arm.c 35.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
23
#include <linux/list.h>
24 25 26 27 28
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30 31
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
32
#include <trace/events/kvm.h>
33
#include <kvm/arm_pmu.h>
34 35 36 37

#define CREATE_TRACE_POINTS
#include "trace.h"

38
#include <linux/uaccess.h>
39 40
#include <asm/ptrace.h>
#include <asm/mman.h>
41
#include <asm/tlbflush.h>
42
#include <asm/cacheflush.h>
43 44 45 46
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
47
#include <asm/kvm_emulate.h>
48
#include <asm/kvm_coproc.h>
49
#include <asm/kvm_psci.h>
50
#include <asm/sections.h>
51 52 53 54 55

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

56
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
57
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
58

59 60 61
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

62 63
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 65
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
66
static DEFINE_SPINLOCK(kvm_vmid_lock);
67

68 69
static bool vgic_present;

70 71
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

72 73
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
74
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 76
}

77 78
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

79 80 81 82 83 84
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
85
	return __this_cpu_read(kvm_arm_running_vcpu);
86 87 88 89 90
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
91
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 93 94 95
{
	return &kvm_arm_running_vcpu;
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


112 113 114 115
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
116 117
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
118
	int ret, cpu;
119

120 121 122
	if (type)
		return -EINVAL;

123 124 125 126 127 128 129
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

130 131 132 133
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

134
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135 136 137
	if (ret)
		goto out_free_stage2_pgd;

138
	kvm_vgic_early_init(kvm);
139

140 141 142
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

143
	/* The maximum number of VCPUs is limited by the host's GIC model */
144 145
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146

147 148 149 150
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
151 152
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
153
	return ret;
154 155
}

156 157 158 159 160 161 162 163 164 165
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

166 167 168 169 170 171
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177 178 179
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

180 181
	kvm_vgic_destroy(kvm);

182 183 184
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

185 186 187 188 189 190
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
191
	atomic_set(&kvm->online_vcpus, 0);
192 193
}

194
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 196 197
{
	int r;
	switch (ext) {
198
	case KVM_CAP_IRQCHIP:
199 200
		r = vgic_present;
		break;
201
	case KVM_CAP_IOEVENTFD:
202
	case KVM_CAP_DEVICE_CTRL:
203 204 205 206
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
207
	case KVM_CAP_ARM_PSCI:
208
	case KVM_CAP_ARM_PSCI_0_2:
209
	case KVM_CAP_READONLY_MEM:
210
	case KVM_CAP_MP_STATE:
211
	case KVM_CAP_IMMEDIATE_EXIT:
212 213
		r = 1;
		break;
214 215
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
216
		break;
217 218 219 220 221 222
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
223 224 225
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
226 227 228 229 230 231
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
232 233 234 235 236 237 238
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
239
	default:
240
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

258 259 260 261 262
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

263 264 265 266 267
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

268 269 270 271 272 273 274 275 276 277
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

278
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279 280 281
	if (err)
		goto vcpu_uninit;

282
	return vcpu;
283 284
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
285 286 287 288 289 290
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

291
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292
{
293
	kvm_vgic_vcpu_early_init(vcpu);
294 295 296 297
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
298 299 300
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

301
	kvm_mmu_free_memory_caches(vcpu);
302
	kvm_timer_vcpu_terminate(vcpu);
303
	kvm_pmu_vcpu_destroy(vcpu);
304
	kvm_vcpu_uninit(vcpu);
305
	kmem_cache_free(kvm_vcpu_cache, vcpu);
306 307 308 309 310 311 312 313 314
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
315
	return kvm_timer_is_pending(vcpu);
316 317
}

318 319 320
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
321
	kvm_vgic_v4_enable_doorbell(vcpu);
322 323 324 325 326
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
327
	kvm_vgic_v4_disable_doorbell(vcpu);
328 329
}

330 331
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
332 333
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
334
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
335

336 337 338
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

339 340
	kvm_arm_reset_debug_ptr(vcpu);

341
	return kvm_vgic_vcpu_init(vcpu);
342 343 344 345
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
346 347 348 349 350 351 352 353 354 355 356 357 358
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

359
	vcpu->cpu = cpu;
360
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
361

362
	kvm_arm_set_running_vcpu(vcpu);
363
	kvm_vgic_load(vcpu);
364
	kvm_timer_vcpu_load(vcpu);
365 366 367 368
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
369
	kvm_timer_vcpu_put(vcpu);
370 371
	kvm_vgic_put(vcpu);

372 373
	vcpu->cpu = -1;

374
	kvm_arm_set_running_vcpu(NULL);
375 376
}

A
Andrew Jones 已提交
377 378 379
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
380
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
381 382 383
	kvm_vcpu_kick(vcpu);
}

384 385 386
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
387
	if (vcpu->arch.power_off)
388 389 390 391 392
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
393 394 395 396 397
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
398 399
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
400
		vcpu->arch.power_off = false;
401 402
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
403
		vcpu_power_off(vcpu);
404 405 406 407 408 409
		break;
	default:
		return -EINVAL;
	}

	return 0;
410 411
}

412 413 414 415 416 417 418
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
419 420
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
421
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
422
		&& !v->arch.power_off && !v->arch.pause);
423 424
}

425 426
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
427
	return vcpu_mode_priv(vcpu);
428 429
}

430 431 432 433 434 435 436
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
437
	preempt_disable();
438
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
439
	preempt_enable();
440 441 442 443
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
444
 * @kvm: The VM's VMID to check
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
509
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
510 511

	/* update vttbr to be used with the new vmid */
512
	pgd_phys = virt_to_phys(kvm->arch.pgd);
513
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
514
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
515
	kvm->arch.vttbr = pgd_phys | vmid;
516 517 518 519 520 521

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
522
	struct kvm *kvm = vcpu->kvm;
523
	int ret = 0;
524

525 526 527 528
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
546 547
	}

548
	ret = kvm_timer_enable(vcpu);
549 550 551 552
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
553

554
	return ret;
555 556
}

557 558 559 560 561
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

562
void kvm_arm_halt_guest(struct kvm *kvm)
563 564 565 566 567 568
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
569
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
570 571
}

572
void kvm_arm_resume_guest(struct kvm *kvm)
573 574 575 576
{
	int i;
	struct kvm_vcpu *vcpu;

577 578 579 580
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
		swake_up(kvm_arch_vcpu_wq(vcpu));
	}
581 582
}

583
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
584
{
585
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
586

587
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
588
				       (!vcpu->arch.pause)));
589

A
Andrew Jones 已提交
590
	if (vcpu->arch.power_off || vcpu->arch.pause) {
591
		/* Awaken to handle a signal, request we sleep again later. */
592
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
593
	}
594 595
}

596 597 598 599 600
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

601 602 603
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
604 605
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
606 607 608 609 610 611

		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
612 613 614
	}
}

615 616 617 618 619 620 621 622 623 624 625
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
626 627
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
628 629
	int ret;

630
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
631 632 633 634 635 636
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
637 638 639 640
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
641 642 643
		if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
			return 0;

C
Christoffer Dall 已提交
644 645
	}

646 647 648
	if (run->immediate_exit)
		return -EINTR;

649
	kvm_sigset_activate(vcpu);
650 651 652 653 654 655 656 657 658 659 660

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

661 662
		check_vcpu_requests(vcpu);

663 664 665 666 667
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
668
		preempt_disable();
669

670 671 672
		/* Flush FP/SIMD state that can't survive guest entry/exit */
		kvm_fpsimd_flush_cpu_state();

673
		kvm_pmu_flush_hwstate(vcpu);
674

675 676
		local_irq_disable();

677 678
		kvm_vgic_flush_hwstate(vcpu);

679
		/*
680 681
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
682
		 */
683
		if (signal_pending(current)) {
684 685 686 687
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

703 704 705 706 707 708 709 710
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

711
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
712
		    kvm_request_pending(vcpu)) {
713
			vcpu->mode = OUTSIDE_GUEST_MODE;
714
			kvm_pmu_sync_hwstate(vcpu);
715 716
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
717
			kvm_vgic_sync_hwstate(vcpu);
718
			local_irq_enable();
719
			preempt_enable();
720 721 722
			continue;
		}

723 724
		kvm_arm_setup_debug(vcpu);

725 726 727 728
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
729
		guest_enter_irqoff();
730 731 732 733

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
734
		vcpu->stat.exits++;
735 736 737 738
		/*
		 * Back from guest
		 *************************************************************/

739 740
		kvm_arm_clear_debug(vcpu);

741
		/*
742
		 * We must sync the PMU state before the vgic state so
743 744 745 746 747
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

748 749 750 751 752
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
753 754
		kvm_vgic_sync_hwstate(vcpu);

755 756 757 758 759
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
760 761
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
762

763 764 765 766 767 768 769 770 771 772 773 774 775
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
776
		 * We do local_irq_enable() before calling guest_exit() so
777 778
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
779
		 * preemption after calling guest_exit() so that if we get
780 781 782
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
783
		guest_exit();
784
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
785

786 787
		preempt_enable();

788 789 790
		ret = handle_exit(vcpu, run, ret);
	}

791
	/* Tell userspace about in-kernel device output levels */
792 793 794 795
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
796

797 798
	kvm_sigset_deactivate(vcpu);

799
	return ret;
800 801
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
830
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
831 832 833 834 835
	kvm_vcpu_kick(vcpu);

	return 0;
}

836 837
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
838 839 840 841 842 843 844 845 846 847 848 849 850
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

851 852 853 854
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
855

856 857
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
858

859 860 861
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
862

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
880

881
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
882 883 884 885
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

886
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
887 888
			return -EINVAL;

889
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
890 891 892
	}

	return -EINVAL;
893 894
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


937 938 939 940 941 942 943 944 945
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

946 947 948 949 950 951 952
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

953 954
	vcpu_reset_hcr(vcpu);

955
	/*
956
	 * Handle the "start in power-off" case.
957
	 */
958
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
959
		vcpu_power_off(vcpu);
960
	else
961
		vcpu->arch.power_off = false;
962 963 964 965

	return 0;
}

966 967 968 969 970 971 972
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
973
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
974 975 976 977 978 979 980 981 982 983 984 985 986
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
987
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
988 989 990 991 992 993 994 995 996 997 998 999 1000
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1001
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1002 1003 1004 1005 1006 1007
		break;
	}

	return ret;
}

1008 1009 1010 1011 1012
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1013
	struct kvm_device_attr attr;
1014 1015 1016 1017 1018 1019 1020 1021

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

1022
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1023 1024 1025 1026
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1027 1028 1029 1030

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1043 1044 1045
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	case KVM_SET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_set_attr(vcpu, &attr);
	}
	case KVM_GET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_get_attr(vcpu, &attr);
	}
	case KVM_HAS_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_has_attr(vcpu, &attr);
	}
1071 1072 1073 1074 1075
	default:
		return -EINVAL;
	}
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1095 1096
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1109 1110
}

1111 1112 1113
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1114 1115 1116 1117 1118 1119 1120 1121 1122
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1123 1124
		if (!vgic_present)
			return -ENXIO;
1125
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1126 1127 1128
	default:
		return -ENODEV;
	}
1129 1130
}

1131 1132 1133
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1134 1135 1136 1137
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1138
	case KVM_CREATE_IRQCHIP: {
1139
		int ret;
1140 1141
		if (!vgic_present)
			return -ENXIO;
1142 1143 1144 1145
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1146
	}
1147 1148 1149 1150 1151 1152 1153
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1167 1168 1169
	default:
		return -EINVAL;
	}
1170 1171
}

1172
static void cpu_init_hyp_mode(void *dummy)
1173
{
1174
	phys_addr_t pgd_ptr;
1175 1176 1177 1178 1179
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1180
	__hyp_set_vectors(kvm_get_idmap_vector());
1181

1182
	pgd_ptr = kvm_mmu_get_httbr();
1183
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1184
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1185
	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1186

M
Marc Zyngier 已提交
1187
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1188
	__cpu_init_stage2();
1189 1190

	kvm_arm_init_debug();
1191 1192
}

1193 1194 1195 1196 1197 1198
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1199 1200
static void cpu_hyp_reinit(void)
{
1201 1202
	cpu_hyp_reset();

1203 1204
	if (is_kernel_in_hyp_mode()) {
		/*
1205
		 * __cpu_init_stage2() is safe to call even if the PM
1206 1207
		 * event was cancelled before the CPU was reset.
		 */
1208
		__cpu_init_stage2();
1209
		kvm_timer_init_vhe();
1210
	} else {
1211
		cpu_init_hyp_mode(NULL);
1212
	}
1213 1214 1215

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1216 1217
}

1218 1219 1220
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1221
		cpu_hyp_reinit();
1222
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1223
	}
1224
}
1225

1226 1227 1228 1229
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1230 1231
}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1244

1245 1246 1247 1248 1249
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1265
		return NOTIFY_OK;
1266
	case CPU_PM_ENTER_FAILED:
1267 1268 1269 1270
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1271

1272 1273 1274 1275 1276
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1287 1288 1289 1290
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1291 1292 1293 1294
#else
static inline void hyp_cpu_pm_init(void)
{
}
1295 1296 1297
static inline void hyp_cpu_pm_exit(void)
{
}
1298 1299
#endif

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

1313 1314 1315 1316
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1317 1318 1319 1320 1321
	return 0;
}

static int init_subsystems(void)
{
1322
	int err = 0;
1323

1324
	/*
1325
	 * Enable hardware so that subsystem initialisation can access EL2.
1326
	 */
1327
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1328 1329 1330 1331 1332 1333

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1345
		err = 0;
1346 1347
		break;
	default:
1348
		goto out;
1349 1350 1351 1352 1353 1354 1355
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1356
		goto out;
1357 1358 1359 1360

	kvm_perf_init();
	kvm_coproc_table_init();

1361 1362 1363 1364
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1365 1366 1367 1368 1369 1370 1371 1372 1373
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1374
	hyp_cpu_pm_exit();
1375 1376
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1401
			goto out_err;
1402 1403 1404 1405 1406 1407 1408 1409
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1410
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1411
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1412 1413
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1414
		goto out_err;
1415 1416
	}

1417
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1418
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1419 1420
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1421 1422 1423 1424 1425 1426 1427
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1428
		goto out_err;
1429 1430
	}

1431 1432 1433 1434 1435
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1436 1437
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1438 1439 1440

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1441
			goto out_err;
1442 1443 1444 1445
		}
	}

	for_each_possible_cpu(cpu) {
1446
		kvm_cpu_context_t *cpu_ctxt;
1447

1448
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1449
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1450 1451

		if (err) {
1452
			kvm_err("Cannot map host CPU state: %d\n", err);
1453
			goto out_err;
1454 1455 1456 1457
		}
	}

	return 0;
1458

1459
out_err:
1460
	teardown_hyp_mode();
1461 1462 1463 1464
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1465 1466 1467 1468 1469
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1494 1495
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1496 1497 1498 1499 1500 1501 1502
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1503 1504
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1523 1524 1525
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1526 1527
int kvm_arch_init(void *opaque)
{
1528
	int err;
1529
	int ret, cpu;
1530
	bool in_hyp_mode;
1531 1532

	if (!is_hyp_mode_available()) {
1533
		kvm_info("HYP mode not available\n");
1534 1535 1536
		return -ENODEV;
	}

1537 1538 1539 1540 1541 1542
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1543 1544
	}

1545
	err = init_common_resources();
1546
	if (err)
1547
		return err;
1548

1549 1550 1551
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode) {
1552
		err = init_hyp_mode();
1553 1554 1555
		if (err)
			goto out_err;
	}
1556

1557 1558 1559
	err = init_subsystems();
	if (err)
		goto out_hyp;
1560

1561 1562 1563 1564 1565
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1566
	return 0;
1567 1568

out_hyp:
1569 1570
	if (!in_hyp_mode)
		teardown_hyp_mode();
1571
out_err:
1572
	teardown_common_resources();
1573
	return err;
1574 1575 1576 1577 1578
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1579
	kvm_perf_teardown();
1580 1581 1582 1583 1584 1585 1586 1587 1588
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);