arm-stub.c 11.5 KB
Newer Older
M
Mark Salter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * EFI stub implementation that is shared by arm and arm64 architectures.
 * This should be #included by the EFI stub implementation files.
 *
 * Copyright (C) 2013,2014 Linaro Limited
 *     Roy Franz <roy.franz@linaro.org
 * Copyright (C) 2013 Red Hat, Inc.
 *     Mark Salter <msalter@redhat.com>
 *
 * This file is part of the Linux kernel, and is made available under the
 * terms of the GNU General Public License version 2.
 *
 */

15
#include <linux/efi.h>
16
#include <linux/sort.h>
17 18 19 20
#include <asm/efi.h>

#include "efistub.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * This is the base address at which to start allocating virtual memory ranges
 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
 * any allocation we choose, and eliminate the risk of a conflict after kexec.
 * The value chosen is the largest non-zero power of 2 suitable for this purpose
 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
 * be mapped efficiently.
 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
 * entire footprint of the UEFI runtime services memory regions)
 */
#define EFI_RT_VIRTUAL_BASE	SZ_512M
#define EFI_RT_VIRTUAL_SIZE	SZ_512M

35 36 37 38 39 40
#ifdef CONFIG_ARM64
# define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE_64
#else
# define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
#endif

41 42
static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;

43
void efi_char16_printk(efi_system_table_t *sys_table_arg,
M
Mark Salter 已提交
44 45 46 47 48 49 50 51
			      efi_char16_t *str)
{
	struct efi_simple_text_output_protocol *out;

	out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
	out->output_string(out, str);
}

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
{
	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
	efi_status_t status;
	unsigned long size;
	void **gop_handle = NULL;
	struct screen_info *si = NULL;

	size = 0;
	status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
				&gop_proto, NULL, &size, gop_handle);
	if (status == EFI_BUFFER_TOO_SMALL) {
		si = alloc_screen_info(sys_table_arg);
		if (!si)
			return NULL;
		efi_setup_gop(sys_table_arg, si, &gop_proto, size);
	}
	return si;
}
M
Mark Salter 已提交
71 72 73 74 75 76 77

/*
 * This function handles the architcture specific differences between arm and
 * arm64 regarding where the kernel image must be loaded and any memory that
 * must be reserved. On failure it is required to free all
 * all allocations it has made.
 */
78 79 80 81 82 83 84
efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
				 unsigned long *image_addr,
				 unsigned long *image_size,
				 unsigned long *reserve_addr,
				 unsigned long *reserve_size,
				 unsigned long dram_base,
				 efi_loaded_image_t *image);
M
Mark Salter 已提交
85 86 87 88 89 90
/*
 * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
 * that is described in the PE/COFF header.  Most of the code is the same
 * for both archictectures, with the arch-specific code provided in the
 * handle_kernel_image() function.
 */
91
unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
M
Mark Salter 已提交
92 93 94 95 96 97 98 99 100
			       unsigned long *image_addr)
{
	efi_loaded_image_t *image;
	efi_status_t status;
	unsigned long image_size = 0;
	unsigned long dram_base;
	/* addr/point and size pairs for memory management*/
	unsigned long initrd_addr;
	u64 initrd_size = 0;
101
	unsigned long fdt_addr = 0;  /* Original DTB */
102
	unsigned long fdt_size = 0;
M
Mark Salter 已提交
103 104 105 106 107 108
	char *cmdline_ptr = NULL;
	int cmdline_size = 0;
	unsigned long new_fdt_addr;
	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
	unsigned long reserve_addr = 0;
	unsigned long reserve_size = 0;
109
	enum efi_secureboot_mode secure_boot;
110
	struct screen_info *si;
M
Mark Salter 已提交
111 112 113 114 115

	/* Check if we were booted by the EFI firmware */
	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
		goto fail;

116 117 118 119
	status = check_platform_features(sys_table);
	if (status != EFI_SUCCESS)
		goto fail;

M
Mark Salter 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	/*
	 * Get a handle to the loaded image protocol.  This is used to get
	 * information about the running image, such as size and the command
	 * line.
	 */
	status = sys_table->boottime->handle_protocol(handle,
					&loaded_image_proto, (void *)&image);
	if (status != EFI_SUCCESS) {
		pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
		goto fail;
	}

	dram_base = get_dram_base(sys_table);
	if (dram_base == EFI_ERROR) {
		pr_efi_err(sys_table, "Failed to find DRAM base\n");
		goto fail;
	}

	/*
	 * Get the command line from EFI, using the LOADED_IMAGE
	 * protocol. We are going to copy the command line into the
	 * device tree, so this can be allocated anywhere.
	 */
	cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
	if (!cmdline_ptr) {
		pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
146 147 148
		goto fail;
	}

149 150 151 152 153 154 155 156 157 158
	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
	    cmdline_size == 0)
		efi_parse_options(CONFIG_CMDLINE);

	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
		efi_parse_options(cmdline_ptr);

	pr_efi(sys_table, "Booting Linux Kernel...\n");

159 160
	si = setup_graphics(sys_table);

161 162 163 164 165 166 167
	status = handle_kernel_image(sys_table, image_addr, &image_size,
				     &reserve_addr,
				     &reserve_size,
				     dram_base, image);
	if (status != EFI_SUCCESS) {
		pr_efi_err(sys_table, "Failed to relocate kernel\n");
		goto fail_free_cmdline;
M
Mark Salter 已提交
168 169
	}

170 171 172
	/* Ask the firmware to clear memory on unclean shutdown */
	efi_enable_reset_attack_mitigation(sys_table);

173 174
	secure_boot = efi_get_secureboot(sys_table);

175
	/*
176 177 178
	 * Unauthenticated device tree data is a security hazard, so ignore
	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
	 * boot is enabled if we can't determine its state.
179
	 */
180 181 182 183
	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
	     secure_boot != efi_secureboot_mode_disabled) {
		if (strstr(cmdline_ptr, "dtb="))
			pr_efi(sys_table, "Ignoring DTB from command line.\n");
184
	} else {
M
Mark Salter 已提交
185 186
		status = handle_cmdline_files(sys_table, image, cmdline_ptr,
					      "dtb=",
187
					      ~0UL, &fdt_addr, &fdt_size);
M
Mark Salter 已提交
188 189 190

		if (status != EFI_SUCCESS) {
			pr_efi_err(sys_table, "Failed to load device tree!\n");
191
			goto fail_free_image;
M
Mark Salter 已提交
192 193
		}
	}
194 195 196 197

	if (fdt_addr) {
		pr_efi(sys_table, "Using DTB from command line\n");
	} else {
198
		/* Look for a device tree configuration table entry. */
199
		fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
200 201 202 203 204 205
		if (fdt_addr)
			pr_efi(sys_table, "Using DTB from configuration table\n");
	}

	if (!fdt_addr)
		pr_efi(sys_table, "Generating empty DTB\n");
M
Mark Salter 已提交
206

207 208 209
	status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=",
				      efi_get_max_initrd_addr(dram_base,
							      *image_addr),
M
Mark Salter 已提交
210 211 212 213 214
				      (unsigned long *)&initrd_addr,
				      (unsigned long *)&initrd_size);
	if (status != EFI_SUCCESS)
		pr_efi_err(sys_table, "Failed initrd from command line!\n");

215 216
	efi_random_get_seed(sys_table);

217 218
	/* hibernation expects the runtime regions to stay in the same place */
	if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr()) {
219 220 221 222 223 224
		/*
		 * Randomize the base of the UEFI runtime services region.
		 * Preserve the 2 MB alignment of the region by taking a
		 * shift of 21 bit positions into account when scaling
		 * the headroom value using a 32-bit random value.
		 */
225 226 227
		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
					    EFI_RT_VIRTUAL_BASE -
					    EFI_RT_VIRTUAL_SIZE;
228 229 230 231 232 233 234 235 236 237
		u32 rnd;

		status = efi_get_random_bytes(sys_table, sizeof(rnd),
					      (u8 *)&rnd);
		if (status == EFI_SUCCESS) {
			virtmap_base = EFI_RT_VIRTUAL_BASE +
				       (((headroom >> 21) * rnd) >> (32 - 21));
		}
	}

M
Mark Salter 已提交
238 239
	new_fdt_addr = fdt_addr;
	status = allocate_new_fdt_and_exit_boot(sys_table, handle,
240
				&new_fdt_addr, efi_get_max_fdt_addr(dram_base),
M
Mark Salter 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
				initrd_addr, initrd_size, cmdline_ptr,
				fdt_addr, fdt_size);

	/*
	 * If all went well, we need to return the FDT address to the
	 * calling function so it can be passed to kernel as part of
	 * the kernel boot protocol.
	 */
	if (status == EFI_SUCCESS)
		return new_fdt_addr;

	pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");

	efi_free(sys_table, initrd_size, initrd_addr);
	efi_free(sys_table, fdt_size, fdt_addr);

fail_free_image:
	efi_free(sys_table, image_size, *image_addr);
	efi_free(sys_table, reserve_size, reserve_addr);
260
fail_free_cmdline:
261
	free_screen_info(sys_table, si);
262
	efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
M
Mark Salter 已提交
263 264 265
fail:
	return EFI_ERROR;
}
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
static int cmp_mem_desc(const void *l, const void *r)
{
	const efi_memory_desc_t *left = l, *right = r;

	return (left->phys_addr > right->phys_addr) ? 1 : -1;
}

/*
 * Returns whether region @left ends exactly where region @right starts,
 * or false if either argument is NULL.
 */
static bool regions_are_adjacent(efi_memory_desc_t *left,
				 efi_memory_desc_t *right)
{
	u64 left_end;

	if (left == NULL || right == NULL)
		return false;

	left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;

	return left_end == right->phys_addr;
}

/*
 * Returns whether region @left and region @right have compatible memory type
 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
 */
static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
						      efi_memory_desc_t *right)
{
	static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
					 EFI_MEMORY_WC | EFI_MEMORY_UC |
					 EFI_MEMORY_RUNTIME;

	return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
}

305 306 307 308 309 310 311 312 313 314 315
/*
 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
 *
 * This function populates the virt_addr fields of all memory region descriptors
 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
 * are also copied to @runtime_map, and their total count is returned in @count.
 */
void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
		     int *count)
{
316
	u64 efi_virt_base = virtmap_base;
317
	efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
318 319
	int l;

320 321 322 323 324 325 326 327 328
	/*
	 * To work around potential issues with the Properties Table feature
	 * introduced in UEFI 2.5, which may split PE/COFF executable images
	 * in memory into several RuntimeServicesCode and RuntimeServicesData
	 * regions, we need to preserve the relative offsets between adjacent
	 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
	 * The easiest way to find adjacent regions is to sort the memory map
	 * before traversing it.
	 */
329 330 331
	if (IS_ENABLED(CONFIG_ARM64))
		sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc,
		     NULL);
332 333

	for (l = 0; l < map_size; l += desc_size, prev = in) {
334 335
		u64 paddr, size;

336
		in = (void *)memory_map + l;
337 338 339
		if (!(in->attribute & EFI_MEMORY_RUNTIME))
			continue;

340 341 342
		paddr = in->phys_addr;
		size = in->num_pages * EFI_PAGE_SIZE;

343 344 345 346 347
		if (novamap()) {
			in->virt_addr = in->phys_addr;
			continue;
		}

348 349 350 351 352
		/*
		 * Make the mapping compatible with 64k pages: this allows
		 * a 4k page size kernel to kexec a 64k page size kernel and
		 * vice versa.
		 */
353 354
		if ((IS_ENABLED(CONFIG_ARM64) &&
		     !regions_are_adjacent(prev, in)) ||
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
		    !regions_have_compatible_memory_type_attrs(prev, in)) {

			paddr = round_down(in->phys_addr, SZ_64K);
			size += in->phys_addr - paddr;

			/*
			 * Avoid wasting memory on PTEs by choosing a virtual
			 * base that is compatible with section mappings if this
			 * region has the appropriate size and physical
			 * alignment. (Sections are 2 MB on 4k granule kernels)
			 */
			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
				efi_virt_base = round_up(efi_virt_base, SZ_2M);
			else
				efi_virt_base = round_up(efi_virt_base, SZ_64K);
		}
371 372 373 374 375 376 377 378 379

		in->virt_addr = efi_virt_base + in->phys_addr - paddr;
		efi_virt_base += size;

		memcpy(out, in, desc_size);
		out = (void *)out + desc_size;
		++*count;
	}
}