i7core_edac.c 49.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Intel 7 core  Memory Controller kernel module (Nehalem)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2009 by:
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
30 31
#include <linux/edac_mce.h>
#include <linux/spinlock.h>
32
#include <linux/smp.h>
33
#include <asm/processor.h>
34 35 36

#include "edac_core.h"

37 38 39 40 41 42 43 44 45
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

65 66 67 68
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

69 70 71 72 73 74
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

75 76 77 78 79 80 81 82 83 84 85 86
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

87 88 89 90 91 92 93 94 95 96 97 98
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


99 100
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

101 102 103 104 105 106
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

107 108 109 110
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

111 112 113
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

114
#define MC_CHANNEL_ADDR_MATCH	0xf0
115 116 117 118 119 120 121 122 123 124
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
125

126
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
127

128 129 130 131 132 133 134
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
135 136 137 138
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
139
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
140
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
141 142
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
143

144 145
#define MC_RANK_PRESENT		0x7c

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

169 170 171 172 173
/*
 * i7core structs
 */

#define NUM_CHANS 3
174 175 176
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
177 178 179 180 181

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
182
	u32	ch_map;
183 184
};

185 186 187 188 189 190 191 192 193 194 195 196

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

197
struct i7core_channel {
198 199
	u32		ranks;
	u32		dimms;
200 201
};

202
struct pci_id_descr {
203 204 205
	int			dev;
	int			func;
	int 			dev_id;
206 207
};

208 209 210 211 212 213 214
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
	struct mem_ctl_info	*mci;
};

215
struct i7core_pvt {
216 217 218 219 220
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
221

222
	struct i7core_info	info;
223
	struct i7core_inject	inject;
224
	struct i7core_channel	channel[NUM_CHANS];
225

226
	int		channels; /* Number of active channels */
227

228 229
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
230 231

			/* ECC corrected errors counts per udimm */
232 233
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
234
			/* ECC corrected errors counts per rdimm */
235 236
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
237

238
	unsigned int	is_registered;
239

240 241 242 243 244
	/* mcelog glue */
	struct edac_mce		edac_mce;
	struct mce		mce_entry[MCE_LOG_LEN];
	unsigned		mce_count;
	spinlock_t		mce_lock;
245 246
};

247 248 249
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
250

251 252 253 254 255
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

256
struct pci_id_descr pci_dev_descr[] = {
257 258 259
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
260
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS)  }, /* if RDIMM */
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
280 281 282 283 284 285 286 287 288 289

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NOCORE)  },

290
};
291
#define N_DEVS ARRAY_SIZE(pci_dev_descr)
292 293 294 295 296

/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
297
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
298 299 300
	{0,}			/* 0 terminated list. */
};

301 302 303 304 305 306 307
static struct edac_pci_ctl_info *i7core_pci;

/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
308 309
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
310 311

	/* MC_STATUS bits */
312
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
313
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
314 315

	/* MC_MAX_DOD read functions */
316
static inline int numdimms(u32 dimms)
317
{
318
	return (dimms & 0x3) + 1;
319 320
}

321
static inline int numrank(u32 rank)
322 323 324
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

325
	return ranks[rank & 0x3];
326 327
}

328
static inline int numbank(u32 bank)
329 330 331
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

332
	return banks[bank & 0x3];
333 334
}

335
static inline int numrow(u32 row)
336 337 338 339 340 341
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

342
	return rows[row & 0x7];
343 344
}

345
static inline int numcol(u32 col)
346 347 348 349
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
350
	return cols[col & 0x3];
351 352
}

353
static struct i7core_dev *get_i7core_dev(u8 socket)
354 355 356 357 358 359 360 361 362 363 364
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

365 366 367
/****************************************************************************
			Memory check routines
 ****************************************************************************/
368 369
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
370
{
371
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
372 373
	int i;

374 375 376
	if (!i7core_dev)
		return NULL;

377
	for (i = 0; i < N_DEVS; i++) {
378
		if (!i7core_dev->pdev[i])
379 380
			continue;

381 382 383
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
384 385 386
		}
	}

387 388 389
	return NULL;
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
407 408
static int i7core_get_active_channels(u8 socket, unsigned *channels,
				      unsigned *csrows)
409 410 411 412 413 414 415 416
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

417
	pdev = get_pdev_slot_func(socket, 3, 0);
418
	if (!pdev) {
419 420
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
421
		return -ENODEV;
422
	}
423 424 425 426 427 428

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
429
		u32 dimm_dod[3];
430 431 432 433 434
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
435
		if (status & (1 << i))
436 437
			continue;

438
		pdev = get_pdev_slot_func(socket, i + 4, 1);
439
		if (!pdev) {
440 441 442
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
443 444 445 446 447 448 449 450 451 452
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

453
		(*channels)++;
454 455 456 457 458 459

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
460 461
	}

462
	debugf0("Number of active channels on socket %d: %d\n",
463
		socket, *channels);
464

465 466 467
	return 0;
}

468
static int get_dimm_config(struct mem_ctl_info *mci, int *csrow)
469 470
{
	struct i7core_pvt *pvt = mci->pvt_info;
471
	struct csrow_info *csr;
472
	struct pci_dev *pdev;
473
	int i, j;
474
	unsigned long last_page = 0;
475
	enum edac_type mode;
476
	enum mem_type mtype;
477

478
	/* Get data from the MC register, function 0 */
479
	pdev = pvt->pci_mcr[0];
480
	if (!pdev)
481 482
		return -ENODEV;

483
	/* Device 3 function 0 reads */
484 485 486 487
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
488

489
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
490
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
491
		pvt->info.max_dod, pvt->info.ch_map);
492

493
	if (ECC_ENABLED(pvt)) {
494
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
495 496 497 498 499
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
500
		debugf0("ECC disabled\n");
501 502
		mode = EDAC_NONE;
	}
503 504

	/* FIXME: need to handle the error codes */
505 506
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
507 508
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
509
		numbank(pvt->info.max_dod >> 4),
510 511
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
512

513
	for (i = 0; i < NUM_CHANS; i++) {
514
		u32 data, dimm_dod[3], value[8];
515 516 517 518 519 520 521 522 523 524

		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

525
		/* Devices 4-6 function 0 */
526
		pci_read_config_dword(pvt->pci_ch[i][0],
527 528
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

529
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
530
						4 : 2;
531

532 533
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
534
		else
535 536
			mtype = MEM_DDR3;
#if 0
537 538 539 540 541 542
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
543 544 545
#endif

		/* Devices 4-6 function 1 */
546
		pci_read_config_dword(pvt->pci_ch[i][1],
547
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
548
		pci_read_config_dword(pvt->pci_ch[i][1],
549
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
550
		pci_read_config_dword(pvt->pci_ch[i][1],
551
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
552

553
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
554
			"%d ranks, %cDIMMs\n",
555 556 557
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
558
			pvt->channel[i].ranks,
559
			(data & REGISTERED_DIMM) ? 'R' : 'U');
560 561 562

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
563
			u32 size, npages;
564 565 566 567 568 569 570 571 572

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

573 574 575
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

576
			pvt->channel[i].dimms++;
577

578 579 580
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
581 582 583
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

584 585 586 587 588
#if PAGE_SHIFT > 20
			npages = size >> (PAGE_SHIFT - 20);
#else
			npages = size << (20 - PAGE_SHIFT);
#endif
589

590
			csr = &mci->csrows[*csrow];
591 592 593 594 595
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

596
			csr->page_mask = 0;
597
			csr->grain = 8;
598
			csr->csrow_idx = *csrow;
599 600 601 602
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
603

604
			pvt->csrow_map[i][j] = *csrow;
605

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

623
			(*csrow)++;
624
		}
625

626 627 628 629 630 631 632 633
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
634
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
635
		for (j = 0; j < 8; j++)
636
			debugf1("\t\t%#x\t%#x\t%#x\n",
637 638 639
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
640 641
	}

642 643 644
	return 0;
}

645 646 647 648 649 650 651 652 653 654 655
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
656
static int disable_inject(struct mem_ctl_info *mci)
657 658 659 660 661
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

662
	if (!pvt->pci_ch[pvt->inject.channel][0])
663 664
		return -ENODEV;

665
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
666
				MC_CHANNEL_ERROR_INJECT, 0);
667 668

	return 0;
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
686
		disable_inject(mci);
687 688 689

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
690
		return -EIO;
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
719
		disable_inject(mci);
720 721 722

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
723
		return -EIO;
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
754
		disable_inject(mci);
755 756 757

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
758
		return -EIO;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

782 783 784 785 786
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
787
	struct i7core_pvt *pvt;					\
788 789 790
	long value;						\
	int rc;							\
								\
791 792 793
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
	if (!strcasecmp(data, "any"))				\
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
814 815 816 817
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
818 819 820 821
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
822 823
}

824 825 826 827 828 829 830 831 832
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
833

834 835 836 837 838 839
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
840

841 842 843 844 845
static int write_and_test(struct pci_dev *dev, int where, u32 val)
{
	u32 read;
	int count;

846 847 848 849
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

850 851
	for (count = 0; count < 10; count++) {
		if (count)
852
			msleep(100);
853 854 855 856 857 858 859
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

860 861 862 863
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
864 865 866 867

	return -EINVAL;
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

895
	if (!pvt->pci_ch[pvt->inject.channel][0])
896 897
		return 0;

898 899 900 901 902 903 904 905 906 907 908 909 910
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
911
		mask |= 1L << 41;
912
	else {
913
		if (pvt->channel[pvt->inject.channel].dimms > 2)
914
			mask |= (pvt->inject.dimm & 0x3L) << 35;
915
		else
916
			mask |= (pvt->inject.dimm & 0x1L) << 36;
917 918 919 920
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
921
		mask |= 1L << 40;
922
	else {
923
		if (pvt->channel[pvt->inject.channel].dimms > 2)
924
			mask |= (pvt->inject.rank & 0x1L) << 34;
925
		else
926
			mask |= (pvt->inject.rank & 0x3L) << 34;
927 928 929 930
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
931
		mask |= 1L << 39;
932
	else
933
		mask |= (pvt->inject.bank & 0x15L) << 30;
934 935 936

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
937
		mask |= 1L << 38;
938
	else
939
		mask |= (pvt->inject.page & 0xffffL) << 14;
940 941 942

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
943
		mask |= 1L << 37;
944
	else
945
		mask |= (pvt->inject.col & 0x3fffL);
946

947 948 949 950 951 952 953 954 955 956 957 958
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
959
	pci_write_config_dword(pvt->pci_noncore,
960
			       MC_CFG_CONTROL, 0x2);
961

962
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
963
			       MC_CHANNEL_ADDR_MATCH, mask);
964
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
965 966
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

967
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
968 969
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

970
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
971
			       MC_CHANNEL_ERROR_INJECT, injectmask);
972

973
	/*
974 975 976
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
977
	 */
978
	pci_write_config_dword(pvt->pci_noncore,
979
			       MC_CFG_CONTROL, 8);
980

981 982
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
983 984
		mask, pvt->inject.eccmask, injectmask);

985

986 987 988 989 990 991 992
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
993 994
	u32 injectmask;

995
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
996
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
997 998 999 1000 1001 1002

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1003 1004 1005
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1019

1020 1021 1022 1023 1024 1025 1026
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1027
	}
1028

1029 1030 1031
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1032

1033 1034 1035
/*
 * Sysfs struct
 */
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052


static struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
	{ .attr = { .name = NULL } }
};

static struct mcidev_sysfs_group i7core_inject_addrmatch = {
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
static struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
};

static struct mcidev_sysfs_group i7core_udimm_counters = {
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1064
static struct mcidev_sysfs_attribute i7core_sysfs_attrs[] = {
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1087
		.grp = &i7core_inject_addrmatch,
1088 1089 1090 1091 1092 1093 1094 1095
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1096
	{ .attr = { .name = NULL } },	/* Reserved for udimm counters */
1097
	{ .attr = { .name = NULL } }
1098 1099
};

1100 1101 1102 1103 1104 1105 1106 1107
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	i7core_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
1108
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1109
{
1110
	int i;
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	debugf0(__FILE__ ": %s()\n", __func__);
	for (i = 0; i < N_DEVS; i++) {
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1122
	kfree(i7core_dev->pdev);
1123
	list_del(&i7core_dev->list);
1124 1125
	kfree(i7core_dev);
}
1126

1127 1128
static void i7core_put_all_devices(void)
{
1129
	struct i7core_dev *i7core_dev, *tmp;
1130

1131
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list)
1132
		i7core_put_devices(i7core_dev);
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static void i7core_xeon_pci_fixup(void)
{
	struct pci_dev *pdev = NULL;
	int i;
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1145
			      pci_dev_descr[0].dev_id, NULL);
1146
	if (unlikely(!pdev)) {
1147
		for (i = 0; i < MAX_SOCKET_BUSES; i++)
1148 1149 1150 1151
			pcibios_scan_specific_bus(255-i);
	}
}

1152 1153 1154 1155 1156 1157
/*
 *	i7core_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1158
int i7core_get_onedevice(struct pci_dev **prev, int devno)
1159
{
1160 1161
	struct i7core_dev *i7core_dev;

1162
	struct pci_dev *pdev = NULL;
1163 1164
	u8 bus = 0;
	u8 socket = 0;
1165

1166
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1167
			      pci_dev_descr[devno].dev_id, *prev);
1168 1169 1170 1171 1172 1173

	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
1174
	if (pci_dev_descr[devno].dev_id == PCI_DEVICE_ID_INTEL_I7_NOCORE && !pdev)
1175 1176
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NOCORE_ALT, *prev);
1177

1178 1179 1180 1181
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1182 1183
		}

1184
		/*
1185 1186
		 * Dev 3 function 2 only exists on chips with RDIMMs
		 * so, it is ok to not found it
1187
		 */
1188
		if ((pci_dev_descr[devno].dev == 3) && (pci_dev_descr[devno].func == 2)) {
1189 1190 1191
			*prev = pdev;
			return 0;
		}
1192

1193 1194
		i7core_printk(KERN_ERR,
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1195 1196
			pci_dev_descr[devno].dev, pci_dev_descr[devno].func,
			PCI_VENDOR_ID_INTEL, pci_dev_descr[devno].dev_id);
1197

1198 1199 1200 1201
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1202

1203 1204 1205 1206 1207
	if (bus == 0x3f)
		socket = 0;
	else
		socket = 255 - bus;

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
		i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
		if (!i7core_dev)
			return -ENOMEM;
		i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * N_DEVS,
					   GFP_KERNEL);
		if (!i7core_dev->pdev)
			return -ENOMEM;
		i7core_dev->socket = socket;
		list_add_tail(&i7core_dev->list, &i7core_edac_list);
1219
	}
1220

1221
	if (i7core_dev->pdev[devno]) {
1222 1223 1224
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1225 1226
			bus, pci_dev_descr[devno].dev, pci_dev_descr[devno].func,
			PCI_VENDOR_ID_INTEL, pci_dev_descr[devno].dev_id);
1227 1228 1229
		pci_dev_put(pdev);
		return -ENODEV;
	}
1230

1231
	i7core_dev->pdev[devno] = pdev;
1232 1233

	/* Sanity check */
1234 1235
	if (unlikely(PCI_SLOT(pdev->devfn) != pci_dev_descr[devno].dev ||
			PCI_FUNC(pdev->devfn) != pci_dev_descr[devno].func)) {
1236 1237 1238
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1239
			PCI_VENDOR_ID_INTEL, pci_dev_descr[devno].dev_id,
1240
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1241
			bus, pci_dev_descr[devno].dev, pci_dev_descr[devno].func);
1242 1243
		return -ENODEV;
	}
1244

1245 1246 1247 1248 1249
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1250 1251
			bus, pci_dev_descr[devno].dev, pci_dev_descr[devno].func,
			PCI_VENDOR_ID_INTEL, pci_dev_descr[devno].dev_id);
1252 1253
		return -ENODEV;
	}
1254

1255 1256 1257 1258
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
		socket, bus, pci_dev_descr[devno].dev,
		pci_dev_descr[devno].func,
		PCI_VENDOR_ID_INTEL, pci_dev_descr[devno].dev_id);
1259

1260
	*prev = pdev;
1261

1262 1263
	return 0;
}
1264

1265
static int i7core_get_devices(void)
1266 1267 1268
{
	int i;
	struct pci_dev *pdev = NULL;
1269

1270 1271 1272 1273
	for (i = 0; i < N_DEVS; i++) {
		pdev = NULL;
		do {
			if (i7core_get_onedevice(&pdev, i) < 0) {
1274
				i7core_put_all_devices();
1275 1276 1277 1278
				return -ENODEV;
			}
		} while (pdev);
	}
1279

1280 1281 1282
	return 0;
}

1283 1284
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1285 1286 1287
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1288
	int i, func, slot;
1289

1290 1291 1292
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;
1293

1294 1295 1296 1297
	pvt->is_registered = 0;
	for (i = 0; i < N_DEVS; i++) {
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1298 1299
			continue;

1300 1301 1302 1303 1304 1305 1306 1307
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1308
				goto error;
1309 1310 1311 1312 1313
			pvt->pci_ch[slot - 4][func] = pdev;
		} else if (!slot && !func)
			pvt->pci_noncore = pdev;
		else
			goto error;
1314

1315 1316 1317
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1318

1319 1320 1321
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
			pvt->is_registered = 1;
1322
	}
1323

1324 1325 1326 1327 1328 1329 1330 1331 1332
	/*
	 * Add extra nodes to count errors on udimm
	 * For registered memory, this is not needed, since the counters
	 * are already displayed at the standard locations
	 */
	if (!pvt->is_registered)
		i7core_sysfs_attrs[ARRAY_SIZE(i7core_sysfs_attrs)-2].grp =
			&i7core_udimm_counters;

1333
	return 0;
1334 1335 1336 1337 1338 1339

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1340 1341
}

1342 1343 1344
/****************************************************************************
			Error check routines
 ****************************************************************************/
1345
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1346 1347 1348 1349
					 int chan, int dimm, int add)
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1350
	int row = pvt->csrow_map[chan][dimm], i;
1351 1352 1353

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1354 1355
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1356 1357 1358 1359 1360 1361 1362

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1363
			int chan, int new0, int new1, int new2)
1364 1365 1366 1367
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1368
	if (pvt->ce_count_available) {
1369 1370
		/* Updates CE counters */

1371 1372 1373
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1374 1375 1376

		if (add2 < 0)
			add2 += 0x7fff;
1377
		pvt->rdimm_ce_count[chan][2] += add2;
1378 1379 1380

		if (add1 < 0)
			add1 += 0x7fff;
1381
		pvt->rdimm_ce_count[chan][1] += add1;
1382 1383 1384

		if (add0 < 0)
			add0 += 0x7fff;
1385
		pvt->rdimm_ce_count[chan][0] += add0;
1386
	} else
1387
		pvt->ce_count_available = 1;
1388 1389

	/* Store the new values */
1390 1391 1392
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1393 1394 1395

	/*updated the edac core */
	if (add0 != 0)
1396
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1397
	if (add1 != 0)
1398
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1399
	if (add2 != 0)
1400
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1401 1402 1403

}

1404
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1405 1406 1407 1408 1409 1410
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1411
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1412
								&rcv[0][0]);
1413
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1414
								&rcv[0][1]);
1415
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1416
								&rcv[1][0]);
1417
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1418
								&rcv[1][1]);
1419
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1420
								&rcv[2][0]);
1421
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1422 1423 1424 1425 1426
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1427
		if (pvt->channel[i].dimms > 2) {
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1439
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1440 1441
	}
}
1442 1443 1444 1445 1446 1447 1448

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1449
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1450 1451 1452 1453 1454
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1455
	if (!pvt->pci_mcr[4]) {
1456
		debugf0("%s MCR registers not found\n", __func__);
1457 1458 1459
		return;
	}

1460
	/* Corrected test errors */
1461 1462
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1463 1464 1465 1466 1467 1468 1469

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1470
	if (pvt->ce_count_available) {
1471 1472 1473
		/* Updates CE counters */
		int add0, add1, add2;

1474 1475 1476
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1477 1478 1479

		if (add2 < 0)
			add2 += 0x7fff;
1480
		pvt->udimm_ce_count[2] += add2;
1481 1482 1483

		if (add1 < 0)
			add1 += 0x7fff;
1484
		pvt->udimm_ce_count[1] += add1;
1485 1486 1487

		if (add0 < 0)
			add0 += 0x7fff;
1488
		pvt->udimm_ce_count[0] += add0;
1489 1490 1491 1492 1493

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1494
	} else
1495
		pvt->ce_count_available = 1;
1496 1497

	/* Store the new values */
1498 1499 1500
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1501 1502
}

1503 1504 1505
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1506 1507 1508
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1509
 *     struct mce field	MCA Register
1510 1511 1512
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1513 1514 1515
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1516 1517 1518
static void i7core_mce_output_error(struct mem_ctl_info *mci,
				    struct mce *m)
{
1519
	struct i7core_pvt *pvt = mci->pvt_info;
1520
	char *type, *optype, *err, *msg;
1521
	unsigned long error = m->status & 0x1ff0000l;
1522
	u32 optypenum = (m->status >> 4) & 0x07;
1523 1524 1525 1526 1527
	u32 core_err_cnt = (m->status >> 38) && 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1528
	int csrow;
1529

1530 1531 1532 1533 1534
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1535
	switch (optypenum) {
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1554 1555
	}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1586 1587
	}

1588
	/* FIXME: should convert addr into bank and rank information */
1589
	msg = kasprintf(GFP_ATOMIC,
1590
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1591
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1592
		type, (long long) m->addr, m->cpu, dimm, channel,
1593 1594
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1595 1596

	debugf0("%s", msg);
1597

1598
	csrow = pvt->csrow_map[channel][dimm];
1599

1600
	/* Call the helper to output message */
1601 1602 1603
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1604
	else if (!pvt->is_registered)
1605 1606
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1607 1608

	kfree(msg);
1609 1610
}

1611 1612 1613 1614 1615 1616
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
	struct mce *m = NULL;
	unsigned long flags;

	/* Copy all mce errors into a temporary buffer */
	spin_lock_irqsave(&pvt->mce_lock, flags);
	if (pvt->mce_count) {
		m = kmalloc(sizeof(*m) * pvt->mce_count, GFP_ATOMIC);
1627

1628 1629 1630 1631 1632 1633
		if (m) {
			count = pvt->mce_count;
			memcpy(m, &pvt->mce_entry, sizeof(*m) * count);
		}
		pvt->mce_count = 0;
	}
1634

1635 1636 1637 1638 1639 1640 1641 1642 1643
	spin_unlock_irqrestore(&pvt->mce_lock, flags);

	/* proccess mcelog errors */
	for (i = 0; i < count; i++)
		i7core_mce_output_error(mci, &m[i]);

	kfree(m);

	/* check memory count errors */
1644 1645 1646 1647
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1648 1649
}

1650 1651 1652 1653 1654 1655 1656 1657
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1658 1659
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1660 1661
	unsigned long flags;

1662 1663 1664 1665 1666 1667 1668
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1669 1670 1671 1672
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

1673
	/* Only handle if it is the right mc controller */
1674 1675 1676 1677 1678
	if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket) {
		debugf0("mc%d: ignoring mce log for socket %d. "
			"Another mc should get it.\n",
			pvt->i7core_dev->socket,
			cpu_data(mce->cpu).phys_proc_id);
1679
		return 0;
1680
	}
1681

1682 1683 1684 1685 1686 1687 1688
	spin_lock_irqsave(&pvt->mce_lock, flags);
	if (pvt->mce_count < MCE_LOG_LEN) {
		memcpy(&pvt->mce_entry[pvt->mce_count], mce, sizeof(*mce));
		pvt->mce_count++;
	}
	spin_unlock_irqrestore(&pvt->mce_lock, flags);

1689 1690 1691 1692
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

1693
	/* Advice mcelog that the error were handled */
1694
	return 1;
1695 1696
}

1697 1698
static int i7core_register_mci(struct i7core_dev *i7core_dev,
			       int num_channels, int num_csrows)
1699 1700 1701
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
1702
	int csrow = 0;
1703
	int rc;
1704 1705

	/* allocate a new MC control structure */
1706 1707
	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels,
			    i7core_dev->socket);
1708 1709
	if (unlikely(!mci))
		return -ENOMEM;
1710 1711 1712

	debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);

1713 1714 1715
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;

1716
	pvt = mci->pvt_info;
1717
	memset(pvt, 0, sizeof(*pvt));
1718

1719 1720 1721 1722 1723 1724
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
1725 1726 1727 1728
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
1729 1730 1731
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
1732
	mci->ctl_page_to_phys = NULL;
1733
	mci->mc_driver_sysfs_attributes = i7core_sysfs_attrs;
1734 1735
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
1736

1737
	/* Store pci devices at mci for faster access */
1738
	rc = mci_bind_devs(mci, i7core_dev);
1739
	if (unlikely(rc < 0))
1740
		goto fail;
1741 1742

	/* Get dimm basic config */
1743
	get_dimm_config(mci, &csrow);
1744

1745
	/* add this new MC control structure to EDAC's list of MCs */
1746
	if (unlikely(edac_mc_add_mc(mci))) {
1747 1748 1749 1750 1751
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
1752 1753

		rc = -EINVAL;
1754
		goto fail;
1755 1756 1757
	}

	/* allocating generic PCI control info */
1758 1759
	i7core_pci = edac_pci_create_generic_ctl(&i7core_dev->pdev[0]->dev,
						 EDAC_MOD_STR);
1760
	if (unlikely(!i7core_pci)) {
1761 1762 1763 1764 1765 1766 1767 1768
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

1769
	/* Default error mask is any memory */
1770
	pvt->inject.channel = 0;
1771 1772 1773 1774 1775 1776
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

1777
	/* Registers on edac_mce in order to receive memory errors */
1778
	pvt->edac_mce.priv = mci;
1779 1780 1781 1782
	pvt->edac_mce.check_error = i7core_mce_check_error;
	spin_lock_init(&pvt->mce_lock);

	rc = edac_mce_register(&pvt->edac_mce);
1783
	if (unlikely(rc < 0)) {
1784 1785
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	}

fail:
	edac_mc_free(mci);
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int dev_idx = id->driver_data;
	int rc;
	struct i7core_dev *i7core_dev;

	/*
1808
	 * All memory controllers are allocated at the first pass.
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	 */
	if (unlikely(dev_idx >= 1))
		return -EINVAL;

	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);
	rc = i7core_get_devices();
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		int channels;
		int csrows;

		/* Check the number of active and not disabled channels */
		rc = i7core_get_active_channels(i7core_dev->socket,
						&channels, &csrows);
		if (unlikely(rc < 0))
			goto fail1;

1829 1830 1831
		rc = i7core_register_mci(i7core_dev, channels, csrows);
		if (unlikely(rc < 0))
			goto fail1;
1832 1833
	}

1834
	i7core_printk(KERN_INFO, "Driver loaded.\n");
1835

1836
	mutex_unlock(&i7core_edac_lock);
1837 1838
	return 0;

1839
fail1:
1840
	i7core_put_all_devices();
1841 1842
fail0:
	mutex_unlock(&i7core_edac_lock);
1843
	return rc;
1844 1845 1846 1847 1848 1849 1850 1851 1852
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
1853
	struct i7core_dev *i7core_dev, *tmp;
1854 1855 1856 1857 1858 1859

	debugf0(__FILE__ ": %s()\n", __func__);

	if (i7core_pci)
		edac_pci_release_generic_ctl(i7core_pci);

1860 1861 1862 1863 1864 1865 1866
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
1867

1868
	mutex_lock(&i7core_edac_lock);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
		mci = edac_mc_del_mc(&i7core_dev->pdev[0]->dev);
		if (mci) {
			struct i7core_pvt *pvt = mci->pvt_info;

			i7core_dev = pvt->i7core_dev;
			edac_mce_unregister(&pvt->edac_mce);
			kfree(mci->ctl_name);
			edac_mc_free(mci);
			i7core_put_devices(i7core_dev);
		} else {
			i7core_printk(KERN_ERR,
				      "Couldn't find mci for socket %d\n",
				      i7core_dev->socket);
		}
	}
1885
	mutex_unlock(&i7core_edac_lock);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

1914 1915
	i7core_xeon_pci_fixup();

1916 1917
	pci_rc = pci_register_driver(&i7core_driver);

1918 1919 1920 1921 1922 1923 1924
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");