writing-clients 26.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
This is a small guide for those who want to write kernel drivers for I2C
or SMBus devices.

To set up a driver, you need to do several things. Some are optional, and
some things can be done slightly or completely different. Use this as a
guide, not as a rule book!


General remarks
===============

Try to keep the kernel namespace as clean as possible. The best way to
do this is to use a unique prefix for all global symbols. This is 
especially important for exported symbols, but it is a good idea to do
it for non-exported symbols too. We will use the prefix `foo_' in this
tutorial, and `FOO_' for preprocessor variables.


The driver structure
====================

Usually, you will implement a single driver structure, and instantiate
all clients from it. Remember, a driver structure contains general access 
24 25 26
routines, and should be zero-initialized except for fields with data you
provide.  A client structure holds device-specific information like the
driver model device node, and its I2C address.
L
Linus Torvalds 已提交
27 28

static struct i2c_driver foo_driver = {
29 30 31
	.driver = {
		.name	= "foo",
	},
32 33 34 35 36 37
	.attach_adapter	= foo_attach_adapter,
	.detach_client	= foo_detach_client,
	.shutdown	= foo_shutdown,	/* optional */
	.suspend	= foo_suspend,	/* optional */
	.resume		= foo_resume,	/* optional */
	.command	= foo_command,	/* optional */
L
Linus Torvalds 已提交
38 39
}
 
40 41 42 43
The name field is the driver name, and must not contain spaces.  It
should match the module name (if the driver can be compiled as a module),
although you can use MODULE_ALIAS (passing "foo" in this example) to add
another name for the module.
L
Linus Torvalds 已提交
44 45 46 47 48 49 50 51

All other fields are for call-back functions which will be explained 
below.


Extra client data
=================

52 53 54
Each client structure has a special `data' field that can point to any
structure at all.  You should use this to keep device-specific data,
especially in drivers that handle multiple I2C or SMBUS devices.  You
L
Linus Torvalds 已提交
55 56 57
do not always need this, but especially for `sensors' drivers, it can
be very useful.

58 59 60 61 62 63
	/* store the value */
	void i2c_set_clientdata(struct i2c_client *client, void *data);

	/* retrieve the value */
	void *i2c_get_clientdata(struct i2c_client *client);

L
Linus Torvalds 已提交
64 65 66
An example structure is below.

  struct foo_data {
J
Jean Delvare 已提交
67
    struct i2c_client client;
L
Linus Torvalds 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    struct semaphore lock; /* For ISA access in `sensors' drivers. */
    int sysctl_id;         /* To keep the /proc directory entry for 
                              `sensors' drivers. */
    enum chips type;       /* To keep the chips type for `sensors' drivers. */
   
    /* Because the i2c bus is slow, it is often useful to cache the read
       information of a chip for some time (for example, 1 or 2 seconds).
       It depends of course on the device whether this is really worthwhile
       or even sensible. */
    struct semaphore update_lock; /* When we are reading lots of information,
                                     another process should not update the
                                     below information */
    char valid;                   /* != 0 if the following fields are valid. */
    unsigned long last_updated;   /* In jiffies */
    /* Add the read information here too */
  };


Accessing the client
====================

Let's say we have a valid client structure. At some time, we will need
to gather information from the client, or write new information to the
client. How we will export this information to user-space is less 
important at this moment (perhaps we do not need to do this at all for
some obscure clients). But we need generic reading and writing routines.

I have found it useful to define foo_read and foo_write function for this.
For some cases, it will be easier to call the i2c functions directly,
but many chips have some kind of register-value idea that can easily
be encapsulated. Also, some chips have both ISA and I2C interfaces, and
it useful to abstract from this (only for `sensors' drivers).

The below functions are simple examples, and should not be copied
literally.

  int foo_read_value(struct i2c_client *client, u8 reg)
  {
    if (reg < 0x10) /* byte-sized register */
      return i2c_smbus_read_byte_data(client,reg);
    else /* word-sized register */
      return i2c_smbus_read_word_data(client,reg);
  }

  int foo_write_value(struct i2c_client *client, u8 reg, u16 value)
  {
    if (reg == 0x10) /* Impossible to write - driver error! */ {
      return -1;
    else if (reg < 0x10) /* byte-sized register */
      return i2c_smbus_write_byte_data(client,reg,value);
    else /* word-sized register */
      return i2c_smbus_write_word_data(client,reg,value);
  }

For sensors code, you may have to cope with ISA registers too. Something
like the below often works. Note the locking! 

  int foo_read_value(struct i2c_client *client, u8 reg)
  {
    int res;
    if (i2c_is_isa_client(client)) {
      down(&(((struct foo_data *) (client->data)) -> lock));
      outb_p(reg,client->addr + FOO_ADDR_REG_OFFSET);
      res = inb_p(client->addr + FOO_DATA_REG_OFFSET);
      up(&(((struct foo_data *) (client->data)) -> lock));
      return res;
    } else
      return i2c_smbus_read_byte_data(client,reg);
  }

Writing is done the same way.


Probing and attaching
=====================

Most i2c devices can be present on several i2c addresses; for some this
is determined in hardware (by soldering some chip pins to Vcc or Ground),
for others this can be changed in software (by writing to specific client
registers). Some devices are usually on a specific address, but not always;
and some are even more tricky. So you will probably need to scan several
i2c addresses for your clients, and do some sort of detection to see
whether it is actually a device supported by your driver.

To give the user a maximum of possibilities, some default module parameters
are defined to help determine what addresses are scanned. Several macros
are defined in i2c.h to help you support them, as well as a generic
detection algorithm.

You do not have to use this parameter interface; but don't try to use
158
function i2c_probe() if you don't.
L
Linus Torvalds 已提交
159 160 161 162 163 164

NOTE: If you want to write a `sensors' driver, the interface is slightly
      different! See below.



165 166
Probing classes
---------------
L
Linus Torvalds 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180

All parameters are given as lists of unsigned 16-bit integers. Lists are
terminated by I2C_CLIENT_END.
The following lists are used internally:

  normal_i2c: filled in by the module writer. 
     A list of I2C addresses which should normally be examined.
   probe: insmod parameter. 
     A list of pairs. The first value is a bus number (-1 for any I2C bus), 
     the second is the address. These addresses are also probed, as if they 
     were in the 'normal' list.
   ignore: insmod parameter.
     A list of pairs. The first value is a bus number (-1 for any I2C bus), 
     the second is the I2C address. These addresses are never probed. 
181
     This parameter overrules the 'normal_i2c' list only.
L
Linus Torvalds 已提交
182 183 184 185 186
   force: insmod parameter. 
     A list of pairs. The first value is a bus number (-1 for any I2C bus),
     the second is the I2C address. A device is blindly assumed to be on
     the given address, no probing is done. 

187 188 189 190 191 192
Additionally, kind-specific force lists may optionally be defined if
the driver supports several chip kinds. They are grouped in a
NULL-terminated list of pointers named forces, those first element if the
generic force list mentioned above. Each additional list correspond to an
insmod parameter of the form force_<kind>.

193 194
Fortunately, as a module writer, you just have to define the `normal_i2c' 
parameter. The complete declaration could look like this:
L
Linus Torvalds 已提交
195

196 197 198
  /* Scan 0x37, and 0x48 to 0x4f */
  static unsigned short normal_i2c[] = { 0x37, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
                                         0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
L
Linus Torvalds 已提交
199 200 201

  /* Magic definition of all other variables and things */
  I2C_CLIENT_INSMOD;
202 203 204 205 206 207
  /* Or, if your driver supports, say, 2 kind of devices: */
  I2C_CLIENT_INSMOD_2(foo, bar);

If you use the multi-kind form, an enum will be defined for you:
  enum chips { any_chip, foo, bar, ... }
You can then (and certainly should) use it in the driver code.
L
Linus Torvalds 已提交
208

209 210
Note that you *have* to call the defined variable `normal_i2c',
without any prefix!
L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233


Attaching to an adapter
-----------------------

Whenever a new adapter is inserted, or for all adapters if the driver is
being registered, the callback attach_adapter() is called. Now is the
time to determine what devices are present on the adapter, and to register
a client for each of them.

The attach_adapter callback is really easy: we just call the generic
detection function. This function will scan the bus for us, using the
information as defined in the lists explained above. If a device is
detected at a specific address, another callback is called.

  int foo_attach_adapter(struct i2c_adapter *adapter)
  {
    return i2c_probe(adapter,&addr_data,&foo_detect_client);
  }

Remember, structure `addr_data' is defined by the macros explained above,
so you do not have to define it yourself.

234
The i2c_probe function will call the foo_detect_client
L
Linus Torvalds 已提交
235 236 237 238 239 240 241 242
function only for those i2c addresses that actually have a device on
them (unless a `force' parameter was used). In addition, addresses that
are already in use (by some other registered client) are skipped.


The detect client function
--------------------------

243 244 245
The detect client function is called by i2c_probe. The `kind' parameter
contains -1 for a probed detection, 0 for a forced detection, or a positive
number for a forced detection with a chip type forced.
L
Linus Torvalds 已提交
246 247 248 249 250

Below, some things are only needed if this is a `sensors' driver. Those
parts are between /* SENSORS ONLY START */ and /* SENSORS ONLY END */
markers. 

J
Jean Delvare 已提交
251 252 253 254
Returning an error different from -ENODEV in a detect function will cause
the detection to stop: other addresses and adapters won't be scanned.
This should only be done on fatal or internal errors, such as a memory
shortage or i2c_attach_client failing.
L
Linus Torvalds 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

For now, you can ignore the `flags' parameter. It is there for future use.

  int foo_detect_client(struct i2c_adapter *adapter, int address, 
                        unsigned short flags, int kind)
  {
    int err = 0;
    int i;
    struct i2c_client *new_client;
    struct foo_data *data;
    const char *client_name = ""; /* For non-`sensors' drivers, put the real
                                     name here! */
   
    /* Let's see whether this adapter can support what we need.
       Please substitute the things you need here! 
       For `sensors' drivers, add `! is_isa &&' to the if statement */
    if (!i2c_check_functionality(adapter,I2C_FUNC_SMBUS_WORD_DATA |
                                        I2C_FUNC_SMBUS_WRITE_BYTE))
       goto ERROR0;

    /* SENSORS ONLY START */
    const char *type_name = "";
    int is_isa = i2c_is_isa_adapter(adapter);

279 280
    /* Do this only if the chip can additionally be found on the ISA bus
       (hybrid chip). */
L
Linus Torvalds 已提交
281

282
    if (is_isa) {
L
Linus Torvalds 已提交
283 284

      /* Discard immediately if this ISA range is already used */
285
      /* FIXME: never use check_region(), only request_region() */
L
Linus Torvalds 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
      if (check_region(address,FOO_EXTENT))
        goto ERROR0;

      /* Probe whether there is anything on this address.
         Some example code is below, but you will have to adapt this
         for your own driver */

      if (kind < 0) /* Only if no force parameter was used */ {
        /* We may need long timeouts at least for some chips. */
        #define REALLY_SLOW_IO
        i = inb_p(address + 1);
        if (inb_p(address + 2) != i)
          goto ERROR0;
        if (inb_p(address + 3) != i)
          goto ERROR0;
        if (inb_p(address + 7) != i)
          goto ERROR0;
        #undef REALLY_SLOW_IO

        /* Let's just hope nothing breaks here */
        i = inb_p(address + 5) & 0x7f;
        outb_p(~i & 0x7f,address+5);
        if ((inb_p(address + 5) & 0x7f) != (~i & 0x7f)) {
          outb_p(i,address+5);
          return 0;
        }
      }
    }

    /* SENSORS ONLY END */

    /* OK. For now, we presume we have a valid client. We now create the
       client structure, even though we cannot fill it completely yet.
       But it allows us to access several i2c functions safely */
    
J
Jean Delvare 已提交
321
    if (!(data = kzalloc(sizeof(struct foo_data), GFP_KERNEL))) {
L
Linus Torvalds 已提交
322 323 324 325
      err = -ENOMEM;
      goto ERROR0;
    }

J
Jean Delvare 已提交
326 327
    new_client = &data->client;
    i2c_set_clientdata(new_client, data);
L
Linus Torvalds 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

    new_client->addr = address;
    new_client->adapter = adapter;
    new_client->driver = &foo_driver;
    new_client->flags = 0;

    /* Now, we do the remaining detection. If no `force' parameter is used. */

    /* First, the generic detection (if any), that is skipped if any force
       parameter was used. */
    if (kind < 0) {
      /* The below is of course bogus */
      if (foo_read(new_client,FOO_REG_GENERIC) != FOO_GENERIC_VALUE)
         goto ERROR1;
    }

    /* SENSORS ONLY START */

    /* Next, specific detection. This is especially important for `sensors'
       devices. */

    /* Determine the chip type. Not needed if a `force_CHIPTYPE' parameter
       was used. */
    if (kind <= 0) {
      i = foo_read(new_client,FOO_REG_CHIPTYPE);
      if (i == FOO_TYPE_1) 
        kind = chip1; /* As defined in the enum */
      else if (i == FOO_TYPE_2)
        kind = chip2;
      else {
        printk("foo: Ignoring 'force' parameter for unknown chip at "
               "adapter %d, address 0x%02x\n",i2c_adapter_id(adapter),address);
        goto ERROR1;
      }
    }

    /* Now set the type and chip names */
    if (kind == chip1) {
      type_name = "chip1"; /* For /proc entry */
      client_name = "CHIP 1";
    } else if (kind == chip2) {
      type_name = "chip2"; /* For /proc entry */
      client_name = "CHIP 2";
    }
   
    /* Reserve the ISA region */
    if (is_isa)
      request_region(address,FOO_EXTENT,type_name);

    /* SENSORS ONLY END */

    /* Fill in the remaining client fields. */
    strcpy(new_client->name,client_name);

    /* SENSORS ONLY BEGIN */
    data->type = kind;
    /* SENSORS ONLY END */

    data->valid = 0; /* Only if you use this field */
    init_MUTEX(&data->update_lock); /* Only if you use this field */

    /* Any other initializations in data must be done here too. */

    /* Tell the i2c layer a new client has arrived */
    if ((err = i2c_attach_client(new_client)))
      goto ERROR3;

    /* SENSORS ONLY BEGIN */
    /* Register a new directory entry with module sensors. See below for
       the `template' structure. */
    if ((i = i2c_register_entry(new_client, type_name,
                                    foo_dir_table_template,THIS_MODULE)) < 0) {
      err = i;
      goto ERROR4;
    }
    data->sysctl_id = i;

    /* SENSORS ONLY END */

    /* This function can write default values to the client registers, if
       needed. */
    foo_init_client(new_client);
    return 0;

    /* OK, this is not exactly good programming practice, usually. But it is
       very code-efficient in this case. */

    ERROR4:
      i2c_detach_client(new_client);
    ERROR3:
    ERROR2:
    /* SENSORS ONLY START */
      if (is_isa)
        release_region(address,FOO_EXTENT);
    /* SENSORS ONLY END */
    ERROR1:
424
      kfree(data);
L
Linus Torvalds 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    ERROR0:
      return err;
  }


Removing the client
===================

The detach_client call back function is called when a client should be
removed. It may actually fail, but only when panicking. This code is
much simpler than the attachment code, fortunately!

  int foo_detach_client(struct i2c_client *client)
  {
    int err,i;

    /* SENSORS ONLY START */
    /* Deregister with the `i2c-proc' module. */
    i2c_deregister_entry(((struct lm78_data *)(client->data))->sysctl_id);
    /* SENSORS ONLY END */

    /* Try to detach the client from i2c space */
447
    if ((err = i2c_detach_client(client)))
L
Linus Torvalds 已提交
448 449
      return err;

450
    /* HYBRID SENSORS CHIP ONLY START */
L
Linus Torvalds 已提交
451 452
    if i2c_is_isa_client(client)
      release_region(client->addr,LM78_EXTENT);
453
    /* HYBRID SENSORS CHIP ONLY END */
L
Linus Torvalds 已提交
454

455
    kfree(i2c_get_clientdata(client));
L
Linus Torvalds 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    return 0;
  }


Initializing the module or kernel
=================================

When the kernel is booted, or when your foo driver module is inserted, 
you have to do some initializing. Fortunately, just attaching (registering)
the driver module is usually enough.

  /* Keep track of how far we got in the initialization process. If several
     things have to initialized, and we fail halfway, only those things
     have to be cleaned up! */
  static int __initdata foo_initialized = 0;

  static int __init foo_init(void)
  {
    int res;
    printk("foo version %s (%s)\n",FOO_VERSION,FOO_DATE);
    
    if ((res = i2c_add_driver(&foo_driver))) {
      printk("foo: Driver registration failed, module not inserted.\n");
      foo_cleanup();
      return res;
    }
    foo_initialized ++;
    return 0;
  }

  void foo_cleanup(void)
  {
    if (foo_initialized == 1) {
      if ((res = i2c_del_driver(&foo_driver))) {
        printk("foo: Driver registration failed, module not removed.\n");
        return;
      }
      foo_initialized --;
    }
  }

  /* Substitute your own name and email address */
  MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>"
  MODULE_DESCRIPTION("Driver for Barf Inc. Foo I2C devices");

  module_init(foo_init);
  module_exit(foo_cleanup);

Note that some functions are marked by `__init', and some data structures
by `__init_data'.  Hose functions and structures can be removed after
kernel booting (or module loading) is completed.

508

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
Power Management
================

If your I2C device needs special handling when entering a system low
power state -- like putting a transceiver into a low power mode, or
activating a system wakeup mechanism -- do that in the suspend() method.
The resume() method should reverse what the suspend() method does.

These are standard driver model calls, and they work just like they
would for any other driver stack.  The calls can sleep, and can use
I2C messaging to the device being suspended or resumed (since their
parent I2C adapter is active when these calls are issued, and IRQs
are still enabled).


System Shutdown
===============

If your I2C device needs special handling when the system shuts down
or reboots (including kexec) -- like turning something off -- use a
shutdown() method.

Again, this is a standard driver model call, working just like it
would for any other driver stack:  the calls can sleep, and can use
I2C messaging.


L
Linus Torvalds 已提交
536 537 538 539
Command function
================

A generic ioctl-like function call back is supported. You will seldom
540 541
need this, and its use is deprecated anyway, so newer design should not
use it. Set it to NULL.
L
Linus Torvalds 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602


Sending and receiving
=====================

If you want to communicate with your device, there are several functions
to do this. You can find all of them in i2c.h.

If you can choose between plain i2c communication and SMBus level
communication, please use the last. All adapters understand SMBus level
commands, but only some of them understand plain i2c!


Plain i2c communication
-----------------------

  extern int i2c_master_send(struct i2c_client *,const char* ,int);
  extern int i2c_master_recv(struct i2c_client *,char* ,int);

These routines read and write some bytes from/to a client. The client
contains the i2c address, so you do not have to include it. The second
parameter contains the bytes the read/write, the third the length of the
buffer. Returned is the actual number of bytes read/written.
  
  extern int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msg,
                          int num);

This sends a series of messages. Each message can be a read or write,
and they can be mixed in any way. The transactions are combined: no
stop bit is sent between transaction. The i2c_msg structure contains
for each message the client address, the number of bytes of the message
and the message data itself.

You can read the file `i2c-protocol' for more information about the
actual i2c protocol.


SMBus communication
-------------------

  extern s32 i2c_smbus_xfer (struct i2c_adapter * adapter, u16 addr, 
                             unsigned short flags,
                             char read_write, u8 command, int size,
                             union i2c_smbus_data * data);

  This is the generic SMBus function. All functions below are implemented
  in terms of it. Never use this function directly!


  extern s32 i2c_smbus_write_quick(struct i2c_client * client, u8 value);
  extern s32 i2c_smbus_read_byte(struct i2c_client * client);
  extern s32 i2c_smbus_write_byte(struct i2c_client * client, u8 value);
  extern s32 i2c_smbus_read_byte_data(struct i2c_client * client, u8 command);
  extern s32 i2c_smbus_write_byte_data(struct i2c_client * client,
                                       u8 command, u8 value);
  extern s32 i2c_smbus_read_word_data(struct i2c_client * client, u8 command);
  extern s32 i2c_smbus_write_word_data(struct i2c_client * client,
                                       u8 command, u16 value);
  extern s32 i2c_smbus_write_block_data(struct i2c_client * client,
                                        u8 command, u8 length,
                                        u8 *values);
J
Jean Delvare 已提交
603 604
  extern s32 i2c_smbus_read_i2c_block_data(struct i2c_client * client,
                                           u8 command, u8 *values);
L
Linus Torvalds 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

These ones were removed in Linux 2.6.10 because they had no users, but could
be added back later if needed:

  extern s32 i2c_smbus_read_block_data(struct i2c_client * client,
                                       u8 command, u8 *values);
  extern s32 i2c_smbus_write_i2c_block_data(struct i2c_client * client,
                                            u8 command, u8 length,
                                            u8 *values);
  extern s32 i2c_smbus_process_call(struct i2c_client * client,
                                    u8 command, u16 value);
  extern s32 i2c_smbus_block_process_call(struct i2c_client *client,
                                          u8 command, u8 length,
                                          u8 *values)

All these transactions return -1 on failure. The 'write' transactions 
return 0 on success; the 'read' transactions return the read value, except 
for read_block, which returns the number of values read. The block buffers 
need not be longer than 32 bytes.

You can read the file `smbus-protocol' for more information about the
actual SMBus protocol.


General purpose routines
========================

Below all general purpose routines are listed, that were not mentioned
before.

  /* This call returns a unique low identifier for each registered adapter,
   * or -1 if the adapter was not registered.
   */
  extern int i2c_adapter_id(struct i2c_adapter *adap);


The sensors sysctl/proc interface
=================================

This section only applies if you write `sensors' drivers.

Each sensors driver creates a directory in /proc/sys/dev/sensors for each
registered client. The directory is called something like foo-i2c-4-65.
The sensors module helps you to do this as easily as possible.

The template
------------

You will need to define a ctl_table template. This template will automatically
be copied to a newly allocated structure and filled in where necessary when
you call sensors_register_entry.

First, I will give an example definition.
  static ctl_table foo_dir_table_template[] = {
    { FOO_SYSCTL_FUNC1, "func1", NULL, 0, 0644, NULL, &i2c_proc_real,
      &i2c_sysctl_real,NULL,&foo_func },
    { FOO_SYSCTL_FUNC2, "func2", NULL, 0, 0644, NULL, &i2c_proc_real,
      &i2c_sysctl_real,NULL,&foo_func },
    { FOO_SYSCTL_DATA, "data", NULL, 0, 0644, NULL, &i2c_proc_real,
      &i2c_sysctl_real,NULL,&foo_data },
    { 0 }
  };

In the above example, three entries are defined. They can either be
accessed through the /proc interface, in the /proc/sys/dev/sensors/*
directories, as files named func1, func2 and data, or alternatively 
through the sysctl interface, in the appropriate table, with identifiers
FOO_SYSCTL_FUNC1, FOO_SYSCTL_FUNC2 and FOO_SYSCTL_DATA.

The third, sixth and ninth parameters should always be NULL, and the
fourth should always be 0. The fifth is the mode of the /proc file;
0644 is safe, as the file will be owned by root:root. 

The seventh and eighth parameters should be &i2c_proc_real and
&i2c_sysctl_real if you want to export lists of reals (scaled
integers). You can also use your own function for them, as usual.
Finally, the last parameter is the call-back to gather the data
(see below) if you use the *_proc_real functions. 


Gathering the data
------------------

The call back functions (foo_func and foo_data in the above example)
can be called in several ways; the operation parameter determines
what should be done:

  * If operation == SENSORS_PROC_REAL_INFO, you must return the
    magnitude (scaling) in nrels_mag;
  * If operation == SENSORS_PROC_REAL_READ, you must read information
    from the chip and return it in results. The number of integers
    to display should be put in nrels_mag;
  * If operation == SENSORS_PROC_REAL_WRITE, you must write the
    supplied information to the chip. nrels_mag will contain the number
    of integers, results the integers themselves.

The *_proc_real functions will display the elements as reals for the
/proc interface. If you set the magnitude to 2, and supply 345 for
SENSORS_PROC_REAL_READ, it would display 3.45; and if the user would
write 45.6 to the /proc file, it would be returned as 4560 for
SENSORS_PROC_REAL_WRITE. A magnitude may even be negative!

An example function:

  /* FOO_FROM_REG and FOO_TO_REG translate between scaled values and
     register values. Note the use of the read cache. */
  void foo_in(struct i2c_client *client, int operation, int ctl_name, 
              int *nrels_mag, long *results)
  {
    struct foo_data *data = client->data;
    int nr = ctl_name - FOO_SYSCTL_FUNC1; /* reduce to 0 upwards */
    
    if (operation == SENSORS_PROC_REAL_INFO)
      *nrels_mag = 2;
    else if (operation == SENSORS_PROC_REAL_READ) {
      /* Update the readings cache (if necessary) */
      foo_update_client(client);
      /* Get the readings from the cache */
      results[0] = FOO_FROM_REG(data->foo_func_base[nr]);
      results[1] = FOO_FROM_REG(data->foo_func_more[nr]);
      results[2] = FOO_FROM_REG(data->foo_func_readonly[nr]);
      *nrels_mag = 2;
    } else if (operation == SENSORS_PROC_REAL_WRITE) {
      if (*nrels_mag >= 1) {
        /* Update the cache */
        data->foo_base[nr] = FOO_TO_REG(results[0]);
        /* Update the chip */
        foo_write_value(client,FOO_REG_FUNC_BASE(nr),data->foo_base[nr]);
      }
      if (*nrels_mag >= 2) {
        /* Update the cache */
        data->foo_more[nr] = FOO_TO_REG(results[1]);
        /* Update the chip */
        foo_write_value(client,FOO_REG_FUNC_MORE(nr),data->foo_more[nr]);
      }
    }
  }