blk-settings.c 25.1 KB
Newer Older
J
Jens Axboe 已提交
1 2 3 4 5 6 7 8 9
/*
 * Functions related to setting various queue properties from drivers
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10
#include <linux/gcd.h>
11
#include <linux/lcm.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
13
#include <linux/gfp.h>
J
Jens Axboe 已提交
14 15 16

#include "blk.h"

17
unsigned long blk_max_low_pfn;
J
Jens Axboe 已提交
18
EXPORT_SYMBOL(blk_max_low_pfn);
19 20

unsigned long blk_max_pfn;
J
Jens Axboe 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

/**
 * blk_queue_prep_rq - set a prepare_request function for queue
 * @q:		queue
 * @pfn:	prepare_request function
 *
 * It's possible for a queue to register a prepare_request callback which
 * is invoked before the request is handed to the request_fn. The goal of
 * the function is to prepare a request for I/O, it can be used to build a
 * cdb from the request data for instance.
 *
 */
void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
{
	q->prep_rq_fn = pfn;
}
EXPORT_SYMBOL(blk_queue_prep_rq);

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/**
 * blk_queue_unprep_rq - set an unprepare_request function for queue
 * @q:		queue
 * @ufn:	unprepare_request function
 *
 * It's possible for a queue to register an unprepare_request callback
 * which is invoked before the request is finally completed. The goal
 * of the function is to deallocate any data that was allocated in the
 * prepare_request callback.
 *
 */
void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
{
	q->unprep_rq_fn = ufn;
}
EXPORT_SYMBOL(blk_queue_unprep_rq);

J
Jens Axboe 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/**
 * blk_queue_merge_bvec - set a merge_bvec function for queue
 * @q:		queue
 * @mbfn:	merge_bvec_fn
 *
 * Usually queues have static limitations on the max sectors or segments that
 * we can put in a request. Stacking drivers may have some settings that
 * are dynamic, and thus we have to query the queue whether it is ok to
 * add a new bio_vec to a bio at a given offset or not. If the block device
 * has such limitations, it needs to register a merge_bvec_fn to control
 * the size of bio's sent to it. Note that a block device *must* allow a
 * single page to be added to an empty bio. The block device driver may want
 * to use the bio_split() function to deal with these bio's. By default
 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
 * honored.
 */
void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
{
	q->merge_bvec_fn = mbfn;
}
EXPORT_SYMBOL(blk_queue_merge_bvec);

void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
{
	q->softirq_done_fn = fn;
}
EXPORT_SYMBOL(blk_queue_softirq_done);

J
Jens Axboe 已提交
84 85 86 87 88 89 90 91 92 93 94 95
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
{
	q->rq_timeout = timeout;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);

void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
{
	q->rq_timed_out_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);

96 97 98 99 100 101
void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
{
	q->lld_busy_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_lld_busy);

102 103
/**
 * blk_set_default_limits - reset limits to default values
104
 * @lim:  the queue_limits structure to reset
105 106 107 108 109 110 111 112
 *
 * Description:
 *   Returns a queue_limit struct to its default state.  Can be used by
 *   stacking drivers like DM that stage table swaps and reuse an
 *   existing device queue.
 */
void blk_set_default_limits(struct queue_limits *lim)
{
113
	lim->max_segments = BLK_MAX_SEGMENTS;
114
	lim->max_integrity_segments = 0;
115
	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
116
	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
117 118
	lim->max_sectors = BLK_DEF_MAX_SECTORS;
	lim->max_hw_sectors = INT_MAX;
119 120 121 122
	lim->max_discard_sectors = 0;
	lim->discard_granularity = 0;
	lim->discard_alignment = 0;
	lim->discard_misaligned = 0;
123
	lim->discard_zeroes_data = -1;
124
	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
125
	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
126 127 128 129 130 131 132
	lim->alignment_offset = 0;
	lim->io_opt = 0;
	lim->misaligned = 0;
	lim->no_cluster = 0;
}
EXPORT_SYMBOL(blk_set_default_limits);

J
Jens Axboe 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/**
 * blk_queue_make_request - define an alternate make_request function for a device
 * @q:  the request queue for the device to be affected
 * @mfn: the alternate make_request function
 *
 * Description:
 *    The normal way for &struct bios to be passed to a device
 *    driver is for them to be collected into requests on a request
 *    queue, and then to allow the device driver to select requests
 *    off that queue when it is ready.  This works well for many block
 *    devices. However some block devices (typically virtual devices
 *    such as md or lvm) do not benefit from the processing on the
 *    request queue, and are served best by having the requests passed
 *    directly to them.  This can be achieved by providing a function
 *    to blk_queue_make_request().
 *
 * Caveat:
 *    The driver that does this *must* be able to deal appropriately
 *    with buffers in "highmemory". This can be accomplished by either calling
 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
 *    blk_queue_bounce() to create a buffer in normal memory.
 **/
155
void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
J
Jens Axboe 已提交
156 157 158 159 160
{
	/*
	 * set defaults
	 */
	q->nr_requests = BLKDEV_MAX_RQ;
161

J
Jens Axboe 已提交
162 163 164 165 166 167
	q->make_request_fn = mfn;
	blk_queue_dma_alignment(q, 511);
	blk_queue_congestion_threshold(q);
	q->nr_batching = BLK_BATCH_REQ;

	q->unplug_thresh = 4;		/* hmm */
R
Randy Dunlap 已提交
168
	q->unplug_delay = msecs_to_jiffies(3);	/* 3 milliseconds */
J
Jens Axboe 已提交
169 170 171 172 173 174
	if (q->unplug_delay == 0)
		q->unplug_delay = 1;

	q->unplug_timer.function = blk_unplug_timeout;
	q->unplug_timer.data = (unsigned long)q;

175
	blk_set_default_limits(&q->limits);
176
	blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
177

178 179 180 181 182 183 184
	/*
	 * If the caller didn't supply a lock, fall back to our embedded
	 * per-queue locks
	 */
	if (!q->queue_lock)
		q->queue_lock = &q->__queue_lock;

J
Jens Axboe 已提交
185 186 187 188 189 190 191 192 193
	/*
	 * by default assume old behaviour and bounce for any highmem page
	 */
	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
}
EXPORT_SYMBOL(blk_queue_make_request);

/**
 * blk_queue_bounce_limit - set bounce buffer limit for queue
194 195
 * @q: the request queue for the device
 * @dma_mask: the maximum address the device can handle
J
Jens Axboe 已提交
196 197 198 199 200
 *
 * Description:
 *    Different hardware can have different requirements as to what pages
 *    it can do I/O directly to. A low level driver can call
 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
201
 *    buffers for doing I/O to pages residing above @dma_mask.
J
Jens Axboe 已提交
202
 **/
203
void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
J
Jens Axboe 已提交
204
{
205
	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
J
Jens Axboe 已提交
206 207 208 209
	int dma = 0;

	q->bounce_gfp = GFP_NOIO;
#if BITS_PER_LONG == 64
210 211 212 213 214 215
	/*
	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
	 * some IOMMUs can handle everything, but I don't know of a
	 * way to test this here.
	 */
	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
J
Jens Axboe 已提交
216
		dma = 1;
217
	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
J
Jens Axboe 已提交
218
#else
219
	if (b_pfn < blk_max_low_pfn)
J
Jens Axboe 已提交
220
		dma = 1;
221
	q->limits.bounce_pfn = b_pfn;
222
#endif
J
Jens Axboe 已提交
223 224 225
	if (dma) {
		init_emergency_isa_pool();
		q->bounce_gfp = GFP_NOIO | GFP_DMA;
226
		q->limits.bounce_pfn = b_pfn;
J
Jens Axboe 已提交
227 228 229 230 231
	}
}
EXPORT_SYMBOL(blk_queue_bounce_limit);

/**
232
 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
J
Jens Axboe 已提交
233
 * @q:  the request queue for the device
234
 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
J
Jens Axboe 已提交
235 236
 *
 * Description:
237 238 239 240 241 242 243 244 245
 *    Enables a low level driver to set a hard upper limit,
 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 *    the device driver based upon the combined capabilities of I/O
 *    controller and storage device.
 *
 *    max_sectors is a soft limit imposed by the block layer for
 *    filesystem type requests.  This value can be overridden on a
 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 *    The soft limit can not exceed max_hw_sectors.
J
Jens Axboe 已提交
246
 **/
247
void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
J
Jens Axboe 已提交
248
{
249 250
	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
251
		printk(KERN_INFO "%s: set to minimum %d\n",
252
		       __func__, max_hw_sectors);
J
Jens Axboe 已提交
253 254
	}

255 256 257
	q->limits.max_hw_sectors = max_hw_sectors;
	q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
				      BLK_DEF_MAX_SECTORS);
J
Jens Axboe 已提交
258
}
259
EXPORT_SYMBOL(blk_queue_max_hw_sectors);
J
Jens Axboe 已提交
260

261 262 263
/**
 * blk_queue_max_discard_sectors - set max sectors for a single discard
 * @q:  the request queue for the device
264
 * @max_discard_sectors: maximum number of sectors to discard
265 266 267 268 269 270 271 272
 **/
void blk_queue_max_discard_sectors(struct request_queue *q,
		unsigned int max_discard_sectors)
{
	q->limits.max_discard_sectors = max_discard_sectors;
}
EXPORT_SYMBOL(blk_queue_max_discard_sectors);

J
Jens Axboe 已提交
273
/**
274
 * blk_queue_max_segments - set max hw segments for a request for this queue
J
Jens Axboe 已提交
275 276 277 278 279
 * @q:  the request queue for the device
 * @max_segments:  max number of segments
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the number of
280
 *    hw data segments in a request.
J
Jens Axboe 已提交
281
 **/
282
void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
J
Jens Axboe 已提交
283 284 285
{
	if (!max_segments) {
		max_segments = 1;
286 287
		printk(KERN_INFO "%s: set to minimum %d\n",
		       __func__, max_segments);
J
Jens Axboe 已提交
288 289
	}

290
	q->limits.max_segments = max_segments;
J
Jens Axboe 已提交
291
}
292
EXPORT_SYMBOL(blk_queue_max_segments);
J
Jens Axboe 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306

/**
 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 * @q:  the request queue for the device
 * @max_size:  max size of segment in bytes
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the size of a
 *    coalesced segment
 **/
void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
{
	if (max_size < PAGE_CACHE_SIZE) {
		max_size = PAGE_CACHE_SIZE;
307 308
		printk(KERN_INFO "%s: set to minimum %d\n",
		       __func__, max_size);
J
Jens Axboe 已提交
309 310
	}

311
	q->limits.max_segment_size = max_size;
J
Jens Axboe 已提交
312 313 314 315
}
EXPORT_SYMBOL(blk_queue_max_segment_size);

/**
316
 * blk_queue_logical_block_size - set logical block size for the queue
J
Jens Axboe 已提交
317
 * @q:  the request queue for the device
318
 * @size:  the logical block size, in bytes
J
Jens Axboe 已提交
319 320
 *
 * Description:
321 322 323
 *   This should be set to the lowest possible block size that the
 *   storage device can address.  The default of 512 covers most
 *   hardware.
J
Jens Axboe 已提交
324
 **/
325
void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
J
Jens Axboe 已提交
326
{
327
	q->limits.logical_block_size = size;
328 329 330 331 332 333

	if (q->limits.physical_block_size < size)
		q->limits.physical_block_size = size;

	if (q->limits.io_min < q->limits.physical_block_size)
		q->limits.io_min = q->limits.physical_block_size;
J
Jens Axboe 已提交
334
}
335
EXPORT_SYMBOL(blk_queue_logical_block_size);
J
Jens Axboe 已提交
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
/**
 * blk_queue_physical_block_size - set physical block size for the queue
 * @q:  the request queue for the device
 * @size:  the physical block size, in bytes
 *
 * Description:
 *   This should be set to the lowest possible sector size that the
 *   hardware can operate on without reverting to read-modify-write
 *   operations.
 */
void blk_queue_physical_block_size(struct request_queue *q, unsigned short size)
{
	q->limits.physical_block_size = size;

	if (q->limits.physical_block_size < q->limits.logical_block_size)
		q->limits.physical_block_size = q->limits.logical_block_size;

	if (q->limits.io_min < q->limits.physical_block_size)
		q->limits.io_min = q->limits.physical_block_size;
}
EXPORT_SYMBOL(blk_queue_physical_block_size);

/**
 * blk_queue_alignment_offset - set physical block alignment offset
 * @q:	the request queue for the device
362
 * @offset: alignment offset in bytes
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
 *
 * Description:
 *   Some devices are naturally misaligned to compensate for things like
 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 *   should call this function for devices whose first sector is not
 *   naturally aligned.
 */
void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
{
	q->limits.alignment_offset =
		offset & (q->limits.physical_block_size - 1);
	q->limits.misaligned = 0;
}
EXPORT_SYMBOL(blk_queue_alignment_offset);

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/**
 * blk_limits_io_min - set minimum request size for a device
 * @limits: the queue limits
 * @min:  smallest I/O size in bytes
 *
 * Description:
 *   Some devices have an internal block size bigger than the reported
 *   hardware sector size.  This function can be used to signal the
 *   smallest I/O the device can perform without incurring a performance
 *   penalty.
 */
void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
{
	limits->io_min = min;

	if (limits->io_min < limits->logical_block_size)
		limits->io_min = limits->logical_block_size;

	if (limits->io_min < limits->physical_block_size)
		limits->io_min = limits->physical_block_size;
}
EXPORT_SYMBOL(blk_limits_io_min);

401 402 403
/**
 * blk_queue_io_min - set minimum request size for the queue
 * @q:	the request queue for the device
404
 * @min:  smallest I/O size in bytes
405 406
 *
 * Description:
407 408 409 410 411 412 413
 *   Storage devices may report a granularity or preferred minimum I/O
 *   size which is the smallest request the device can perform without
 *   incurring a performance penalty.  For disk drives this is often the
 *   physical block size.  For RAID arrays it is often the stripe chunk
 *   size.  A properly aligned multiple of minimum_io_size is the
 *   preferred request size for workloads where a high number of I/O
 *   operations is desired.
414 415 416
 */
void blk_queue_io_min(struct request_queue *q, unsigned int min)
{
417
	blk_limits_io_min(&q->limits, min);
418 419 420
}
EXPORT_SYMBOL(blk_queue_io_min);

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * blk_limits_io_opt - set optimal request size for a device
 * @limits: the queue limits
 * @opt:  smallest I/O size in bytes
 *
 * Description:
 *   Storage devices may report an optimal I/O size, which is the
 *   device's preferred unit for sustained I/O.  This is rarely reported
 *   for disk drives.  For RAID arrays it is usually the stripe width or
 *   the internal track size.  A properly aligned multiple of
 *   optimal_io_size is the preferred request size for workloads where
 *   sustained throughput is desired.
 */
void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
{
	limits->io_opt = opt;
}
EXPORT_SYMBOL(blk_limits_io_opt);

440 441 442
/**
 * blk_queue_io_opt - set optimal request size for the queue
 * @q:	the request queue for the device
443
 * @opt:  optimal request size in bytes
444 445
 *
 * Description:
446 447 448 449 450 451
 *   Storage devices may report an optimal I/O size, which is the
 *   device's preferred unit for sustained I/O.  This is rarely reported
 *   for disk drives.  For RAID arrays it is usually the stripe width or
 *   the internal track size.  A properly aligned multiple of
 *   optimal_io_size is the preferred request size for workloads where
 *   sustained throughput is desired.
452 453 454
 */
void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
{
455
	blk_limits_io_opt(&q->limits, opt);
456 457 458
}
EXPORT_SYMBOL(blk_queue_io_opt);

J
Jens Axboe 已提交
459 460 461 462 463 464 465
/**
 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
 * @t:	the stacking driver (top)
 * @b:  the underlying device (bottom)
 **/
void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
{
466
	blk_stack_limits(&t->limits, &b->limits, 0);
467

468 469 470 471 472
	if (!t->queue_lock)
		WARN_ON_ONCE(1);
	else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
		unsigned long flags;
		spin_lock_irqsave(t->queue_lock, flags);
N
Nick Piggin 已提交
473
		queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
474 475
		spin_unlock_irqrestore(t->queue_lock, flags);
	}
J
Jens Axboe 已提交
476 477 478
}
EXPORT_SYMBOL(blk_queue_stack_limits);

479 480
/**
 * blk_stack_limits - adjust queue_limits for stacked devices
481 482
 * @t:	the stacking driver limits (top device)
 * @b:  the underlying queue limits (bottom, component device)
483
 * @start:  first data sector within component device
484 485
 *
 * Description:
486 487 488 489 490 491 492 493 494 495 496 497 498
 *    This function is used by stacking drivers like MD and DM to ensure
 *    that all component devices have compatible block sizes and
 *    alignments.  The stacking driver must provide a queue_limits
 *    struct (top) and then iteratively call the stacking function for
 *    all component (bottom) devices.  The stacking function will
 *    attempt to combine the values and ensure proper alignment.
 *
 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 *    top device's block sizes and alignment offsets may be adjusted to
 *    ensure alignment with the bottom device. If no compatible sizes
 *    and alignments exist, -1 is returned and the resulting top
 *    queue_limits will have the misaligned flag set to indicate that
 *    the alignment_offset is undefined.
499 500
 */
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
501
		     sector_t start)
502
{
503
	unsigned int top, bottom, alignment, ret = 0;
504

505 506
	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
507
	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
508 509 510 511

	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
					    b->seg_boundary_mask);

512
	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
513 514
	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
						 b->max_integrity_segments);
515 516 517 518

	t->max_segment_size = min_not_zero(t->max_segment_size,
					   b->max_segment_size);

519 520
	t->misaligned |= b->misaligned;

521
	alignment = queue_limit_alignment_offset(b, start);
522

523 524 525
	/* Bottom device has different alignment.  Check that it is
	 * compatible with the current top alignment.
	 */
526 527 528 529
	if (t->alignment_offset != alignment) {

		top = max(t->physical_block_size, t->io_min)
			+ t->alignment_offset;
530
		bottom = max(b->physical_block_size, b->io_min) + alignment;
531

532
		/* Verify that top and bottom intervals line up */
533
		if (max(top, bottom) & (min(top, bottom) - 1)) {
534
			t->misaligned = 1;
535 536
			ret = -1;
		}
537 538
	}

539 540 541 542 543 544 545
	t->logical_block_size = max(t->logical_block_size,
				    b->logical_block_size);

	t->physical_block_size = max(t->physical_block_size,
				     b->physical_block_size);

	t->io_min = max(t->io_min, b->io_min);
546 547
	t->io_opt = lcm(t->io_opt, b->io_opt);

548
	t->no_cluster |= b->no_cluster;
549
	t->discard_zeroes_data &= b->discard_zeroes_data;
550

551
	/* Physical block size a multiple of the logical block size? */
552 553
	if (t->physical_block_size & (t->logical_block_size - 1)) {
		t->physical_block_size = t->logical_block_size;
554
		t->misaligned = 1;
555
		ret = -1;
556 557
	}

558
	/* Minimum I/O a multiple of the physical block size? */
559 560 561
	if (t->io_min & (t->physical_block_size - 1)) {
		t->io_min = t->physical_block_size;
		t->misaligned = 1;
562
		ret = -1;
563 564
	}

565
	/* Optimal I/O a multiple of the physical block size? */
566 567 568
	if (t->io_opt & (t->physical_block_size - 1)) {
		t->io_opt = 0;
		t->misaligned = 1;
569
		ret = -1;
570
	}
571

572
	/* Find lowest common alignment_offset */
573 574
	t->alignment_offset = lcm(t->alignment_offset, alignment)
		& (max(t->physical_block_size, t->io_min) - 1);
575

576
	/* Verify that new alignment_offset is on a logical block boundary */
577
	if (t->alignment_offset & (t->logical_block_size - 1)) {
578
		t->misaligned = 1;
579 580
		ret = -1;
	}
581

582 583
	/* Discard alignment and granularity */
	if (b->discard_granularity) {
584
		alignment = queue_limit_discard_alignment(b, start);
585 586 587 588 589

		if (t->discard_granularity != 0 &&
		    t->discard_alignment != alignment) {
			top = t->discard_granularity + t->discard_alignment;
			bottom = b->discard_granularity + alignment;
590

591 592 593 594 595
			/* Verify that top and bottom intervals line up */
			if (max(top, bottom) & (min(top, bottom) - 1))
				t->discard_misaligned = 1;
		}

596 597
		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
						      b->max_discard_sectors);
598 599 600 601 602
		t->discard_granularity = max(t->discard_granularity,
					     b->discard_granularity);
		t->discard_alignment = lcm(t->discard_alignment, alignment) &
			(t->discard_granularity - 1);
	}
603

604
	return ret;
605
}
M
Mike Snitzer 已提交
606
EXPORT_SYMBOL(blk_stack_limits);
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
/**
 * bdev_stack_limits - adjust queue limits for stacked drivers
 * @t:	the stacking driver limits (top device)
 * @bdev:  the component block_device (bottom)
 * @start:  first data sector within component device
 *
 * Description:
 *    Merges queue limits for a top device and a block_device.  Returns
 *    0 if alignment didn't change.  Returns -1 if adding the bottom
 *    device caused misalignment.
 */
int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
		      sector_t start)
{
	struct request_queue *bq = bdev_get_queue(bdev);

	start += get_start_sect(bdev);

626
	return blk_stack_limits(t, &bq->limits, start);
627 628 629
}
EXPORT_SYMBOL(bdev_stack_limits);

630 631
/**
 * disk_stack_limits - adjust queue limits for stacked drivers
632
 * @disk:  MD/DM gendisk (top)
633 634 635 636
 * @bdev:  the underlying block device (bottom)
 * @offset:  offset to beginning of data within component device
 *
 * Description:
637 638
 *    Merges the limits for a top level gendisk and a bottom level
 *    block_device.
639 640 641 642 643 644 645
 */
void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
		       sector_t offset)
{
	struct request_queue *t = disk->queue;
	struct request_queue *b = bdev_get_queue(bdev);

646
	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];

		disk_name(disk, 0, top);
		bdevname(bdev, bottom);

		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
		       top, bottom);
	}

	if (!t->queue_lock)
		WARN_ON_ONCE(1);
	else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
		unsigned long flags;

		spin_lock_irqsave(t->queue_lock, flags);
		if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
			queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
		spin_unlock_irqrestore(t->queue_lock, flags);
	}
}
EXPORT_SYMBOL(disk_stack_limits);

669 670 671 672 673
/**
 * blk_queue_dma_pad - set pad mask
 * @q:     the request queue for the device
 * @mask:  pad mask
 *
674
 * Set dma pad mask.
675
 *
676 677
 * Appending pad buffer to a request modifies the last entry of a
 * scatter list such that it includes the pad buffer.
678 679 680 681 682 683 684
 **/
void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
{
	q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_dma_pad);

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
/**
 * blk_queue_update_dma_pad - update pad mask
 * @q:     the request queue for the device
 * @mask:  pad mask
 *
 * Update dma pad mask.
 *
 * Appending pad buffer to a request modifies the last entry of a
 * scatter list such that it includes the pad buffer.
 **/
void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
{
	if (mask > q->dma_pad_mask)
		q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_pad);

J
Jens Axboe 已提交
702 703 704
/**
 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
 * @q:  the request queue for the device
705
 * @dma_drain_needed: fn which returns non-zero if drain is necessary
J
Jens Axboe 已提交
706 707 708 709 710 711 712 713 714 715 716 717
 * @buf:	physically contiguous buffer
 * @size:	size of the buffer in bytes
 *
 * Some devices have excess DMA problems and can't simply discard (or
 * zero fill) the unwanted piece of the transfer.  They have to have a
 * real area of memory to transfer it into.  The use case for this is
 * ATAPI devices in DMA mode.  If the packet command causes a transfer
 * bigger than the transfer size some HBAs will lock up if there
 * aren't DMA elements to contain the excess transfer.  What this API
 * does is adjust the queue so that the buf is always appended
 * silently to the scatterlist.
 *
718 719 720 721
 * Note: This routine adjusts max_hw_segments to make room for appending
 * the drain buffer.  If you call blk_queue_max_segments() after calling
 * this routine, you must set the limit to one fewer than your device
 * can support otherwise there won't be room for the drain buffer.
J
Jens Axboe 已提交
722
 */
723
int blk_queue_dma_drain(struct request_queue *q,
724 725
			       dma_drain_needed_fn *dma_drain_needed,
			       void *buf, unsigned int size)
J
Jens Axboe 已提交
726
{
727
	if (queue_max_segments(q) < 2)
J
Jens Axboe 已提交
728 729
		return -EINVAL;
	/* make room for appending the drain */
730
	blk_queue_max_segments(q, queue_max_segments(q) - 1);
731
	q->dma_drain_needed = dma_drain_needed;
J
Jens Axboe 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	q->dma_drain_buffer = buf;
	q->dma_drain_size = size;

	return 0;
}
EXPORT_SYMBOL_GPL(blk_queue_dma_drain);

/**
 * blk_queue_segment_boundary - set boundary rules for segment merging
 * @q:  the request queue for the device
 * @mask:  the memory boundary mask
 **/
void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
{
	if (mask < PAGE_CACHE_SIZE - 1) {
		mask = PAGE_CACHE_SIZE - 1;
748 749
		printk(KERN_INFO "%s: set to minimum %lx\n",
		       __func__, mask);
J
Jens Axboe 已提交
750 751
	}

752
	q->limits.seg_boundary_mask = mask;
J
Jens Axboe 已提交
753 754 755 756 757 758 759 760 761
}
EXPORT_SYMBOL(blk_queue_segment_boundary);

/**
 * blk_queue_dma_alignment - set dma length and memory alignment
 * @q:     the request queue for the device
 * @mask:  alignment mask
 *
 * description:
762
 *    set required memory and length alignment for direct dma transactions.
A
Alan Cox 已提交
763
 *    this is used when building direct io requests for the queue.
J
Jens Axboe 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777
 *
 **/
void blk_queue_dma_alignment(struct request_queue *q, int mask)
{
	q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_dma_alignment);

/**
 * blk_queue_update_dma_alignment - update dma length and memory alignment
 * @q:     the request queue for the device
 * @mask:  alignment mask
 *
 * description:
778
 *    update required memory and length alignment for direct dma transactions.
J
Jens Axboe 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
 *    If the requested alignment is larger than the current alignment, then
 *    the current queue alignment is updated to the new value, otherwise it
 *    is left alone.  The design of this is to allow multiple objects
 *    (driver, device, transport etc) to set their respective
 *    alignments without having them interfere.
 *
 **/
void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
{
	BUG_ON(mask > PAGE_SIZE);

	if (mask > q->dma_alignment)
		q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_alignment);

795
static int __init blk_settings_init(void)
J
Jens Axboe 已提交
796 797 798 799 800 801
{
	blk_max_low_pfn = max_low_pfn - 1;
	blk_max_pfn = max_pfn - 1;
	return 0;
}
subsys_initcall(blk_settings_init);