wait.h 41.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2
#ifndef _LINUX_WAIT_H
#define _LINUX_WAIT_H
3 4 5
/*
 * Linux wait queue related types and methods
 */
L
Linus Torvalds 已提交
6 7 8 9
#include <linux/list.h>
#include <linux/stddef.h>
#include <linux/spinlock.h>
#include <asm/current.h>
10
#include <uapi/linux/wait.h>
L
Linus Torvalds 已提交
11 12

typedef struct __wait_queue wait_queue_t;
P
Peter Zijlstra 已提交
13 14
typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
L
Linus Torvalds 已提交
15

16 17 18 19
/* __wait_queue::flags */
#define WQ_FLAG_EXCLUSIVE	0x01
#define WQ_FLAG_WOKEN		0x02

L
Linus Torvalds 已提交
20
struct __wait_queue {
21 22 23 24
	unsigned int		flags;
	void			*private;
	wait_queue_func_t	func;
	struct list_head	task_list;
L
Linus Torvalds 已提交
25 26 27
};

struct wait_bit_key {
28 29 30
	void			*flags;
	int			bit_nr;
#define WAIT_ATOMIC_T_BIT_NR	-1
31
	unsigned long		timeout;
L
Linus Torvalds 已提交
32 33 34
};

struct wait_bit_queue {
35 36
	struct wait_bit_key	key;
	wait_queue_t		wait;
L
Linus Torvalds 已提交
37 38 39
};

struct __wait_queue_head {
40 41
	spinlock_t		lock;
	struct list_head	task_list;
L
Linus Torvalds 已提交
42 43 44
};
typedef struct __wait_queue_head wait_queue_head_t;

45
struct task_struct;
L
Linus Torvalds 已提交
46 47 48 49 50 51

/*
 * Macros for declaration and initialisaton of the datatypes
 */

#define __WAITQUEUE_INITIALIZER(name, tsk) {				\
52
	.private	= tsk,						\
L
Linus Torvalds 已提交
53 54 55 56 57 58 59
	.func		= default_wake_function,			\
	.task_list	= { NULL, NULL } }

#define DECLARE_WAITQUEUE(name, tsk)					\
	wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)

#define __WAIT_QUEUE_HEAD_INITIALIZER(name) {				\
60
	.lock		= __SPIN_LOCK_UNLOCKED(name.lock),		\
L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68
	.task_list	= { &(name).task_list, &(name).task_list } }

#define DECLARE_WAIT_QUEUE_HEAD(name) \
	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)

#define __WAIT_BIT_KEY_INITIALIZER(word, bit)				\
	{ .flags = word, .bit_nr = bit, }

69 70 71
#define __WAIT_ATOMIC_T_KEY_INITIALIZER(p)				\
	{ .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }

72
extern void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *);
73 74 75 76 77

#define init_waitqueue_head(q)				\
	do {						\
		static struct lock_class_key __key;	\
							\
78
		__init_waitqueue_head((q), #q, &__key);	\
79
	} while (0)
L
Linus Torvalds 已提交
80

81 82 83 84 85 86 87 88 89
#ifdef CONFIG_LOCKDEP
# define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
	({ init_waitqueue_head(&name); name; })
# define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
#else
# define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
#endif

L
Linus Torvalds 已提交
90 91
static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
{
92 93 94
	q->flags	= 0;
	q->private	= p;
	q->func		= default_wake_function;
L
Linus Torvalds 已提交
95 96
}

97 98
static inline void
init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func)
L
Linus Torvalds 已提交
99
{
100 101 102
	q->flags	= 0;
	q->private	= NULL;
	q->func		= func;
L
Linus Torvalds 已提交
103 104
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
/**
 * waitqueue_active -- locklessly test for waiters on the queue
 * @q: the waitqueue to test for waiters
 *
 * returns true if the wait list is not empty
 *
 * NOTE: this function is lockless and requires care, incorrect usage _will_
 * lead to sporadic and non-obvious failure.
 *
 * Use either while holding wait_queue_head_t::lock or when used for wakeups
 * with an extra smp_mb() like:
 *
 *      CPU0 - waker                    CPU1 - waiter
 *
 *                                      for (;;) {
 *      @cond = true;                     prepare_to_wait(&wq, &wait, state);
 *      smp_mb();                         // smp_mb() from set_current_state()
 *      if (waitqueue_active(wq))         if (@cond)
 *        wake_up(wq);                      break;
 *                                        schedule();
 *                                      }
 *                                      finish_wait(&wq, &wait);
 *
 * Because without the explicit smp_mb() it's possible for the
 * waitqueue_active() load to get hoisted over the @cond store such that we'll
 * observe an empty wait list while the waiter might not observe @cond.
 *
 * Also note that this 'optimization' trades a spin_lock() for an smp_mb(),
 * which (when the lock is uncontended) are of roughly equal cost.
 */
L
Linus Torvalds 已提交
135 136 137 138 139
static inline int waitqueue_active(wait_queue_head_t *q)
{
	return !list_empty(&q->task_list);
}

H
Herbert Xu 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/**
 * wq_has_sleeper - check if there are any waiting processes
 * @wq: wait queue head
 *
 * Returns true if wq has waiting processes
 *
 * Please refer to the comment for waitqueue_active.
 */
static inline bool wq_has_sleeper(wait_queue_head_t *wq)
{
	/*
	 * We need to be sure we are in sync with the
	 * add_wait_queue modifications to the wait queue.
	 *
	 * This memory barrier should be paired with one on the
	 * waiting side.
	 */
	smp_mb();
	return waitqueue_active(wq);
}

161 162 163
extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait);
extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
L
Linus Torvalds 已提交
164 165 166 167 168 169 170 171 172

static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
{
	list_add(&new->task_list, &head->task_list);
}

/*
 * Used for wake-one threads:
 */
173 174
static inline void
__add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
C
Changli Gao 已提交
175 176 177 178 179
{
	wait->flags |= WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(q, wait);
}

L
Linus Torvalds 已提交
180
static inline void __add_wait_queue_tail(wait_queue_head_t *head,
C
Changli Gao 已提交
181
					 wait_queue_t *new)
L
Linus Torvalds 已提交
182 183 184 185
{
	list_add_tail(&new->task_list, &head->task_list);
}

186 187
static inline void
__add_wait_queue_tail_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
C
Changli Gao 已提交
188 189 190 191 192
{
	wait->flags |= WQ_FLAG_EXCLUSIVE;
	__add_wait_queue_tail(q, wait);
}

193 194
static inline void
__remove_wait_queue(wait_queue_head_t *head, wait_queue_t *old)
L
Linus Torvalds 已提交
195 196 197 198
{
	list_del(&old->task_list);
}

199
typedef int wait_bit_action_f(struct wait_bit_key *, int mode);
200
void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
201
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
202
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
203
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
204
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
205
void __wake_up_bit(wait_queue_head_t *, void *, int);
206 207
int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
208
void wake_up_bit(void *, int);
209
void wake_up_atomic_t(atomic_t *);
210
int out_of_line_wait_on_bit(void *, int, wait_bit_action_f *, unsigned);
211
int out_of_line_wait_on_bit_timeout(void *, int, wait_bit_action_f *, unsigned, unsigned long);
212
int out_of_line_wait_on_bit_lock(void *, int, wait_bit_action_f *, unsigned);
213
int out_of_line_wait_on_atomic_t(atomic_t *, int (*)(atomic_t *), unsigned);
214
wait_queue_head_t *bit_waitqueue(void *, int);
L
Linus Torvalds 已提交
215

M
Matthew Wilcox 已提交
216 217 218
#define wake_up(x)			__wake_up(x, TASK_NORMAL, 1, NULL)
#define wake_up_nr(x, nr)		__wake_up(x, TASK_NORMAL, nr, NULL)
#define wake_up_all(x)			__wake_up(x, TASK_NORMAL, 0, NULL)
219 220
#define wake_up_locked(x)		__wake_up_locked((x), TASK_NORMAL, 1)
#define wake_up_all_locked(x)		__wake_up_locked((x), TASK_NORMAL, 0)
M
Matthew Wilcox 已提交
221

L
Linus Torvalds 已提交
222 223 224
#define wake_up_interruptible(x)	__wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
#define wake_up_interruptible_nr(x, nr)	__wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
#define wake_up_interruptible_all(x)	__wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
M
Matthew Wilcox 已提交
225
#define wake_up_interruptible_sync(x)	__wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
L
Linus Torvalds 已提交
226

P
Peter Zijlstra 已提交
227
/*
228
 * Wakeup macros to be used to report events to the targets.
P
Peter Zijlstra 已提交
229
 */
230
#define wake_up_poll(x, m)						\
231
	__wake_up(x, TASK_NORMAL, 1, (void *) (m))
232
#define wake_up_locked_poll(x, m)					\
233
	__wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
234
#define wake_up_interruptible_poll(x, m)				\
235 236 237
	__wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
#define wake_up_interruptible_sync_poll(x, m)				\
	__wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
P
Peter Zijlstra 已提交
238

239
#define ___wait_cond_timeout(condition)					\
P
Peter Zijlstra 已提交
240
({									\
241 242 243 244
	bool __cond = (condition);					\
	if (__cond && !__ret)						\
		__ret = 1;						\
	__cond || !__ret;						\
P
Peter Zijlstra 已提交
245 246
})

247 248 249
#define ___wait_is_interruptible(state)					\
	(!__builtin_constant_p(state) ||				\
		state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE)	\
250

251 252 253 254 255 256 257 258 259 260 261 262
/*
 * The below macro ___wait_event() has an explicit shadow of the __ret
 * variable when used from the wait_event_*() macros.
 *
 * This is so that both can use the ___wait_cond_timeout() construct
 * to wrap the condition.
 *
 * The type inconsistency of the wait_event_*() __ret variable is also
 * on purpose; we use long where we can return timeout values and int
 * otherwise.
 */

263
#define ___wait_event(wq, condition, state, exclusive, ret, cmd)	\
264
({									\
265
	__label__ __out;						\
266
	wait_queue_t __wait;						\
267
	long __ret = ret;	/* explicit shadow */			\
268
									\
269 270 271 272 273 274
	INIT_LIST_HEAD(&__wait.task_list);				\
	if (exclusive)							\
		__wait.flags = WQ_FLAG_EXCLUSIVE;			\
	else								\
		__wait.flags = 0;					\
									\
275
	for (;;) {							\
276
		long __int = prepare_to_wait_event(&wq, &__wait, state);\
277 278 279 280
									\
		if (condition)						\
			break;						\
									\
281 282
		if (___wait_is_interruptible(state) && __int) {		\
			__ret = __int;					\
283
			if (exclusive) {				\
284 285
				abort_exclusive_wait(&wq, &__wait,	\
						     state, NULL);	\
286 287 288 289 290 291 292 293
				goto __out;				\
			}						\
			break;						\
		}							\
									\
		cmd;							\
	}								\
	finish_wait(&wq, &__wait);					\
294 295
__out:	__ret;								\
})
296

297
#define __wait_event(wq, condition)					\
298 299
	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
			    schedule())
L
Linus Torvalds 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312

/**
 * wait_event - sleep until a condition gets true
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 *
 * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
 * @condition evaluates to true. The @condition is checked each time
 * the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 */
313
#define wait_event(wq, condition)					\
L
Linus Torvalds 已提交
314
do {									\
315
	might_sleep();							\
316
	if (condition)							\
L
Linus Torvalds 已提交
317 318 319 320
		break;							\
	__wait_event(wq, condition);					\
} while (0)

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
#define __io_wait_event(wq, condition)					\
	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
			    io_schedule())

/*
 * io_wait_event() -- like wait_event() but with io_schedule()
 */
#define io_wait_event(wq, condition)					\
do {									\
	might_sleep();							\
	if (condition)							\
		break;							\
	__io_wait_event(wq, condition);					\
} while (0)

336 337 338 339 340
#define __wait_event_freezable(wq, condition)				\
	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
			    schedule(); try_to_freeze())

/**
341
 * wait_event_freezable - sleep (or freeze) until a condition gets true
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 *
 * The process is put to sleep (TASK_INTERRUPTIBLE -- so as not to contribute
 * to system load) until the @condition evaluates to true. The
 * @condition is checked each time the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 */
#define wait_event_freezable(wq, condition)				\
({									\
	int __ret = 0;							\
	might_sleep();							\
	if (!(condition))						\
		__ret = __wait_event_freezable(wq, condition);		\
	__ret;								\
})

361 362 363 364
#define __wait_event_timeout(wq, condition, timeout)			\
	___wait_event(wq, ___wait_cond_timeout(condition),		\
		      TASK_UNINTERRUPTIBLE, 0, timeout,			\
		      __ret = schedule_timeout(__ret))
L
Linus Torvalds 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378

/**
 * wait_event_timeout - sleep until a condition gets true or a timeout elapses
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 * @timeout: timeout, in jiffies
 *
 * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
 * @condition evaluates to true. The @condition is checked each time
 * the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
379 380 381 382 383
 * Returns:
 * 0 if the @condition evaluated to %false after the @timeout elapsed,
 * 1 if the @condition evaluated to %true after the @timeout elapsed,
 * or the remaining jiffies (at least 1) if the @condition evaluated
 * to %true before the @timeout elapsed.
L
Linus Torvalds 已提交
384 385 386 387
 */
#define wait_event_timeout(wq, condition, timeout)			\
({									\
	long __ret = timeout;						\
388
	might_sleep();							\
389
	if (!___wait_cond_timeout(condition))				\
390
		__ret = __wait_event_timeout(wq, condition, timeout);	\
L
Linus Torvalds 已提交
391 392 393
	__ret;								\
})

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
#define __wait_event_freezable_timeout(wq, condition, timeout)		\
	___wait_event(wq, ___wait_cond_timeout(condition),		\
		      TASK_INTERRUPTIBLE, 0, timeout,			\
		      __ret = schedule_timeout(__ret); try_to_freeze())

/*
 * like wait_event_timeout() -- except it uses TASK_INTERRUPTIBLE to avoid
 * increasing load and is freezable.
 */
#define wait_event_freezable_timeout(wq, condition, timeout)		\
({									\
	long __ret = timeout;						\
	might_sleep();							\
	if (!___wait_cond_timeout(condition))				\
		__ret = __wait_event_freezable_timeout(wq, condition, timeout);	\
	__ret;								\
})

412 413 414 415 416 417 418 419 420 421 422 423 424
#define __wait_event_exclusive_cmd(wq, condition, cmd1, cmd2)		\
	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 1, 0,	\
			    cmd1; schedule(); cmd2)
/*
 * Just like wait_event_cmd(), except it sets exclusive flag
 */
#define wait_event_exclusive_cmd(wq, condition, cmd1, cmd2)		\
do {									\
	if (condition)							\
		break;							\
	__wait_event_exclusive_cmd(wq, condition, cmd1, cmd2);		\
} while (0)

S
Shaohua Li 已提交
425 426 427 428 429 430 431 432
#define __wait_event_cmd(wq, condition, cmd1, cmd2)			\
	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
			    cmd1; schedule(); cmd2)

/**
 * wait_event_cmd - sleep until a condition gets true
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
433 434
 * @cmd1: the command will be executed before sleep
 * @cmd2: the command will be executed after sleep
S
Shaohua Li 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
 *
 * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
 * @condition evaluates to true. The @condition is checked each time
 * the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 */
#define wait_event_cmd(wq, condition, cmd1, cmd2)			\
do {									\
	if (condition)							\
		break;							\
	__wait_event_cmd(wq, condition, cmd1, cmd2);			\
} while (0)

450 451
#define __wait_event_interruptible(wq, condition)			\
	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
452
		      schedule())
L
Linus Torvalds 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

/**
 * wait_event_interruptible - sleep until a condition gets true
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 *
 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
 * @condition evaluates to true or a signal is received.
 * The @condition is checked each time the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * The function will return -ERESTARTSYS if it was interrupted by a
 * signal and 0 if @condition evaluated to true.
 */
#define wait_event_interruptible(wq, condition)				\
({									\
	int __ret = 0;							\
472
	might_sleep();							\
L
Linus Torvalds 已提交
473
	if (!(condition))						\
474
		__ret = __wait_event_interruptible(wq, condition);	\
L
Linus Torvalds 已提交
475 476 477
	__ret;								\
})

478 479 480 481
#define __wait_event_interruptible_timeout(wq, condition, timeout)	\
	___wait_event(wq, ___wait_cond_timeout(condition),		\
		      TASK_INTERRUPTIBLE, 0, timeout,			\
		      __ret = schedule_timeout(__ret))
L
Linus Torvalds 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495

/**
 * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 * @timeout: timeout, in jiffies
 *
 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
 * @condition evaluates to true or a signal is received.
 * The @condition is checked each time the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
496
 * Returns:
497 498 499 500 501
 * 0 if the @condition evaluated to %false after the @timeout elapsed,
 * 1 if the @condition evaluated to %true after the @timeout elapsed,
 * the remaining jiffies (at least 1) if the @condition evaluated
 * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was
 * interrupted by a signal.
L
Linus Torvalds 已提交
502 503 504 505
 */
#define wait_event_interruptible_timeout(wq, condition, timeout)	\
({									\
	long __ret = timeout;						\
506
	might_sleep();							\
507
	if (!___wait_cond_timeout(condition))				\
508
		__ret = __wait_event_interruptible_timeout(wq,		\
509
						condition, timeout);	\
L
Linus Torvalds 已提交
510 511 512
	__ret;								\
})

513 514 515 516 517 518 519 520 521 522 523 524 525
#define __wait_event_hrtimeout(wq, condition, timeout, state)		\
({									\
	int __ret = 0;							\
	struct hrtimer_sleeper __t;					\
									\
	hrtimer_init_on_stack(&__t.timer, CLOCK_MONOTONIC,		\
			      HRTIMER_MODE_REL);			\
	hrtimer_init_sleeper(&__t, current);				\
	if ((timeout).tv64 != KTIME_MAX)				\
		hrtimer_start_range_ns(&__t.timer, timeout,		\
				       current->timer_slack_ns,		\
				       HRTIMER_MODE_REL);		\
									\
526
	__ret = ___wait_event(wq, condition, state, 0, 0,		\
527 528 529 530
		if (!__t.task) {					\
			__ret = -ETIME;					\
			break;						\
		}							\
531
		schedule());						\
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
									\
	hrtimer_cancel(&__t.timer);					\
	destroy_hrtimer_on_stack(&__t.timer);				\
	__ret;								\
})

/**
 * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 * @timeout: timeout, as a ktime_t
 *
 * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
 * @condition evaluates to true or a signal is received.
 * The @condition is checked each time the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * The function returns 0 if @condition became true, or -ETIME if the timeout
 * elapsed.
 */
#define wait_event_hrtimeout(wq, condition, timeout)			\
({									\
	int __ret = 0;							\
557
	might_sleep();							\
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	if (!(condition))						\
		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
					       TASK_UNINTERRUPTIBLE);	\
	__ret;								\
})

/**
 * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 * @timeout: timeout, as a ktime_t
 *
 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
 * @condition evaluates to true or a signal is received.
 * The @condition is checked each time the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * The function returns 0 if @condition became true, -ERESTARTSYS if it was
 * interrupted by a signal, or -ETIME if the timeout elapsed.
 */
#define wait_event_interruptible_hrtimeout(wq, condition, timeout)	\
({									\
	long __ret = 0;							\
583
	might_sleep();							\
584 585 586 587 588 589
	if (!(condition))						\
		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
					       TASK_INTERRUPTIBLE);	\
	__ret;								\
})

590 591
#define __wait_event_interruptible_exclusive(wq, condition)		\
	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
592
		      schedule())
L
Linus Torvalds 已提交
593 594 595 596

#define wait_event_interruptible_exclusive(wq, condition)		\
({									\
	int __ret = 0;							\
597
	might_sleep();							\
L
Linus Torvalds 已提交
598
	if (!(condition))						\
599
		__ret = __wait_event_interruptible_exclusive(wq, condition);\
L
Linus Torvalds 已提交
600 601 602
	__ret;								\
})

603

604 605 606 607 608 609 610 611 612 613 614 615 616 617
#define __wait_event_freezable_exclusive(wq, condition)			\
	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
			schedule(); try_to_freeze())

#define wait_event_freezable_exclusive(wq, condition)			\
({									\
	int __ret = 0;							\
	might_sleep();							\
	if (!(condition))						\
		__ret = __wait_event_freezable_exclusive(wq, condition);\
	__ret;								\
})


618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
#define __wait_event_interruptible_locked(wq, condition, exclusive, irq) \
({									\
	int __ret = 0;							\
	DEFINE_WAIT(__wait);						\
	if (exclusive)							\
		__wait.flags |= WQ_FLAG_EXCLUSIVE;			\
	do {								\
		if (likely(list_empty(&__wait.task_list)))		\
			__add_wait_queue_tail(&(wq), &__wait);		\
		set_current_state(TASK_INTERRUPTIBLE);			\
		if (signal_pending(current)) {				\
			__ret = -ERESTARTSYS;				\
			break;						\
		}							\
		if (irq)						\
			spin_unlock_irq(&(wq).lock);			\
		else							\
			spin_unlock(&(wq).lock);			\
		schedule();						\
		if (irq)						\
			spin_lock_irq(&(wq).lock);			\
		else							\
			spin_lock(&(wq).lock);				\
	} while (!(condition));						\
	__remove_wait_queue(&(wq), &__wait);				\
	__set_current_state(TASK_RUNNING);				\
	__ret;								\
})


/**
 * wait_event_interruptible_locked - sleep until a condition gets true
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 *
 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
 * @condition evaluates to true or a signal is received.
 * The @condition is checked each time the waitqueue @wq is woken up.
 *
 * It must be called with wq.lock being held.  This spinlock is
 * unlocked while sleeping but @condition testing is done while lock
 * is held and when this macro exits the lock is held.
 *
 * The lock is locked/unlocked using spin_lock()/spin_unlock()
 * functions which must match the way they are locked/unlocked outside
 * of this macro.
 *
 * wake_up_locked() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * The function will return -ERESTARTSYS if it was interrupted by a
 * signal and 0 if @condition evaluated to true.
 */
#define wait_event_interruptible_locked(wq, condition)			\
	((condition)							\
	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 0))

/**
 * wait_event_interruptible_locked_irq - sleep until a condition gets true
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 *
 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
 * @condition evaluates to true or a signal is received.
 * The @condition is checked each time the waitqueue @wq is woken up.
 *
 * It must be called with wq.lock being held.  This spinlock is
 * unlocked while sleeping but @condition testing is done while lock
 * is held and when this macro exits the lock is held.
 *
 * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
 * functions which must match the way they are locked/unlocked outside
 * of this macro.
 *
 * wake_up_locked() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * The function will return -ERESTARTSYS if it was interrupted by a
 * signal and 0 if @condition evaluated to true.
 */
#define wait_event_interruptible_locked_irq(wq, condition)		\
	((condition)							\
	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 1))

/**
 * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 *
 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
 * @condition evaluates to true or a signal is received.
 * The @condition is checked each time the waitqueue @wq is woken up.
 *
 * It must be called with wq.lock being held.  This spinlock is
 * unlocked while sleeping but @condition testing is done while lock
 * is held and when this macro exits the lock is held.
 *
 * The lock is locked/unlocked using spin_lock()/spin_unlock()
 * functions which must match the way they are locked/unlocked outside
 * of this macro.
 *
 * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
 * set thus when other process waits process on the list if this
 * process is awaken further processes are not considered.
 *
 * wake_up_locked() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * The function will return -ERESTARTSYS if it was interrupted by a
 * signal and 0 if @condition evaluated to true.
 */
#define wait_event_interruptible_exclusive_locked(wq, condition)	\
	((condition)							\
	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 0))

/**
 * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 *
 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
 * @condition evaluates to true or a signal is received.
 * The @condition is checked each time the waitqueue @wq is woken up.
 *
 * It must be called with wq.lock being held.  This spinlock is
 * unlocked while sleeping but @condition testing is done while lock
 * is held and when this macro exits the lock is held.
 *
 * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
 * functions which must match the way they are locked/unlocked outside
 * of this macro.
 *
 * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
 * set thus when other process waits process on the list if this
 * process is awaken further processes are not considered.
 *
 * wake_up_locked() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * The function will return -ERESTARTSYS if it was interrupted by a
 * signal and 0 if @condition evaluated to true.
 */
#define wait_event_interruptible_exclusive_locked_irq(wq, condition)	\
	((condition)							\
	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 1))


765 766
#define __wait_event_killable(wq, condition)				\
	___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule())
M
Matthew Wilcox 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785

/**
 * wait_event_killable - sleep until a condition gets true
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 *
 * The process is put to sleep (TASK_KILLABLE) until the
 * @condition evaluates to true or a signal is received.
 * The @condition is checked each time the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * The function will return -ERESTARTSYS if it was interrupted by a
 * signal and 0 if @condition evaluated to true.
 */
#define wait_event_killable(wq, condition)				\
({									\
	int __ret = 0;							\
786
	might_sleep();							\
M
Matthew Wilcox 已提交
787
	if (!(condition))						\
788
		__ret = __wait_event_killable(wq, condition);		\
M
Matthew Wilcox 已提交
789 790 791
	__ret;								\
})

792 793

#define __wait_event_lock_irq(wq, condition, lock, cmd)			\
794 795 796 797 798
	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
			    spin_unlock_irq(&lock);			\
			    cmd;					\
			    schedule();					\
			    spin_lock_irq(&lock))
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

/**
 * wait_event_lock_irq_cmd - sleep until a condition gets true. The
 *			     condition is checked under the lock. This
 *			     is expected to be called with the lock
 *			     taken.
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 * @lock: a locked spinlock_t, which will be released before cmd
 *	  and schedule() and reacquired afterwards.
 * @cmd: a command which is invoked outside the critical section before
 *	 sleep
 *
 * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
 * @condition evaluates to true. The @condition is checked each time
 * the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * This is supposed to be called while holding the lock. The lock is
 * dropped before invoking the cmd and going to sleep and is reacquired
 * afterwards.
 */
#define wait_event_lock_irq_cmd(wq, condition, lock, cmd)		\
do {									\
	if (condition)							\
		break;							\
	__wait_event_lock_irq(wq, condition, lock, cmd);		\
} while (0)

/**
 * wait_event_lock_irq - sleep until a condition gets true. The
 *			 condition is checked under the lock. This
 *			 is expected to be called with the lock
 *			 taken.
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 * @lock: a locked spinlock_t, which will be released before schedule()
 *	  and reacquired afterwards.
 *
 * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
 * @condition evaluates to true. The @condition is checked each time
 * the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * This is supposed to be called while holding the lock. The lock is
 * dropped before going to sleep and is reacquired afterwards.
 */
#define wait_event_lock_irq(wq, condition, lock)			\
do {									\
	if (condition)							\
		break;							\
	__wait_event_lock_irq(wq, condition, lock, );			\
} while (0)


858
#define __wait_event_interruptible_lock_irq(wq, condition, lock, cmd)	\
859
	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
860 861 862
		      spin_unlock_irq(&lock);				\
		      cmd;						\
		      schedule();					\
863
		      spin_lock_irq(&lock))
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

/**
 * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
 *		The condition is checked under the lock. This is expected to
 *		be called with the lock taken.
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 * @lock: a locked spinlock_t, which will be released before cmd and
 *	  schedule() and reacquired afterwards.
 * @cmd: a command which is invoked outside the critical section before
 *	 sleep
 *
 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
 * @condition evaluates to true or a signal is received. The @condition is
 * checked each time the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * This is supposed to be called while holding the lock. The lock is
 * dropped before invoking the cmd and going to sleep and is reacquired
 * afterwards.
 *
 * The macro will return -ERESTARTSYS if it was interrupted by a signal
 * and 0 if @condition evaluated to true.
 */
#define wait_event_interruptible_lock_irq_cmd(wq, condition, lock, cmd)	\
({									\
	int __ret = 0;							\
	if (!(condition))						\
894
		__ret = __wait_event_interruptible_lock_irq(wq,		\
895
						condition, lock, cmd);	\
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	__ret;								\
})

/**
 * wait_event_interruptible_lock_irq - sleep until a condition gets true.
 *		The condition is checked under the lock. This is expected
 *		to be called with the lock taken.
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 * @lock: a locked spinlock_t, which will be released before schedule()
 *	  and reacquired afterwards.
 *
 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
 * @condition evaluates to true or signal is received. The @condition is
 * checked each time the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * This is supposed to be called while holding the lock. The lock is
 * dropped before going to sleep and is reacquired afterwards.
 *
 * The macro will return -ERESTARTSYS if it was interrupted by a signal
 * and 0 if @condition evaluated to true.
 */
#define wait_event_interruptible_lock_irq(wq, condition, lock)		\
({									\
	int __ret = 0;							\
	if (!(condition))						\
925
		__ret = __wait_event_interruptible_lock_irq(wq,		\
T
Thierry Reding 已提交
926
						condition, lock,);	\
927 928 929
	__ret;								\
})

930 931
#define __wait_event_interruptible_lock_irq_timeout(wq, condition,	\
						    lock, timeout)	\
932
	___wait_event(wq, ___wait_cond_timeout(condition),		\
933
		      TASK_INTERRUPTIBLE, 0, timeout,			\
934 935
		      spin_unlock_irq(&lock);				\
		      __ret = schedule_timeout(__ret);			\
936
		      spin_lock_irq(&lock));
937 938

/**
939 940 941
 * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets
 *		true or a timeout elapses. The condition is checked under
 *		the lock. This is expected to be called with the lock taken.
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
 * @wq: the waitqueue to wait on
 * @condition: a C expression for the event to wait for
 * @lock: a locked spinlock_t, which will be released before schedule()
 *	  and reacquired afterwards.
 * @timeout: timeout, in jiffies
 *
 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
 * @condition evaluates to true or signal is received. The @condition is
 * checked each time the waitqueue @wq is woken up.
 *
 * wake_up() has to be called after changing any variable that could
 * change the result of the wait condition.
 *
 * This is supposed to be called while holding the lock. The lock is
 * dropped before going to sleep and is reacquired afterwards.
 *
 * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
 * was interrupted by a signal, and the remaining jiffies otherwise
 * if the condition evaluated to true before the timeout elapsed.
 */
#define wait_event_interruptible_lock_irq_timeout(wq, condition, lock,	\
						  timeout)		\
({									\
965
	long __ret = timeout;						\
966
	if (!___wait_cond_timeout(condition))				\
967 968
		__ret = __wait_event_interruptible_lock_irq_timeout(	\
					wq, condition, lock, timeout);	\
969 970 971
	__ret;								\
})

L
Linus Torvalds 已提交
972 973 974
/*
 * Waitqueues which are removed from the waitqueue_head at wakeup time
 */
975 976
void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
977
long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state);
978
void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
979
void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, unsigned int mode, void *key);
980 981
long wait_woken(wait_queue_t *wait, unsigned mode, long timeout);
int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
L
Linus Torvalds 已提交
982 983 984
int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key);

985
#define DEFINE_WAIT_FUNC(name, function)				\
L
Linus Torvalds 已提交
986
	wait_queue_t name = {						\
987
		.private	= current,				\
988
		.func		= function,				\
989
		.task_list	= LIST_HEAD_INIT((name).task_list),	\
L
Linus Torvalds 已提交
990 991
	}

992 993
#define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)

L
Linus Torvalds 已提交
994 995 996 997
#define DEFINE_WAIT_BIT(name, word, bit)				\
	struct wait_bit_queue name = {					\
		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),		\
		.wait	= {						\
998
			.private	= current,			\
L
Linus Torvalds 已提交
999 1000 1001 1002 1003 1004 1005 1006
			.func		= wake_bit_function,		\
			.task_list	=				\
				LIST_HEAD_INIT((name).wait.task_list),	\
		},							\
	}

#define init_wait(wait)							\
	do {								\
1007
		(wait)->private = current;				\
L
Linus Torvalds 已提交
1008 1009
		(wait)->func = autoremove_wake_function;		\
		INIT_LIST_HEAD(&(wait)->task_list);			\
1010
		(wait)->flags = 0;					\
L
Linus Torvalds 已提交
1011 1012
	} while (0)

1013

1014 1015 1016 1017
extern int bit_wait(struct wait_bit_key *, int);
extern int bit_wait_io(struct wait_bit_key *, int);
extern int bit_wait_timeout(struct wait_bit_key *, int);
extern int bit_wait_io_timeout(struct wait_bit_key *, int);
1018

L
Linus Torvalds 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * wait_on_bit - wait for a bit to be cleared
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @mode: the task state to sleep in
 *
 * There is a standard hashed waitqueue table for generic use. This
 * is the part of the hashtable's accessor API that waits on a bit.
 * For instance, if one were to have waiters on a bitflag, one would
 * call wait_on_bit() in threads waiting for the bit to clear.
 * One uses wait_on_bit() where one is waiting for the bit to clear,
 * but has no intention of setting it.
1031 1032 1033 1034 1035
 * Returned value will be zero if the bit was cleared, or non-zero
 * if the process received a signal and the mode permitted wakeup
 * on that signal.
 */
static inline int
1036
wait_on_bit(unsigned long *word, int bit, unsigned mode)
1037
{
1038
	might_sleep();
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	if (!test_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit(word, bit,
				       bit_wait,
				       mode);
}

/**
 * wait_on_bit_io - wait for a bit to be cleared
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @mode: the task state to sleep in
 *
 * Use the standard hashed waitqueue table to wait for a bit
 * to be cleared.  This is similar to wait_on_bit(), but calls
 * io_schedule() instead of schedule() for the actual waiting.
 *
 * Returned value will be zero if the bit was cleared, or non-zero
 * if the process received a signal and the mode permitted wakeup
 * on that signal.
 */
static inline int
1061
wait_on_bit_io(unsigned long *word, int bit, unsigned mode)
1062
{
1063
	might_sleep();
1064 1065 1066 1067 1068 1069 1070
	if (!test_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit(word, bit,
				       bit_wait_io,
				       mode);
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/**
 * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @mode: the task state to sleep in
 * @timeout: timeout, in jiffies
 *
 * Use the standard hashed waitqueue table to wait for a bit
 * to be cleared. This is similar to wait_on_bit(), except also takes a
 * timeout parameter.
 *
 * Returned value will be zero if the bit was cleared before the
 * @timeout elapsed, or non-zero if the @timeout elapsed or process
 * received a signal and the mode permitted wakeup on that signal.
 */
static inline int
1087 1088
wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode,
		    unsigned long timeout)
1089 1090 1091 1092 1093 1094 1095 1096 1097
{
	might_sleep();
	if (!test_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit_timeout(word, bit,
					       bit_wait_timeout,
					       mode, timeout);
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
/**
 * wait_on_bit_action - wait for a bit to be cleared
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @action: the function used to sleep, which may take special actions
 * @mode: the task state to sleep in
 *
 * Use the standard hashed waitqueue table to wait for a bit
 * to be cleared, and allow the waiting action to be specified.
 * This is like wait_on_bit() but allows fine control of how the waiting
 * is done.
 *
 * Returned value will be zero if the bit was cleared, or non-zero
 * if the process received a signal and the mode permitted wakeup
 * on that signal.
L
Linus Torvalds 已提交
1113
 */
1114
static inline int
1115 1116
wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action,
		   unsigned mode)
L
Linus Torvalds 已提交
1117
{
1118
	might_sleep();
L
Linus Torvalds 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	if (!test_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit(word, bit, action, mode);
}

/**
 * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @mode: the task state to sleep in
 *
 * There is a standard hashed waitqueue table for generic use. This
 * is the part of the hashtable's accessor API that waits on a bit
 * when one intends to set it, for instance, trying to lock bitflags.
 * For instance, if one were to have waiters trying to set bitflag
 * and waiting for it to clear before setting it, one would call
 * wait_on_bit() in threads waiting to be able to set the bit.
 * One uses wait_on_bit_lock() where one is waiting for the bit to
 * clear with the intention of setting it, and when done, clearing it.
1138 1139 1140 1141 1142 1143
 *
 * Returns zero if the bit was (eventually) found to be clear and was
 * set.  Returns non-zero if a signal was delivered to the process and
 * the @mode allows that signal to wake the process.
 */
static inline int
1144
wait_on_bit_lock(unsigned long *word, int bit, unsigned mode)
1145
{
1146
	might_sleep();
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	if (!test_and_set_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
}

/**
 * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @mode: the task state to sleep in
 *
 * Use the standard hashed waitqueue table to wait for a bit
 * to be cleared and then to atomically set it.  This is similar
 * to wait_on_bit(), but calls io_schedule() instead of schedule()
 * for the actual waiting.
 *
 * Returns zero if the bit was (eventually) found to be clear and was
 * set.  Returns non-zero if a signal was delivered to the process and
 * the @mode allows that signal to wake the process.
 */
static inline int
1168
wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode)
1169
{
1170
	might_sleep();
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	if (!test_and_set_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
}

/**
 * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @action: the function used to sleep, which may take special actions
 * @mode: the task state to sleep in
 *
 * Use the standard hashed waitqueue table to wait for a bit
 * to be cleared and then to set it, and allow the waiting action
 * to be specified.
 * This is like wait_on_bit() but allows fine control of how the waiting
 * is done.
 *
 * Returns zero if the bit was (eventually) found to be clear and was
 * set.  Returns non-zero if a signal was delivered to the process and
 * the @mode allows that signal to wake the process.
L
Linus Torvalds 已提交
1192
 */
1193
static inline int
1194 1195
wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action,
			unsigned mode)
L
Linus Torvalds 已提交
1196
{
1197
	might_sleep();
L
Linus Torvalds 已提交
1198 1199 1200 1201
	if (!test_and_set_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
}
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

/**
 * wait_on_atomic_t - Wait for an atomic_t to become 0
 * @val: The atomic value being waited on, a kernel virtual address
 * @action: the function used to sleep, which may take special actions
 * @mode: the task state to sleep in
 *
 * Wait for an atomic_t to become 0.  We abuse the bit-wait waitqueue table for
 * the purpose of getting a waitqueue, but we set the key to a bit number
 * outside of the target 'word'.
 */
static inline
int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
{
1216
	might_sleep();
1217 1218 1219 1220
	if (atomic_read(val) == 0)
		return 0;
	return out_of_line_wait_on_atomic_t(val, action, mode);
}
1221 1222

#endif /* _LINUX_WAIT_H */