pages(vma) < pgoff)
D
Daniel Vetter 已提交
956 957 958
		return -EOVERFLOW;

	/* check for overflowing the buffer's size */
M
Muhammad Falak R Wani 已提交
959
	if (pgoff + vma_pages(vma) >
D
Daniel Vetter 已提交
960 961 962 963
	    dmabuf->size >> PAGE_SHIFT)
		return -EINVAL;

	/* readjust the vma */
964 965 966
	get_file(dmabuf->file);
	oldfile = vma->vm_file;
	vma->vm_file = dmabuf->file;
D
Daniel Vetter 已提交
967 968
	vma->vm_pgoff = pgoff;

969 970 971 972 973 974 975 976 977 978 979
	ret = dmabuf->ops->mmap(dmabuf, vma);
	if (ret) {
		/* restore old parameters on failure */
		vma->vm_file = oldfile;
		fput(dmabuf->file);
	} else {
		if (oldfile)
			fput(oldfile);
	}
	return ret;

D
Daniel Vetter 已提交
980 981
}
EXPORT_SYMBOL_GPL(dma_buf_mmap);
D
Dave Airlie 已提交
982 983

/**
984 985 986
 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
 * address space. Same restrictions as for vmap and friends apply.
 * @dmabuf:	[in]	buffer to vmap
D
Dave Airlie 已提交
987 988 989 990 991
 *
 * This call may fail due to lack of virtual mapping address space.
 * These calls are optional in drivers. The intended use for them
 * is for mapping objects linear in kernel space for high use objects.
 * Please attempt to use kmap/kunmap before thinking about these interfaces.
992 993
 *
 * Returns NULL on error.
D
Dave Airlie 已提交
994 995 996
 */
void *dma_buf_vmap(struct dma_buf *dmabuf)
{
997 998
	void *ptr;

D
Dave Airlie 已提交
999 1000 1001
	if (WARN_ON(!dmabuf))
		return NULL;

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	if (!dmabuf->ops->vmap)
		return NULL;

	mutex_lock(&dmabuf->lock);
	if (dmabuf->vmapping_counter) {
		dmabuf->vmapping_counter++;
		BUG_ON(!dmabuf->vmap_ptr);
		ptr = dmabuf->vmap_ptr;
		goto out_unlock;
	}

	BUG_ON(dmabuf->vmap_ptr);

	ptr = dmabuf->ops->vmap(dmabuf);
1016 1017 1018
	if (WARN_ON_ONCE(IS_ERR(ptr)))
		ptr = NULL;
	if (!ptr)
1019 1020 1021 1022 1023 1024 1025 1026
		goto out_unlock;

	dmabuf->vmap_ptr = ptr;
	dmabuf->vmapping_counter = 1;

out_unlock:
	mutex_unlock(&dmabuf->lock);
	return ptr;
D
Dave Airlie 已提交
1027 1028 1029 1030 1031
}
EXPORT_SYMBOL_GPL(dma_buf_vmap);

/**
 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1032
 * @dmabuf:	[in]	buffer to vunmap
1033
 * @vaddr:	[in]	vmap to vunmap
D
Dave Airlie 已提交
1034 1035 1036 1037 1038 1039
 */
void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
{
	if (WARN_ON(!dmabuf))
		return;

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	BUG_ON(!dmabuf->vmap_ptr);
	BUG_ON(dmabuf->vmapping_counter == 0);
	BUG_ON(dmabuf->vmap_ptr != vaddr);

	mutex_lock(&dmabuf->lock);
	if (--dmabuf->vmapping_counter == 0) {
		if (dmabuf->ops->vunmap)
			dmabuf->ops->vunmap(dmabuf, vaddr);
		dmabuf->vmap_ptr = NULL;
	}
	mutex_unlock(&dmabuf->lock);
D
Dave Airlie 已提交
1051 1052
}
EXPORT_SYMBOL_GPL(dma_buf_vunmap);
S
Sumit Semwal 已提交
1053 1054

#ifdef CONFIG_DEBUG_FS
1055
static int dma_buf_debug_show(struct seq_file *s, void *unused)
S
Sumit Semwal 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
{
	int ret;
	struct dma_buf *buf_obj;
	struct dma_buf_attachment *attach_obj;
	int count = 0, attach_count;
	size_t size = 0;

	ret = mutex_lock_interruptible(&db_list.lock);

	if (ret)
		return ret;

S
Sumit Semwal 已提交
1068 1069
	seq_puts(s, "\nDma-buf Objects:\n");
	seq_puts(s, "size\tflags\tmode\tcount\texp_name\n");
S
Sumit Semwal 已提交
1070 1071 1072 1073 1074

	list_for_each_entry(buf_obj, &db_list.head, list_node) {
		ret = mutex_lock_interruptible(&buf_obj->lock);

		if (ret) {
S
Sumit Semwal 已提交
1075 1076
			seq_puts(s,
				 "\tERROR locking buffer object: skipping\n");
S
Sumit Semwal 已提交
1077 1078 1079
			continue;
		}

S
Sumit Semwal 已提交
1080 1081
		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\n",
				buf_obj->size,
S
Sumit Semwal 已提交
1082
				buf_obj->file->f_flags, buf_obj->file->f_mode,
1083
				file_count(buf_obj->file),
S
Sumit Semwal 已提交
1084
				buf_obj->exp_name);
S
Sumit Semwal 已提交
1085

S
Sumit Semwal 已提交
1086
		seq_puts(s, "\tAttached Devices:\n");
S
Sumit Semwal 已提交
1087 1088 1089
		attach_count = 0;

		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
S
Sumit Semwal 已提交
1090
			seq_puts(s, "\t");
S
Sumit Semwal 已提交
1091

S
Sumit Semwal 已提交
1092
			seq_printf(s, "%s\n", dev_name(attach_obj->dev));
S
Sumit Semwal 已提交
1093 1094 1095
			attach_count++;
		}

S
Sumit Semwal 已提交
1096
		seq_printf(s, "Total %d devices attached\n\n",
S
Sumit Semwal 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
				attach_count);

		count++;
		size += buf_obj->size;
		mutex_unlock(&buf_obj->lock);
	}

	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);

	mutex_unlock(&db_list.lock);
	return 0;
}

static int dma_buf_debug_open(struct inode *inode, struct file *file)
{
1112
	return single_open(file, dma_buf_debug_show, NULL);
S
Sumit Semwal 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
}

static const struct file_operations dma_buf_debug_fops = {
	.open           = dma_buf_debug_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

static struct dentry *dma_buf_debugfs_dir;

static int dma_buf_init_debugfs(void)
{
1126
	struct dentry *d;
S
Sumit Semwal 已提交
1127
	int err = 0;
J
Jagan Teki 已提交
1128

1129 1130 1131
	d = debugfs_create_dir("dma_buf", NULL);
	if (IS_ERR(d))
		return PTR_ERR(d);
J
Jagan Teki 已提交
1132

1133
	dma_buf_debugfs_dir = d;
S
Sumit Semwal 已提交
1134

1135 1136 1137
	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
				NULL, &dma_buf_debug_fops);
	if (IS_ERR(d)) {
S
Sumit Semwal 已提交
1138
		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1139 1140
		debugfs_remove_recursive(dma_buf_debugfs_dir);
		dma_buf_debugfs_dir = NULL;
1141
		err = PTR_ERR(d);
1142
	}
S
Sumit Semwal 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

	return err;
}

static void dma_buf_uninit_debugfs(void)
{
	if (dma_buf_debugfs_dir)
		debugfs_remove_recursive(dma_buf_debugfs_dir);
}
#else
static inline int dma_buf_init_debugfs(void)
{
	return 0;
}
static inline void dma_buf_uninit_debugfs(void)
{
}
#endif

static int __init dma_buf_init(void)
{
	mutex_init(&db_list.lock);
	INIT_LIST_HEAD(&db_list.head);
	dma_buf_init_debugfs();
	return 0;
}
subsys_initcall(dma_buf_init);

static void __exit dma_buf_deinit(void)
{
	dma_buf_uninit_debugfs();
}
__exitcall(dma_buf_deinit);