ptp.c 44.1 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2 3
 * Driver for Solarflare network controllers and boards
 * Copyright 2011-2013 Solarflare Communications Inc.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

/* Theory of operation:
 *
 * PTP support is assisted by firmware running on the MC, which provides
 * the hardware timestamping capabilities.  Both transmitted and received
 * PTP event packets are queued onto internal queues for subsequent processing;
 * this is because the MC operations are relatively long and would block
 * block NAPI/interrupt operation.
 *
 * Receive event processing:
 *	The event contains the packet's UUID and sequence number, together
 *	with the hardware timestamp.  The PTP receive packet queue is searched
 *	for this UUID/sequence number and, if found, put on a pending queue.
 *	Packets not matching are delivered without timestamps (MCDI events will
 *	always arrive after the actual packet).
 *	It is important for the operation of the PTP protocol that the ordering
 *	of packets between the event and general port is maintained.
 *
 * Work queue processing:
 *	If work waiting, synchronise host/hardware time
 *
 *	Transmit: send packet through MC, which returns the transmission time
 *	that is converted to an appropriate timestamp.
 *
 *	Receive: the packet's reception time is converted to an appropriate
 *	timestamp.
 */
#include <linux/ip.h>
#include <linux/udp.h>
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/module.h>
#include <linux/net_tstamp.h>
#include <linux/pps_kernel.h>
#include <linux/ptp_clock_kernel.h>
#include "net_driver.h"
#include "efx.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "io.h"
49
#include "farch_regs.h"
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#include "nic.h"

/* Maximum number of events expected to make up a PTP event */
#define	MAX_EVENT_FRAGS			3

/* Maximum delay, ms, to begin synchronisation */
#define	MAX_SYNCHRONISE_WAIT_MS		2

/* How long, at most, to spend synchronising */
#define	SYNCHRONISE_PERIOD_NS		250000

/* How often to update the shared memory time */
#define	SYNCHRONISATION_GRANULARITY_NS	200

/* Minimum permitted length of a (corrected) synchronisation time */
#define	MIN_SYNCHRONISATION_NS		120

/* Maximum permitted length of a (corrected) synchronisation time */
#define	MAX_SYNCHRONISATION_NS		1000

/* How many (MC) receive events that can be queued */
#define	MAX_RECEIVE_EVENTS		8

/* Length of (modified) moving average. */
#define	AVERAGE_LENGTH			16

/* How long an unmatched event or packet can be held */
#define PKT_EVENT_LIFETIME_MS		10

/* Offsets into PTP packet for identification.  These offsets are from the
 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
 * PTP V2 permit the use of IPV4 options.
 */
#define PTP_DPORT_OFFSET	22

#define PTP_V1_VERSION_LENGTH	2
#define PTP_V1_VERSION_OFFSET	28

#define PTP_V1_UUID_LENGTH	6
#define PTP_V1_UUID_OFFSET	50

#define PTP_V1_SEQUENCE_LENGTH	2
#define PTP_V1_SEQUENCE_OFFSET	58

/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
 * includes IP header.
 */
#define	PTP_V1_MIN_LENGTH	64

#define PTP_V2_VERSION_LENGTH	1
#define PTP_V2_VERSION_OFFSET	29

102 103 104
#define PTP_V2_UUID_LENGTH	8
#define PTP_V2_UUID_OFFSET	48

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 * the MC only captures the last six bytes of the clock identity. These values
 * reflect those, not the ones used in the standard.  The standard permits
 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 */
#define PTP_V2_MC_UUID_LENGTH	6
#define PTP_V2_MC_UUID_OFFSET	50

#define PTP_V2_SEQUENCE_LENGTH	2
#define PTP_V2_SEQUENCE_OFFSET	58

/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 * includes IP header.
 */
#define	PTP_V2_MIN_LENGTH	63

#define	PTP_MIN_LENGTH		63

#define PTP_ADDRESS		0xe0000181	/* 224.0.1.129 */
#define PTP_EVENT_PORT		319
#define PTP_GENERAL_PORT	320

/* Annoyingly the format of the version numbers are different between
 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 */
#define	PTP_VERSION_V1		1

#define	PTP_VERSION_V2		2
#define	PTP_VERSION_V2_MASK	0x0f

enum ptp_packet_state {
	PTP_PACKET_STATE_UNMATCHED = 0,
	PTP_PACKET_STATE_MATCHED,
	PTP_PACKET_STATE_TIMED_OUT,
	PTP_PACKET_STATE_MATCH_UNWANTED
};

/* NIC synchronised with single word of time only comprising
 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 */
#define	MC_NANOSECOND_BITS	30
#define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
#define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)

/* Maximum parts-per-billion adjustment that is acceptable */
#define MAX_PPB			1000000

/* Number of bits required to hold the above */
#define	MAX_PPB_BITS		20

/* Number of extra bits allowed when calculating fractional ns.
 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
 * be less than 63.
 */
#define	PPB_EXTRA_BITS		2

/* Precalculate scale word to avoid long long division at runtime */
#define	PPB_SCALE_WORD	((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
			MAX_PPB_BITS)) / 1000000000LL)

#define PTP_SYNC_ATTEMPTS	4

/**
 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 * @words: UUID and (partial) sequence number
 * @expiry: Time after which the packet should be delivered irrespective of
 *            event arrival.
 * @state: The state of the packet - whether it is ready for processing or
 *         whether that is of no interest.
 */
struct efx_ptp_match {
	u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
	unsigned long expiry;
	enum ptp_packet_state state;
};

/**
 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 * @seq0: First part of (PTP) UUID
 * @seq1: Second part of (PTP) UUID and sequence number
 * @hwtimestamp: Event timestamp
 */
struct efx_ptp_event_rx {
	struct list_head link;
	u32 seq0;
	u32 seq1;
	ktime_t hwtimestamp;
	unsigned long expiry;
};

/**
 * struct efx_ptp_timeset - Synchronisation between host and MC
 * @host_start: Host time immediately before hardware timestamp taken
 * @seconds: Hardware timestamp, seconds
 * @nanoseconds: Hardware timestamp, nanoseconds
 * @host_end: Host time immediately after hardware timestamp taken
 * @waitns: Number of nanoseconds between hardware timestamp being read and
 *          host end time being seen
 * @window: Difference of host_end and host_start
 * @valid: Whether this timeset is valid
 */
struct efx_ptp_timeset {
	u32 host_start;
	u32 seconds;
	u32 nanoseconds;
	u32 host_end;
	u32 waitns;
	u32 window;	/* Derived: end - start, allowing for wrap */
};

/**
 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 * @channel: The PTP channel
 * @rxq: Receive queue (awaiting timestamps)
 * @txq: Transmit queue
 * @evt_list: List of MC receive events awaiting packets
 * @evt_free_list: List of free events
 * @evt_lock: Lock for manipulating evt_list and evt_free_list
223
 * @evt_overflow: Boolean indicating that event list has overflowed
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 * @workwq: Work queue for processing pending PTP operations
 * @work: Work task
 * @reset_required: A serious error has occurred and the PTP task needs to be
 *                  reset (disable, enable).
 * @rxfilter_event: Receive filter when operating
 * @rxfilter_general: Receive filter when operating
 * @config: Current timestamp configuration
 * @enabled: PTP operation enabled
 * @mode: Mode in which PTP operating (PTP version)
 * @evt_frags: Partly assembled PTP events
 * @evt_frag_idx: Current fragment number
 * @evt_code: Last event code
 * @start: Address at which MC indicates ready for synchronisation
 * @host_time_pps: Host time at last PPS
 * @last_sync_ns: Last number of nanoseconds between readings when synchronising
 * @base_sync_ns: Number of nanoseconds for last synchronisation.
 * @base_sync_valid: Whether base_sync_time is valid.
 * @current_adjfreq: Current ppb adjustment.
 * @phc_clock: Pointer to registered phc device
 * @phc_clock_info: Registration structure for phc device
 * @pps_work: pps work task for handling pps events
 * @pps_workwq: pps work queue
 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 *         allocations in main data path).
 * @debug_ptp_dir: PTP debugfs directory
 * @missed_rx_sync: Number of packets received without syncrhonisation.
 * @good_syncs: Number of successful synchronisations.
 * @no_time_syncs: Number of synchronisations with no good times.
 * @bad_sync_durations: Number of synchronisations with bad durations.
 * @bad_syncs: Number of failed synchronisations.
 * @last_sync_time: Number of nanoseconds for last synchronisation.
 * @sync_timeouts: Number of synchronisation timeouts
 * @fast_syncs: Number of synchronisations requiring short delay
 * @min_sync_delta: Minimum time between event and synchronisation
 * @max_sync_delta: Maximum time between event and synchronisation
 * @average_sync_delta: Average time between event and synchronisation.
 *                      Modified moving average.
 * @last_sync_delta: Last time between event and synchronisation
 * @mc_stats: Context value for MC statistics
 * @timeset: Last set of synchronisation statistics.
 */
struct efx_ptp_data {
	struct efx_channel *channel;
	struct sk_buff_head rxq;
	struct sk_buff_head txq;
	struct list_head evt_list;
	struct list_head evt_free_list;
	spinlock_t evt_lock;
274
	bool evt_overflow;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
	struct workqueue_struct *workwq;
	struct work_struct work;
	bool reset_required;
	u32 rxfilter_event;
	u32 rxfilter_general;
	bool rxfilter_installed;
	struct hwtstamp_config config;
	bool enabled;
	unsigned int mode;
	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
	int evt_frag_idx;
	int evt_code;
	struct efx_buffer start;
	struct pps_event_time host_time_pps;
	unsigned last_sync_ns;
	unsigned base_sync_ns;
	bool base_sync_valid;
	s64 current_adjfreq;
	struct ptp_clock *phc_clock;
	struct ptp_clock_info phc_clock_info;
	struct work_struct pps_work;
	struct workqueue_struct *pps_workwq;
	bool nic_ts_enabled;
299
	MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	struct efx_ptp_timeset
	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
};

static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
static int efx_phc_settime(struct ptp_clock_info *ptp,
			   const struct timespec *e_ts);
static int efx_phc_enable(struct ptp_clock_info *ptp,
			  struct ptp_clock_request *request, int on);

/* Enable MCDI PTP support. */
static int efx_ptp_enable(struct efx_nic *efx)
{
315
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
316 317

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
318
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
		       efx->ptp_data->channel->channel);
	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);

	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

/* Disable MCDI PTP support.
 *
 * Note that this function should never rely on the presence of ptp_data -
 * may be called before that exists.
 */
static int efx_ptp_disable(struct efx_nic *efx)
{
334
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
335 336

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
337
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
{
	struct sk_buff *skb;

	while ((skb = skb_dequeue(q))) {
		local_bh_disable();
		netif_receive_skb(skb);
		local_bh_enable();
	}
}

static void efx_ptp_handle_no_channel(struct efx_nic *efx)
{
	netif_err(efx, drv, efx->net_dev,
		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
		  "vector. PTP disabled\n");
}

/* Repeatedly send the host time to the MC which will capture the hardware
 * time.
 */
static void efx_ptp_send_times(struct efx_nic *efx,
			       struct pps_event_time *last_time)
{
	struct pps_event_time now;
	struct timespec limit;
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct timespec start;
	int *mc_running = ptp->start.addr;

	pps_get_ts(&now);
	start = now.ts_real;
	limit = now.ts_real;
	timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);

	/* Write host time for specified period or until MC is done */
	while ((timespec_compare(&now.ts_real, &limit) < 0) &&
	       ACCESS_ONCE(*mc_running)) {
		struct timespec update_time;
		unsigned int host_time;

		/* Don't update continuously to avoid saturating the PCIe bus */
		update_time = now.ts_real;
		timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
		do {
			pps_get_ts(&now);
		} while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
			 ACCESS_ONCE(*mc_running));

		/* Synchronise NIC with single word of time only */
		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
			     now.ts_real.tv_nsec);
		/* Update host time in NIC memory */
395
		efx->type->ptp_write_host_time(efx, host_time);
396 397 398 399 400
	}
	*last_time = now;
}

/* Read a timeset from the MC's results and partial process. */
401 402
static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
				 struct efx_ptp_timeset *timeset)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
{
	unsigned start_ns, end_ns;

	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
	timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
	timeset->nanoseconds = MCDI_DWORD(data,
					 PTP_OUT_SYNCHRONIZE_NANOSECONDS);
	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
	timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);

	/* Ignore seconds */
	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
	/* Allow for rollover */
	if (end_ns < start_ns)
		end_ns += NSEC_PER_SEC;
	/* Determine duration of operation */
	timeset->window = end_ns - start_ns;
}

/* Process times received from MC.
 *
 * Extract times from returned results, and establish the minimum value
 * seen.  The minimum value represents the "best" possible time and events
 * too much greater than this are rejected - the machine is, perhaps, too
 * busy. A number of readings are taken so that, hopefully, at least one good
 * synchronisation will be seen in the results.
 */
431 432 433 434
static int
efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
		      size_t response_length,
		      const struct pps_event_time *last_time)
435
{
436 437 438
	unsigned number_readings =
		MCDI_VAR_ARRAY_LEN(response_length,
				   PTP_OUT_SYNCHRONIZE_TIMESET);
439 440 441 442 443 444 445 446 447 448 449 450
	unsigned i;
	unsigned total;
	unsigned ngood = 0;
	unsigned last_good = 0;
	struct efx_ptp_data *ptp = efx->ptp_data;
	u32 last_sec;
	u32 start_sec;
	struct timespec delta;

	if (number_readings == 0)
		return -EAGAIN;

451 452
	/* Read the set of results and increment stats for any results that
	 * appera to be erroneous.
453 454
	 */
	for (i = 0; i < number_readings; i++) {
455 456 457 458
		efx_ptp_read_timeset(
			MCDI_ARRAY_STRUCT_PTR(synch_buf,
					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
			&ptp->timeset[i]);
459 460
	}

461 462 463
	/* Find the last good host-MC synchronization result. The MC times
	 * when it finishes reading the host time so the corrected window time
	 * should be fairly constant for a given platform.
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	 */
	total = 0;
	for (i = 0; i < number_readings; i++)
		if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
			unsigned win;

			win = ptp->timeset[i].window - ptp->timeset[i].waitns;
			if (win >= MIN_SYNCHRONISATION_NS &&
			    win < MAX_SYNCHRONISATION_NS) {
				total += ptp->timeset[i].window;
				ngood++;
				last_good = i;
			}
		}

	if (ngood == 0) {
		netif_warn(efx, drv, efx->net_dev,
481 482
			   "PTP no suitable synchronisations %dns\n",
			   ptp->base_sync_ns);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
		return -EAGAIN;
	}

	/* Average minimum this synchronisation */
	ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
	if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
		ptp->base_sync_valid = true;
		ptp->base_sync_ns = ptp->last_sync_ns;
	}

	/* Calculate delay from actual PPS to last_time */
	delta.tv_nsec =
		ptp->timeset[last_good].nanoseconds +
		last_time->ts_real.tv_nsec -
		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);

	/* It is possible that the seconds rolled over between taking
	 * the start reading and the last value written by the host.  The
	 * timescales are such that a gap of more than one second is never
	 * expected.
	 */
	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
	if (start_sec != last_sec) {
		if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
			netif_warn(efx, hw, efx->net_dev,
				   "PTP bad synchronisation seconds\n");
			return -EAGAIN;
		} else {
			delta.tv_sec = 1;
		}
	} else {
		delta.tv_sec = 0;
	}

	ptp->host_time_pps = *last_time;
	pps_sub_ts(&ptp->host_time_pps, delta);

	return 0;
}

/* Synchronize times between the host and the MC */
static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
528
	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
529 530 531 532 533 534 535 536
	size_t response_length;
	int rc;
	unsigned long timeout;
	struct pps_event_time last_time = {};
	unsigned int loops = 0;
	int *start = ptp->start.addr;

	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
537
	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
538 539
	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
		       num_readings);
540 541
	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
		       ptp->start.dma_addr);
542 543 544

	/* Clear flag that signals MC ready */
	ACCESS_ONCE(*start) = 0;
B
Ben Hutchings 已提交
545 546 547
	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
	EFX_BUG_ON_PARANOID(rc);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

	/* Wait for start from MCDI (or timeout) */
	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
	while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
		udelay(20);	/* Usually start MCDI execution quickly */
		loops++;
	}

	if (ACCESS_ONCE(*start))
		efx_ptp_send_times(efx, &last_time);

	/* Collect results */
	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
				 synch_buf, sizeof(synch_buf),
				 &response_length);
	if (rc == 0)
		rc = efx_ptp_process_times(efx, synch_buf, response_length,
					   &last_time);

	return rc;
}

/* Transmit a PTP packet, via the MCDI interface, to the wire. */
static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
{
574
	struct efx_ptp_data *ptp_data = efx->ptp_data;
575 576
	struct skb_shared_hwtstamps timestamps;
	int rc = -EIO;
577
	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
578
	size_t len;
579

580
	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
581
	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
582
	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
583 584 585 586 587 588 589 590 591 592 593 594
	if (skb_shinfo(skb)->nr_frags != 0) {
		rc = skb_linearize(skb);
		if (rc != 0)
			goto fail;
	}

	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		rc = skb_checksum_help(skb);
		if (rc != 0)
			goto fail;
	}
	skb_copy_from_linear_data(skb,
595 596
				  MCDI_PTR(ptp_data->txbuf,
					   PTP_IN_TRANSMIT_PACKET),
597 598 599 600
				  skb->len);
	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
			  txtime, sizeof(txtime), &len);
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	if (rc != 0)
		goto fail;

	memset(&timestamps, 0, sizeof(timestamps));
	timestamps.hwtstamp = ktime_set(
		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));

	skb_tstamp_tx(skb, &timestamps);

	rc = 0;

fail:
	dev_kfree_skb(skb);

	return rc;
}

static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct list_head *cursor;
	struct list_head *next;

	/* Drop time-expired events */
	spin_lock_bh(&ptp->evt_lock);
	if (!list_empty(&ptp->evt_list)) {
		list_for_each_safe(cursor, next, &ptp->evt_list) {
			struct efx_ptp_event_rx *evt;

			evt = list_entry(cursor, struct efx_ptp_event_rx,
					 link);
			if (time_after(jiffies, evt->expiry)) {
634
				list_move(&evt->link, &ptp->evt_free_list);
635 636 637 638 639
				netif_warn(efx, hw, efx->net_dev,
					   "PTP rx event dropped\n");
			}
		}
	}
640 641 642 643 644
	/* If the event overflow flag is set and the event list is now empty
	 * clear the flag to re-enable the overflow warning message.
	 */
	if (ptp->evt_overflow && list_empty(&ptp->evt_list))
		ptp->evt_overflow = false;
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	spin_unlock_bh(&ptp->evt_lock);
}

static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
					      struct sk_buff *skb)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	bool evts_waiting;
	struct list_head *cursor;
	struct list_head *next;
	struct efx_ptp_match *match;
	enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;

	spin_lock_bh(&ptp->evt_lock);
	evts_waiting = !list_empty(&ptp->evt_list);
	spin_unlock_bh(&ptp->evt_lock);

	if (!evts_waiting)
		return PTP_PACKET_STATE_UNMATCHED;

	match = (struct efx_ptp_match *)skb->cb;
	/* Look for a matching timestamp in the event queue */
	spin_lock_bh(&ptp->evt_lock);
	list_for_each_safe(cursor, next, &ptp->evt_list) {
		struct efx_ptp_event_rx *evt;

		evt = list_entry(cursor, struct efx_ptp_event_rx, link);
		if ((evt->seq0 == match->words[0]) &&
		    (evt->seq1 == match->words[1])) {
			struct skb_shared_hwtstamps *timestamps;

			/* Match - add in hardware timestamp */
			timestamps = skb_hwtstamps(skb);
			timestamps->hwtstamp = evt->hwtimestamp;

			match->state = PTP_PACKET_STATE_MATCHED;
			rc = PTP_PACKET_STATE_MATCHED;
682
			list_move(&evt->link, &ptp->evt_free_list);
683 684 685
			break;
		}
	}
686 687 688 689 690
	/* If the event overflow flag is set and the event list is now empty
	 * clear the flag to re-enable the overflow warning message.
	 */
	if (ptp->evt_overflow && list_empty(&ptp->evt_list))
		ptp->evt_overflow = false;
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	spin_unlock_bh(&ptp->evt_lock);

	return rc;
}

/* Process any queued receive events and corresponding packets
 *
 * q is returned with all the packets that are ready for delivery.
 * true is returned if at least one of those packets requires
 * synchronisation.
 */
static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	bool rc = false;
	struct sk_buff *skb;

	while ((skb = skb_dequeue(&ptp->rxq))) {
		struct efx_ptp_match *match;

		match = (struct efx_ptp_match *)skb->cb;
		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
			__skb_queue_tail(q, skb);
		} else if (efx_ptp_match_rx(efx, skb) ==
			   PTP_PACKET_STATE_MATCHED) {
			rc = true;
			__skb_queue_tail(q, skb);
		} else if (time_after(jiffies, match->expiry)) {
			match->state = PTP_PACKET_STATE_TIMED_OUT;
			netif_warn(efx, rx_err, efx->net_dev,
				   "PTP packet - no timestamp seen\n");
			__skb_queue_tail(q, skb);
		} else {
			/* Replace unprocessed entry and stop */
			skb_queue_head(&ptp->rxq, skb);
			break;
		}
	}

	return rc;
}

/* Complete processing of a received packet */
static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
{
	local_bh_disable();
	netif_receive_skb(skb);
	local_bh_enable();
}

static int efx_ptp_start(struct efx_nic *efx)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct efx_filter_spec rxfilter;
	int rc;

	ptp->reset_required = false;

	/* Must filter on both event and general ports to ensure
	 * that there is no packet re-ordering.
	 */
	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
			   efx_rx_queue_index(
				   efx_channel_get_rx_queue(ptp->channel)));
	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
				       htonl(PTP_ADDRESS),
				       htons(PTP_EVENT_PORT));
	if (rc != 0)
		return rc;

	rc = efx_filter_insert_filter(efx, &rxfilter, true);
	if (rc < 0)
		return rc;
	ptp->rxfilter_event = rc;

	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
			   efx_rx_queue_index(
				   efx_channel_get_rx_queue(ptp->channel)));
	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
				       htonl(PTP_ADDRESS),
				       htons(PTP_GENERAL_PORT));
	if (rc != 0)
		goto fail;

	rc = efx_filter_insert_filter(efx, &rxfilter, true);
	if (rc < 0)
		goto fail;
	ptp->rxfilter_general = rc;

	rc = efx_ptp_enable(efx);
	if (rc != 0)
		goto fail2;

	ptp->evt_frag_idx = 0;
	ptp->current_adjfreq = 0;
	ptp->rxfilter_installed = true;

	return 0;

fail2:
	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
				  ptp->rxfilter_general);
fail:
	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
				  ptp->rxfilter_event);

	return rc;
}

static int efx_ptp_stop(struct efx_nic *efx)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	int rc = efx_ptp_disable(efx);
	struct list_head *cursor;
	struct list_head *next;

	if (ptp->rxfilter_installed) {
		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
					  ptp->rxfilter_general);
		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
					  ptp->rxfilter_event);
		ptp->rxfilter_installed = false;
	}

	/* Make sure RX packets are really delivered */
	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
	skb_queue_purge(&efx->ptp_data->txq);

	/* Drop any pending receive events */
	spin_lock_bh(&efx->ptp_data->evt_lock);
	list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
822
		list_move(cursor, &efx->ptp_data->evt_free_list);
823
	}
824
	ptp->evt_overflow = false;
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	spin_unlock_bh(&efx->ptp_data->evt_lock);

	return rc;
}

static void efx_ptp_pps_worker(struct work_struct *work)
{
	struct efx_ptp_data *ptp =
		container_of(work, struct efx_ptp_data, pps_work);
	struct efx_nic *efx = ptp->channel->efx;
	struct ptp_clock_event ptp_evt;

	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
		return;

	ptp_evt.type = PTP_CLOCK_PPSUSR;
	ptp_evt.pps_times = ptp->host_time_pps;
	ptp_clock_event(ptp->phc_clock, &ptp_evt);
}

/* Process any pending transmissions and timestamp any received packets.
 */
static void efx_ptp_worker(struct work_struct *work)
{
	struct efx_ptp_data *ptp_data =
		container_of(work, struct efx_ptp_data, work);
	struct efx_nic *efx = ptp_data->channel->efx;
	struct sk_buff *skb;
	struct sk_buff_head tempq;

	if (ptp_data->reset_required) {
		efx_ptp_stop(efx);
		efx_ptp_start(efx);
		return;
	}

	efx_ptp_drop_time_expired_events(efx);

	__skb_queue_head_init(&tempq);
	if (efx_ptp_process_events(efx, &tempq) ||
	    !skb_queue_empty(&ptp_data->txq)) {

		while ((skb = skb_dequeue(&ptp_data->txq)))
			efx_ptp_xmit_skb(efx, skb);
	}

	while ((skb = __skb_dequeue(&tempq)))
		efx_ptp_process_rx(efx, skb);
}

/* Initialise PTP channel and state.
 *
 * Setting core_index to zero causes the queue to be initialised and doesn't
 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
 */
static int efx_ptp_probe_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
	struct efx_ptp_data *ptp;
	int rc = 0;
	unsigned int pos;

	channel->irq_moderation = 0;
	channel->rx_queue.core_index = 0;

	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
	efx->ptp_data = ptp;
	if (!efx->ptp_data)
		return -ENOMEM;

895
	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	if (rc != 0)
		goto fail1;

	ptp->channel = channel;
	skb_queue_head_init(&ptp->rxq);
	skb_queue_head_init(&ptp->txq);
	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
	if (!ptp->workwq) {
		rc = -ENOMEM;
		goto fail2;
	}

	INIT_WORK(&ptp->work, efx_ptp_worker);
	ptp->config.flags = 0;
	ptp->config.tx_type = HWTSTAMP_TX_OFF;
	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
	INIT_LIST_HEAD(&ptp->evt_list);
	INIT_LIST_HEAD(&ptp->evt_free_list);
	spin_lock_init(&ptp->evt_lock);
	for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
		list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
917
	ptp->evt_overflow = false;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

	ptp->phc_clock_info.owner = THIS_MODULE;
	snprintf(ptp->phc_clock_info.name,
		 sizeof(ptp->phc_clock_info.name),
		 "%pm", efx->net_dev->perm_addr);
	ptp->phc_clock_info.max_adj = MAX_PPB;
	ptp->phc_clock_info.n_alarm = 0;
	ptp->phc_clock_info.n_ext_ts = 0;
	ptp->phc_clock_info.n_per_out = 0;
	ptp->phc_clock_info.pps = 1;
	ptp->phc_clock_info.adjfreq = efx_phc_adjfreq;
	ptp->phc_clock_info.adjtime = efx_phc_adjtime;
	ptp->phc_clock_info.gettime = efx_phc_gettime;
	ptp->phc_clock_info.settime = efx_phc_settime;
	ptp->phc_clock_info.enable = efx_phc_enable;

934 935
	ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
					    &efx->pci_dev->dev);
936 937
	if (IS_ERR(ptp->phc_clock)) {
		rc = PTR_ERR(ptp->phc_clock);
938
		goto fail3;
939
	}
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

	INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
	ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
	if (!ptp->pps_workwq) {
		rc = -ENOMEM;
		goto fail4;
	}
	ptp->nic_ts_enabled = false;

	return 0;
fail4:
	ptp_clock_unregister(efx->ptp_data->phc_clock);

fail3:
	destroy_workqueue(efx->ptp_data->workwq);

fail2:
	efx_nic_free_buffer(efx, &ptp->start);

fail1:
	kfree(efx->ptp_data);
	efx->ptp_data = NULL;

	return rc;
}

static void efx_ptp_remove_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	if (!efx->ptp_data)
		return;

	(void)efx_ptp_disable(channel->efx);

	cancel_work_sync(&efx->ptp_data->work);
	cancel_work_sync(&efx->ptp_data->pps_work);

	skb_queue_purge(&efx->ptp_data->rxq);
	skb_queue_purge(&efx->ptp_data->txq);

	ptp_clock_unregister(efx->ptp_data->phc_clock);

	destroy_workqueue(efx->ptp_data->workwq);
	destroy_workqueue(efx->ptp_data->pps_workwq);

	efx_nic_free_buffer(efx, &efx->ptp_data->start);
	kfree(efx->ptp_data);
}

static void efx_ptp_get_channel_name(struct efx_channel *channel,
				     char *buf, size_t len)
{
	snprintf(buf, len, "%s-ptp", channel->efx->name);
}

/* Determine whether this packet should be processed by the PTP module
 * or transmitted conventionally.
 */
bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
{
	return efx->ptp_data &&
		efx->ptp_data->enabled &&
		skb->len >= PTP_MIN_LENGTH &&
		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
		likely(skb->protocol == htons(ETH_P_IP)) &&
1006 1007
		skb_transport_header_was_set(skb) &&
		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1008
		ip_hdr(skb)->protocol == IPPROTO_UDP &&
1009 1010
		skb_headlen(skb) >=
		skb_transport_offset(skb) + sizeof(struct udphdr) &&
1011 1012 1013 1014 1015 1016 1017
		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
}

/* Receive a PTP packet.  Packets are queued until the arrival of
 * the receive timestamp from the MC - this will probably occur after the
 * packet arrival because of the processing in the MC.
 */
1018
static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1019 1020 1021 1022
{
	struct efx_nic *efx = channel->efx;
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1023
	u8 *match_data_012, *match_data_345;
1024 1025 1026 1027 1028 1029
	unsigned int version;

	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);

	/* Correct version? */
	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1030
		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1031
			return false;
1032 1033 1034
		}
		version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
		if (version != PTP_VERSION_V1) {
1035
			return false;
1036
		}
1037 1038 1039 1040 1041 1042

		/* PTP V1 uses all six bytes of the UUID to match the packet
		 * to the timestamp
		 */
		match_data_012 = skb->data + PTP_V1_UUID_OFFSET;
		match_data_345 = skb->data + PTP_V1_UUID_OFFSET + 3;
1043
	} else {
1044
		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1045
			return false;
1046 1047 1048
		}
		version = skb->data[PTP_V2_VERSION_OFFSET];
		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1049
			return false;
1050
		}
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

		/* The original V2 implementation uses bytes 2-7 of
		 * the UUID to match the packet to the timestamp. This
		 * discards two of the bytes of the MAC address used
		 * to create the UUID (SF bug 33070).  The PTP V2
		 * enhanced mode fixes this issue and uses bytes 0-2
		 * and byte 5-7 of the UUID.
		 */
		match_data_345 = skb->data + PTP_V2_UUID_OFFSET + 5;
		if (ptp->mode == MC_CMD_PTP_MODE_V2) {
			match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 2;
		} else {
			match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 0;
			BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
		}
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	}

	/* Does this packet require timestamping? */
	if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
		struct skb_shared_hwtstamps *timestamps;

		match->state = PTP_PACKET_STATE_UNMATCHED;

		/* Clear all timestamps held: filled in later */
		timestamps = skb_hwtstamps(skb);
		memset(timestamps, 0, sizeof(*timestamps));

1078 1079 1080 1081 1082 1083
		/* We expect the sequence number to be in the same position in
		 * the packet for PTP V1 and V2
		 */
		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);

1084
		/* Extract UUID/Sequence information */
1085 1086 1087 1088 1089 1090
		match->words[0] = (match_data_012[0]         |
				   (match_data_012[1] << 8)  |
				   (match_data_012[2] << 16) |
				   (match_data_345[0] << 24));
		match->words[1] = (match_data_345[1]         |
				   (match_data_345[2] << 8)  |
1091 1092 1093 1094 1095 1096 1097 1098 1099
				   (skb->data[PTP_V1_SEQUENCE_OFFSET +
					      PTP_V1_SEQUENCE_LENGTH - 1] <<
				    16));
	} else {
		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
	}

	skb_queue_tail(&ptp->rxq, skb);
	queue_work(ptp->workwq, &ptp->work);
1100 1101

	return true;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
}

/* Transmit a PTP packet.  This has to be transmitted by the MC
 * itself, through an MCDI call.  MCDI calls aren't permitted
 * in the transmit path so defer the actual transmission to a suitable worker.
 */
int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
{
	struct efx_ptp_data *ptp = efx->ptp_data;

	skb_queue_tail(&ptp->txq, skb);

	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
		efx_xmit_hwtstamp_pending(skb);
	queue_work(ptp->workwq, &ptp->work);

	return NETDEV_TX_OK;
}

static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
			       unsigned int new_mode)
{
	if ((enable_wanted != efx->ptp_data->enabled) ||
	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
		int rc;

		if (enable_wanted) {
			/* Change of mode requires disable */
			if (efx->ptp_data->enabled &&
			    (efx->ptp_data->mode != new_mode)) {
				efx->ptp_data->enabled = false;
				rc = efx_ptp_stop(efx);
				if (rc != 0)
					return rc;
			}

			/* Set new operating mode and establish
			 * baseline synchronisation, which must
			 * succeed.
			 */
			efx->ptp_data->mode = new_mode;
			rc = efx_ptp_start(efx);
			if (rc == 0) {
				rc = efx_ptp_synchronize(efx,
							 PTP_SYNC_ATTEMPTS * 2);
				if (rc != 0)
					efx_ptp_stop(efx);
			}
		} else {
			rc = efx_ptp_stop(efx);
		}

		if (rc != 0)
			return rc;

		efx->ptp_data->enabled = enable_wanted;
	}

	return 0;
}

static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
{
	bool enable_wanted = false;
	unsigned int new_mode;
	int rc;

	if (init->flags)
		return -EINVAL;

	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
	    (init->tx_type != HWTSTAMP_TX_ON))
		return -ERANGE;

	new_mode = efx->ptp_data->mode;
	/* Determine whether any PTP HW operations are required */
	switch (init->rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		new_mode = MC_CMD_PTP_MODE_V1;
		enable_wanted = true;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	/* Although these three are accepted only IPV4 packets will be
	 * timestamped
	 */
		init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
1196
		new_mode = MC_CMD_PTP_MODE_V2_ENHANCED;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
		enable_wanted = true;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
		/* Non-IP + IPv6 timestamping not supported */
		return -ERANGE;
		break;
	default:
		return -ERANGE;
	}

	if (init->tx_type != HWTSTAMP_TX_OFF)
		enable_wanted = true;

1215 1216 1217 1218 1219
	/* Old versions of the firmware do not support the improved
	 * UUID filtering option (SF bug 33070).  If the firmware does
	 * not accept the enhanced mode, fall back to the standard PTP
	 * v2 UUID filtering.
	 */
1220
	rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
1221 1222
	if ((rc != 0) && (new_mode == MC_CMD_PTP_MODE_V2_ENHANCED))
		rc = efx_ptp_change_mode(efx, enable_wanted, MC_CMD_PTP_MODE_V2);
1223 1224 1225 1226 1227 1228 1229 1230
	if (rc != 0)
		return rc;

	efx->ptp_data->config = *init;

	return 0;
}

1231
void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1232 1233 1234 1235
{
	struct efx_ptp_data *ptp = efx->ptp_data;

	if (!ptp)
1236
		return;
1237

1238 1239 1240
	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
				     SOF_TIMESTAMPING_RX_HARDWARE |
				     SOF_TIMESTAMPING_RAW_HARDWARE);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
	ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
			       1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
			       1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
			       1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
			       1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
			       1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
			       1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
}

int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd)
{
	struct hwtstamp_config config;
	int rc;

	/* Not a PTP enabled port */
	if (!efx->ptp_data)
		return -EOPNOTSUPP;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	rc = efx_ptp_ts_init(efx, &config);
	if (rc != 0)
		return rc;

	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
		? -EFAULT : 0;
}

static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
{
	struct efx_ptp_data *ptp = efx->ptp_data;

	netif_err(efx, hw, efx->net_dev,
		"PTP unexpected event length: got %d expected %d\n",
		ptp->evt_frag_idx, expected_frag_len);
	ptp->reset_required = true;
	queue_work(ptp->workwq, &ptp->work);
}

/* Process a completed receive event.  Put it on the event queue and
 * start worker thread.  This is required because event and their
 * correspoding packets may come in either order.
 */
static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
	struct efx_ptp_event_rx *evt = NULL;

	if (ptp->evt_frag_idx != 3) {
		ptp_event_failure(efx, 3);
		return;
	}

	spin_lock_bh(&ptp->evt_lock);
	if (!list_empty(&ptp->evt_free_list)) {
		evt = list_first_entry(&ptp->evt_free_list,
				       struct efx_ptp_event_rx, link);
		list_del(&evt->link);

		evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
		evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
					     MCDI_EVENT_SRC)        |
			     (EFX_QWORD_FIELD(ptp->evt_frags[1],
					      MCDI_EVENT_SRC) << 8) |
			     (EFX_QWORD_FIELD(ptp->evt_frags[0],
					      MCDI_EVENT_SRC) << 16));
		evt->hwtimestamp = ktime_set(
			EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
			EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
		evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
		list_add_tail(&evt->link, &ptp->evt_list);

		queue_work(ptp->workwq, &ptp->work);
1316 1317 1318 1319 1320 1321 1322
	} else if (!ptp->evt_overflow) {
		/* Log a warning message and set the event overflow flag.
		 * The message won't be logged again until the event queue
		 * becomes empty.
		 */
		netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
		ptp->evt_overflow = true;
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	}
	spin_unlock_bh(&ptp->evt_lock);
}

static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
	if (ptp->evt_frag_idx != 1) {
		ptp_event_failure(efx, 1);
		return;
	}

	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
}

static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
	if (ptp->nic_ts_enabled)
		queue_work(ptp->pps_workwq, &ptp->pps_work);
}

void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);

	if (!ptp->enabled)
		return;

	if (ptp->evt_frag_idx == 0) {
		ptp->evt_code = code;
	} else if (ptp->evt_code != code) {
		netif_err(efx, hw, efx->net_dev,
			  "PTP out of sequence event %d\n", code);
		ptp->evt_frag_idx = 0;
	}

	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
		/* Process resulting event */
		switch (code) {
		case MCDI_EVENT_CODE_PTP_RX:
			ptp_event_rx(efx, ptp);
			break;
		case MCDI_EVENT_CODE_PTP_FAULT:
			ptp_event_fault(efx, ptp);
			break;
		case MCDI_EVENT_CODE_PTP_PPS:
			ptp_event_pps(efx, ptp);
			break;
		default:
			netif_err(efx, hw, efx->net_dev,
				  "PTP unknown event %d\n", code);
			break;
		}
		ptp->evt_frag_idx = 0;
	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
		netif_err(efx, hw, efx->net_dev,
			  "PTP too many event fragments\n");
		ptp->evt_frag_idx = 0;
	}
}

static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
{
	struct efx_ptp_data *ptp_data = container_of(ptp,
						     struct efx_ptp_data,
						     phc_clock_info);
	struct efx_nic *efx = ptp_data->channel->efx;
1392
	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	s64 adjustment_ns;
	int rc;

	if (delta > MAX_PPB)
		delta = MAX_PPB;
	else if (delta < -MAX_PPB)
		delta = -MAX_PPB;

	/* Convert ppb to fixed point ns. */
	adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
			 (PPB_EXTRA_BITS + MAX_PPB_BITS));

	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1406
	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
1407
	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
			  NULL, 0, NULL);
	if (rc != 0)
		return rc;

	ptp_data->current_adjfreq = delta;
	return 0;
}

static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	struct efx_ptp_data *ptp_data = container_of(ptp,
						     struct efx_ptp_data,
						     phc_clock_info);
	struct efx_nic *efx = ptp_data->channel->efx;
	struct timespec delta_ts = ns_to_timespec(delta);
1426
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
1427 1428

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1429
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1430
	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, 0);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
{
	struct efx_ptp_data *ptp_data = container_of(ptp,
						     struct efx_ptp_data,
						     phc_clock_info);
	struct efx_nic *efx = ptp_data->channel->efx;
1443 1444
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
1445 1446 1447
	int rc;

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1448
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), NULL);
	if (rc != 0)
		return rc;

	ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
	ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
	return 0;
}

static int efx_phc_settime(struct ptp_clock_info *ptp,
			   const struct timespec *e_ts)
{
	/* Get the current NIC time, efx_phc_gettime.
	 * Subtract from the desired time to get the offset
	 * call efx_phc_adjtime with the offset
	 */
	int rc;
	struct timespec time_now;
	struct timespec delta;

	rc = efx_phc_gettime(ptp, &time_now);
	if (rc != 0)
		return rc;

	delta = timespec_sub(*e_ts, time_now);

1477
	rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta));
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	if (rc != 0)
		return rc;

	return 0;
}

static int efx_phc_enable(struct ptp_clock_info *ptp,
			  struct ptp_clock_request *request,
			  int enable)
{
	struct efx_ptp_data *ptp_data = container_of(ptp,
						     struct efx_ptp_data,
						     phc_clock_info);
	if (request->type != PTP_CLK_REQ_PPS)
		return -EOPNOTSUPP;

	ptp_data->nic_ts_enabled = !!enable;
	return 0;
}

static const struct efx_channel_type efx_ptp_channel_type = {
	.handle_no_channel	= efx_ptp_handle_no_channel,
	.pre_probe		= efx_ptp_probe_channel,
	.post_remove		= efx_ptp_remove_channel,
	.get_name		= efx_ptp_get_channel_name,
	/* no copy operation; there is no need to reallocate this channel */
	.receive_skb		= efx_ptp_rx,
	.keep_eventq		= false,
};

void efx_ptp_probe(struct efx_nic *efx)
{
	/* Check whether PTP is implemented on this NIC.  The DISABLE
	 * operation will succeed if and only if it is implemented.
	 */
	if (efx_ptp_disable(efx) == 0)
		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
			&efx_ptp_channel_type;
}