interrupt.c 70.9 KB
Newer Older
1
/*
2
 * handling kvm guest interrupts
3
 *
4
 * Copyright IBM Corp. 2008, 2015
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 */

13
#include <linux/interrupt.h>
14
#include <linux/kvm_host.h>
15
#include <linux/hrtimer.h>
16
#include <linux/mmu_context.h>
17
#include <linux/signal.h>
18
#include <linux/slab.h>
19
#include <linux/bitmap.h>
20
#include <linux/vmalloc.h>
21
#include <asm/asm-offsets.h>
22
#include <asm/dis.h>
23
#include <linux/uaccess.h>
24
#include <asm/sclp.h>
25
#include <asm/isc.h>
26
#include <asm/gmap.h>
27
#include <asm/switch_to.h>
28
#include <asm/nmi.h>
29 30
#include "kvm-s390.h"
#include "gaccess.h"
31
#include "trace-s390.h"
32

33
#define PFAULT_INIT 0x0600
34 35
#define PFAULT_DONE 0x0680
#define VIRTIO_PARAM 0x0d00
36

37 38 39
/* handle external calls via sigp interpretation facility */
static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
{
40 41
	int c, scn;

42 43 44
	if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
		return 0;

45
	BUG_ON(!kvm_s390_use_sca_entries());
46
	read_lock(&vcpu->kvm->arch.sca_lock);
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	}
62
	read_unlock(&vcpu->kvm->arch.sca_lock);
63 64

	if (src_id)
65
		*src_id = scn;
66

67
	return c;
68 69 70 71
}

static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
{
72
	int expect, rc;
73

74
	BUG_ON(!kvm_s390_use_sca_entries());
75
	read_lock(&vcpu->kvm->arch.sca_lock);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;

		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
93

94 95 96 97 98 99 100
		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	}
101
	read_unlock(&vcpu->kvm->arch.sca_lock);
102 103

	if (rc != expect) {
104 105 106 107 108 109 110 111 112 113
		/* another external call is pending */
		return -EBUSY;
	}
	atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
	return 0;
}

static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
114
	int rc, expect;
115

116 117
	if (!kvm_s390_use_sca_entries())
		return;
118
	atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
119
	read_lock(&vcpu->kvm->arch.sca_lock);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	}
137
	read_unlock(&vcpu->kvm->arch.sca_lock);
138
	WARN_ON(rc != expect); /* cannot clear? */
139 140
}

141
int psw_extint_disabled(struct kvm_vcpu *vcpu)
142 143 144 145
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
}

146 147 148 149 150
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
}

151 152 153 154 155
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
}

156 157
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
{
158 159 160
	return psw_extint_disabled(vcpu) &&
	       psw_ioint_disabled(vcpu) &&
	       psw_mchk_disabled(vcpu);
161 162
}

163 164 165 166 167
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	if (psw_extint_disabled(vcpu) ||
	    !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		return 0;
168 169 170
	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
		/* No timer interrupts when single stepping */
		return 0;
171 172 173
	return 1;
}

174 175
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
{
176
	if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
177 178 179 180 181 182 183 184 185 186 187 188
		return 0;
	return ckc_interrupts_enabled(vcpu);
}

static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	return !psw_extint_disabled(vcpu) &&
	       (vcpu->arch.sie_block->gcr[0] & 0x400ul);
}

static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
{
189 190 191
	if (!cpu_timer_interrupts_enabled(vcpu))
		return 0;
	return kvm_s390_get_cpu_timer(vcpu) >> 63;
192 193
}

194
static inline int is_ioirq(unsigned long irq_type)
C
Cornelia Huck 已提交
195
{
196 197 198
	return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
		(irq_type <= IRQ_PEND_IO_ISC_7));
}
C
Cornelia Huck 已提交
199

200 201
static uint64_t isc_to_isc_bits(int isc)
{
C
Cornelia Huck 已提交
202 203 204
	return (0x80 >> isc) << 24;
}

205
static inline u8 int_word_to_isc(u32 int_word)
206
{
207 208 209
	return (int_word & 0x38000000) >> 27;
}

210
static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
211
{
212 213
	return vcpu->kvm->arch.float_int.pending_irqs |
	       vcpu->arch.local_int.pending_irqs;
214 215
}

216 217 218 219 220 221 222 223 224 225
static inline int isc_to_irq_type(unsigned long isc)
{
	return IRQ_PEND_IO_ISC_0 + isc;
}

static inline int irq_type_to_isc(unsigned long irq_type)
{
	return irq_type - IRQ_PEND_IO_ISC_0;
}

226 227 228 229 230 231 232
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
				   unsigned long active_mask)
{
	int i;

	for (i = 0; i <= MAX_ISC; i++)
		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
233
			active_mask &= ~(1UL << (isc_to_irq_type(i)));
234 235 236 237 238

	return active_mask;
}

static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
239
{
240 241
	unsigned long active_mask;

242
	active_mask = pending_irqs(vcpu);
243 244
	if (!active_mask)
		return 0;
245 246 247

	if (psw_extint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_EXT_MASK;
248 249 250 251
	if (psw_ioint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_IO_MASK;
	else
		active_mask = disable_iscs(vcpu, active_mask);
252 253 254 255 256 257 258 259
	if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
260 261
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
262 263
	if (psw_mchk_disabled(vcpu))
		active_mask &= ~IRQ_PEND_MCHK_MASK;
264 265 266 267
	/*
	 * Check both floating and local interrupt's cr14 because
	 * bit IRQ_PEND_MCHK_REP could be set in both cases.
	 */
268
	if (!(vcpu->arch.sie_block->gcr[14] &
269 270
	   (vcpu->kvm->arch.float_int.mchk.cr14 |
	   vcpu->arch.local_int.irq.mchk.cr14)))
271
		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
272

273 274 275 276 277 278
	/*
	 * STOP irqs will never be actively delivered. They are triggered via
	 * intercept requests and cleared when the stop intercept is performed.
	 */
	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);

279 280 281
	return active_mask;
}

282 283
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
{
284
	atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
285 286 287 288 289
	set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
{
290
	atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
291 292 293 294 295
	clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
{
296 297
	atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
		    &vcpu->arch.sie_block->cpuflags);
298
	vcpu->arch.sie_block->lctl = 0x0000;
299 300 301 302 303 304 305
	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);

	if (guestdbg_enabled(vcpu)) {
		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
					       LCTL_CR10 | LCTL_CR11);
		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
	}
306 307 308 309
}

static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
{
310
	atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
311 312
}

313 314
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
{
315
	if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
316 317 318 319 320 321 322
		return;
	else if (psw_ioint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_IO_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR6;
}

323 324
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
{
325
	if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
326 327 328 329 330 331 332 333 334
		return;
	if (psw_extint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_EXT_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR0;
}

static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
{
335
	if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
336 337 338 339 340 341 342
		return;
	if (psw_mchk_disabled(vcpu))
		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR14;
}

343 344 345 346 347 348
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
{
	if (kvm_s390_is_stop_irq_pending(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
}

349 350
/* Set interception request for non-deliverable interrupts */
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
351
{
352
	set_intercept_indicators_io(vcpu);
353 354
	set_intercept_indicators_ext(vcpu);
	set_intercept_indicators_mchk(vcpu);
355
	set_intercept_indicators_stop(vcpu);
356 357
}

358 359
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
{
360
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
361 362 363 364 365 366 367
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
			   (u16 *)__LC_EXT_INT_CODE);
368
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
369 370 371 372
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
373
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
374
	return rc ? -EFAULT : 0;
375 376 377 378
}

static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
{
379
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
380 381 382 383 384 385 386
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
			   (u16 __user *)__LC_EXT_INT_CODE);
387
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
388 389 390 391
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
392
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
393
	return rc ? -EFAULT : 0;
394 395
}

396
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
397
{
398 399
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_ext_info ext;
400 401
	int rc;

402 403 404 405 406 407
	spin_lock(&li->lock);
	ext = li->irq.ext;
	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
	li->irq.ext.ext_params2 = 0;
	spin_unlock(&li->lock);

408 409
	VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
		   ext.ext_params2);
410 411
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_PFAULT_INIT,
412
					 0, ext.ext_params2);
413 414 415 416 417 418 419

	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
420
	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
421
	return rc ? -EFAULT : 0;
422 423
}

424 425 426 427
static int __write_machine_check(struct kvm_vcpu *vcpu,
				 struct kvm_s390_mchk_info *mchk)
{
	unsigned long ext_sa_addr;
F
Fan Zhang 已提交
428
	unsigned long lc;
429
	freg_t fprs[NUM_FPRS];
430
	union mci mci;
431 432
	int rc;

433
	mci.val = mchk->mcic;
434
	/* take care of lazy register loading */
435 436
	save_fpu_regs();
	save_access_regs(vcpu->run->s.regs.acrs);
437 438
	if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
		save_gs_cb(current->thread.gs_cb);
439

440
	/* Extended save area */
441 442
	rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
			   sizeof(unsigned long));
F
Fan Zhang 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	/* Only bits 0 through 63-LC are used for address formation */
	lc = ext_sa_addr & MCESA_LC_MASK;
	if (test_kvm_facility(vcpu->kvm, 133)) {
		switch (lc) {
		case 0:
		case 10:
			ext_sa_addr &= ~0x3ffUL;
			break;
		case 11:
			ext_sa_addr &= ~0x7ffUL;
			break;
		case 12:
			ext_sa_addr &= ~0xfffUL;
			break;
		default:
			ext_sa_addr = 0;
			break;
		}
	} else {
		ext_sa_addr &= ~0x3ffUL;
	}

465 466 467 468 469 470 471
	if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
		if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
				    512))
			mci.vr = 0;
	} else {
		mci.vr = 0;
	}
F
Fan Zhang 已提交
472 473 474 475 476 477 478 479
	if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
	    && (lc == 11 || lc == 12)) {
		if (write_guest_abs(vcpu, ext_sa_addr + 1024,
				    &vcpu->run->s.regs.gscb, 32))
			mci.gs = 0;
	} else {
		mci.gs = 0;
	}
480 481

	/* General interruption information */
482
	rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
483 484 485 486
	rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
487
	rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
488 489

	/* Register-save areas */
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	if (MACHINE_HAS_VX) {
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
	} else {
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
				     vcpu->run->s.regs.fprs, 128);
	}
	rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
			     vcpu->run->s.regs.gprs, 128);
	rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
			   (u32 __user *) __LC_FP_CREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
			   (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
			   (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
			   (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
	rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
			     &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
			     &vcpu->arch.sie_block->gcr, 128);
511 512

	/* Extended interruption information */
513 514
	rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
			   (u32 __user *) __LC_EXT_DAMAGE_CODE);
515 516 517 518 519 520 521
	rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
			   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
	rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
			     sizeof(mchk->fixed_logout));
	return rc ? -EFAULT : 0;
}

522
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
523
{
524
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
525
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
526 527 528
	struct kvm_s390_mchk_info mchk = {};
	int deliver = 0;
	int rc = 0;
529

530
	spin_lock(&fi->lock);
531
	spin_lock(&li->lock);
532 533 534 535 536 537 538 539 540 541 542 543 544 545
	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
		/*
		 * If there was an exigent machine check pending, then any
		 * repressible machine checks that might have been pending
		 * are indicated along with it, so always clear bits for
		 * repressible and exigent interrupts
		 */
		mchk = li->irq.mchk;
		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
		memset(&li->irq.mchk, 0, sizeof(mchk));
		deliver = 1;
	}
546
	/*
547 548 549 550
	 * We indicate floating repressible conditions along with
	 * other pending conditions. Channel Report Pending and Channel
	 * Subsystem damage are the only two and and are indicated by
	 * bits in mcic and masked in cr14.
551
	 */
552 553 554 555 556 557
	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		mchk.mcic |= fi->mchk.mcic;
		mchk.cr14 |= fi->mchk.cr14;
		memset(&fi->mchk, 0, sizeof(mchk));
		deliver = 1;
	}
558
	spin_unlock(&li->lock);
559
	spin_unlock(&fi->lock);
560

561
	if (deliver) {
562
		VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
563 564 565 566
			   mchk.mcic);
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_MCHK,
						 mchk.cr14, mchk.mcic);
567
		rc = __write_machine_check(vcpu, &mchk);
568
	}
569
	return rc;
570 571 572 573
}

static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
{
574
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
575 576
	int rc;

577
	VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
578 579 580 581
	vcpu->stat.deliver_restart_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);

	rc  = write_guest_lc(vcpu,
582
			     offsetof(struct lowcore, restart_old_psw),
583
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
584
	rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
585
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
586
	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
587
	return rc ? -EFAULT : 0;
588 589
}

590
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
591
{
592 593 594 595 596 597 598 599
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_prefix_info prefix;

	spin_lock(&li->lock);
	prefix = li->irq.prefix;
	li->irq.prefix.address = 0;
	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
	spin_unlock(&li->lock);
600 601 602 603

	vcpu->stat.deliver_prefix_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_SIGP_SET_PREFIX,
604
					 prefix.address, 0);
605

606
	kvm_s390_set_prefix(vcpu, prefix.address);
607 608 609
	return 0;
}

610
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
611
{
612
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
613
	int rc;
614 615 616 617 618 619 620 621
	int cpu_addr;

	spin_lock(&li->lock);
	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	clear_bit(cpu_addr, li->sigp_emerg_pending);
	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
	spin_unlock(&li->lock);
622

623
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
624
	vcpu->stat.deliver_emergency_signal++;
625 626
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
					 cpu_addr, 0);
627 628 629

	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
			   (u16 *)__LC_EXT_INT_CODE);
630
	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
631 632 633 634
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
635
	return rc ? -EFAULT : 0;
636 637
}

638
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
639
{
640 641
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_extcall_info extcall;
642 643
	int rc;

644 645 646 647 648 649
	spin_lock(&li->lock);
	extcall = li->irq.extcall;
	li->irq.extcall.code = 0;
	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
	spin_unlock(&li->lock);

650
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
651 652 653
	vcpu->stat.deliver_external_call++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_EXTERNAL_CALL,
654
					 extcall.code, 0);
655 656 657

	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
			   (u16 *)__LC_EXT_INT_CODE);
658
	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
659 660 661 662
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
			    sizeof(psw_t));
663
	return rc ? -EFAULT : 0;
664 665
}

666
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
667
{
668 669
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_pgm_info pgm_info;
670
	int rc = 0, nullifying = false;
671
	u16 ilen;
672

673 674 675 676 677 678
	spin_lock(&li->lock);
	pgm_info = li->irq.pgm;
	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
	memset(&li->irq.pgm, 0, sizeof(pgm_info));
	spin_unlock(&li->lock);

679
	ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
680 681
	VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
		   pgm_info.code, ilen);
682 683
	vcpu->stat.deliver_program_int++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
684
					 pgm_info.code, 0);
685

686
	switch (pgm_info.code & ~PGM_PER) {
687 688 689 690 691 692 693 694 695
	case PGM_AFX_TRANSLATION:
	case PGM_ASX_TRANSLATION:
	case PGM_EX_TRANSLATION:
	case PGM_LFX_TRANSLATION:
	case PGM_LSTE_SEQUENCE:
	case PGM_LSX_TRANSLATION:
	case PGM_LX_TRANSLATION:
	case PGM_PRIMARY_AUTHORITY:
	case PGM_SECONDARY_AUTHORITY:
696 697
		nullifying = true;
		/* fall through */
698
	case PGM_SPACE_SWITCH:
699
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
700 701 702 703 704 705 706 707
				  (u64 *)__LC_TRANS_EXC_CODE);
		break;
	case PGM_ALEN_TRANSLATION:
	case PGM_ALE_SEQUENCE:
	case PGM_ASTE_INSTANCE:
	case PGM_ASTE_SEQUENCE:
	case PGM_ASTE_VALIDITY:
	case PGM_EXTENDED_AUTHORITY:
708
		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
709
				  (u8 *)__LC_EXC_ACCESS_ID);
710
		nullifying = true;
711 712 713 714 715 716 717
		break;
	case PGM_ASCE_TYPE:
	case PGM_PAGE_TRANSLATION:
	case PGM_REGION_FIRST_TRANS:
	case PGM_REGION_SECOND_TRANS:
	case PGM_REGION_THIRD_TRANS:
	case PGM_SEGMENT_TRANSLATION:
718
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
719
				  (u64 *)__LC_TRANS_EXC_CODE);
720
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
721
				   (u8 *)__LC_EXC_ACCESS_ID);
722
		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
723
				   (u8 *)__LC_OP_ACCESS_ID);
724
		nullifying = true;
725 726
		break;
	case PGM_MONITOR:
727
		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
728
				  (u16 *)__LC_MON_CLASS_NR);
729
		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
730 731
				   (u64 *)__LC_MON_CODE);
		break;
E
Eric Farman 已提交
732
	case PGM_VECTOR_PROCESSING:
733
	case PGM_DATA:
734
		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
735 736 737
				  (u32 *)__LC_DATA_EXC_CODE);
		break;
	case PGM_PROTECTION:
738
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
739
				  (u64 *)__LC_TRANS_EXC_CODE);
740
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
741 742
				   (u8 *)__LC_EXC_ACCESS_ID);
		break;
743 744 745 746 747 748 749 750 751
	case PGM_STACK_FULL:
	case PGM_STACK_EMPTY:
	case PGM_STACK_SPECIFICATION:
	case PGM_STACK_TYPE:
	case PGM_STACK_OPERATION:
	case PGM_TRACE_TABEL:
	case PGM_CRYPTO_OPERATION:
		nullifying = true;
		break;
752 753
	}

754 755
	if (pgm_info.code & PGM_PER) {
		rc |= put_guest_lc(vcpu, pgm_info.per_code,
756
				   (u8 *) __LC_PER_CODE);
757
		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
758
				   (u8 *)__LC_PER_ATMID);
759
		rc |= put_guest_lc(vcpu, pgm_info.per_address,
760
				   (u64 *) __LC_PER_ADDRESS);
761
		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
762 763 764
				   (u8 *) __LC_PER_ACCESS_ID);
	}

765
	if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
766
		kvm_s390_rewind_psw(vcpu, ilen);
767

768 769
	/* bit 1+2 of the target are the ilc, so we can directly use ilen */
	rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
770 771
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
				 (u64 *) __LC_LAST_BREAK);
772
	rc |= put_guest_lc(vcpu, pgm_info.code,
773 774 775 776 777
			   (u16 *)__LC_PGM_INT_CODE);
	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
778
	return rc ? -EFAULT : 0;
779 780
}

781
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
782
{
783 784 785 786 787 788 789 790 791 792 793 794 795
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_ext_info ext;
	int rc = 0;

	spin_lock(&fi->lock);
	if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
		spin_unlock(&fi->lock);
		return 0;
	}
	ext = fi->srv_signal;
	memset(&fi->srv_signal, 0, sizeof(ext));
	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
796

797
	VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
798
		   ext.ext_params);
799
	vcpu->stat.deliver_service_signal++;
800 801
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
					 ext.ext_params, 0);
802 803

	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
804
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
805 806 807 808
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
809
	rc |= put_guest_lc(vcpu, ext.ext_params,
810
			   (u32 *)__LC_EXT_PARAMS);
811

812
	return rc ? -EFAULT : 0;
813 814
}

815
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
816
{
817 818 819
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
820

821 822 823 824 825 826 827 828 829 830 831
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
832

833
	if (inti) {
834 835 836 837 838 839
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_INT_PFAULT_DONE, 0,
						 inti->ext.ext_params2);
		VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
			   inti->ext.ext_params2);

840 841 842 843 844 845 846 847 848 849 850 851 852 853
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, PFAULT_DONE,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
854
	return rc ? -EFAULT : 0;
855 856
}

857
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
858
{
859 860 861
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
862

863 864 865 866 867 868
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		VCPU_EVENT(vcpu, 4,
869
			   "deliver: virtio parm: 0x%x,parm64: 0x%llx",
870 871 872 873 874 875 876 877 878 879 880 881
			   inti->ext.ext_params, inti->ext.ext_params2);
		vcpu->stat.deliver_virtio_interrupt++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				inti->ext.ext_params,
				inti->ext.ext_params2);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
882

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	if (inti) {
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
				(u32 *)__LC_EXT_PARAMS);
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
900
	return rc ? -EFAULT : 0;
901 902 903
}

static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
904
				     unsigned long irq_type)
905
{
906 907 908 909
	struct list_head *isc_list;
	struct kvm_s390_float_interrupt *fi;
	struct kvm_s390_interrupt_info *inti = NULL;
	int rc = 0;
910

911
	fi = &vcpu->kvm->arch.float_int;
912

913
	spin_lock(&fi->lock);
914
	isc_list = &fi->lists[irq_type_to_isc(irq_type)];
915 916 917 918
	inti = list_first_entry_or_null(isc_list,
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
919 920 921 922 923 924 925 926
		if (inti->type & KVM_S390_INT_IO_AI_MASK)
			VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
		else
			VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
		vcpu->stat.deliver_io_int++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				((__u32)inti->io.subchannel_id << 16) |
				inti->io.subchannel_nr,
				((__u64)inti->io.io_int_parm << 32) |
				inti->io.io_int_word);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
	}
	if (list_empty(isc_list))
		clear_bit(irq_type, &fi->pending_irqs);
	spin_unlock(&fi->lock);

	if (inti) {
		rc  = put_guest_lc(vcpu, inti->io.subchannel_id,
				(u16 *)__LC_SUBCHANNEL_ID);
		rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
				(u16 *)__LC_SUBCHANNEL_NR);
		rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
				(u32 *)__LC_IO_INT_PARM);
		rc |= put_guest_lc(vcpu, inti->io.io_int_word,
				(u32 *)__LC_IO_INT_WORD);
		rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		kfree(inti);
	}
958

959
	return rc ? -EFAULT : 0;
960 961 962 963 964 965
}

typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);

static const deliver_irq_t deliver_irq_funcs[] = {
	[IRQ_PEND_MCHK_EX]        = __deliver_machine_check,
966
	[IRQ_PEND_MCHK_REP]       = __deliver_machine_check,
967 968 969 970 971 972 973 974
	[IRQ_PEND_PROG]           = __deliver_prog,
	[IRQ_PEND_EXT_EMERGENCY]  = __deliver_emergency_signal,
	[IRQ_PEND_EXT_EXTERNAL]   = __deliver_external_call,
	[IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
	[IRQ_PEND_EXT_CPU_TIMER]  = __deliver_cpu_timer,
	[IRQ_PEND_RESTART]        = __deliver_restart,
	[IRQ_PEND_SET_PREFIX]     = __deliver_set_prefix,
	[IRQ_PEND_PFAULT_INIT]    = __deliver_pfault_init,
975 976 977
	[IRQ_PEND_EXT_SERVICE]    = __deliver_service,
	[IRQ_PEND_PFAULT_DONE]    = __deliver_pfault_done,
	[IRQ_PEND_VIRTIO]         = __deliver_virtio,
978 979
};

980 981
/* Check whether an external call is pending (deliverable or not) */
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
982
{
983
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
984

985
	if (!sclp.has_sigpif)
986
		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
987

988
	return sca_ext_call_pending(vcpu, NULL);
989 990
}

991
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
992
{
993 994
	if (deliverable_irqs(vcpu))
		return 1;
995

996 997
	if (kvm_cpu_has_pending_timer(vcpu))
		return 1;
998

999
	/* external call pending and deliverable */
1000
	if (kvm_s390_ext_call_pending(vcpu) &&
1001 1002
	    !psw_extint_disabled(vcpu) &&
	    (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
1003
		return 1;
1004

1005 1006 1007
	if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
		return 1;
	return 0;
1008 1009
}

1010 1011
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
1012
	return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1013 1014
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
{
	u64 now, cputm, sltime = 0;

	if (ckc_interrupts_enabled(vcpu)) {
		now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
		sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
		/* already expired or overflow? */
		if (!sltime || vcpu->arch.sie_block->ckc <= now)
			return 0;
		if (cpu_timer_interrupts_enabled(vcpu)) {
			cputm = kvm_s390_get_cpu_timer(vcpu);
			/* already expired? */
			if (cputm >> 63)
				return 0;
			return min(sltime, tod_to_ns(cputm));
		}
	} else if (cpu_timer_interrupts_enabled(vcpu)) {
		sltime = kvm_s390_get_cpu_timer(vcpu);
		/* already expired? */
		if (sltime >> 63)
			return 0;
	}
	return sltime;
}

1041 1042
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
{
1043
	u64 sltime;
1044 1045 1046

	vcpu->stat.exit_wait_state++;

1047
	/* fast path */
1048
	if (kvm_arch_vcpu_runnable(vcpu))
1049
		return 0;
1050

1051 1052
	if (psw_interrupts_disabled(vcpu)) {
		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1053
		return -EOPNOTSUPP; /* disabled wait */
1054 1055
	}

1056 1057
	if (!ckc_interrupts_enabled(vcpu) &&
	    !cpu_timer_interrupts_enabled(vcpu)) {
1058
		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1059
		__set_cpu_idle(vcpu);
1060 1061 1062
		goto no_timer;
	}

1063 1064
	sltime = __calculate_sltime(vcpu);
	if (!sltime)
1065 1066 1067
		return 0;

	__set_cpu_idle(vcpu);
T
Thomas Gleixner 已提交
1068
	hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1069
	VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1070
no_timer:
1071
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1072
	kvm_vcpu_block(vcpu);
1073
	__unset_cpu_idle(vcpu);
1074 1075
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

1076
	hrtimer_cancel(&vcpu->arch.ckc_timer);
1077 1078 1079
	return 0;
}

1080 1081
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
{
1082 1083 1084 1085 1086
	/*
	 * We cannot move this into the if, as the CPU might be already
	 * in kvm_vcpu_block without having the waitqueue set (polling)
	 */
	vcpu->valid_wakeup = true;
1087 1088 1089 1090 1091 1092
	/*
	 * This is mostly to document, that the read in swait_active could
	 * be moved before other stores, leading to subtle races.
	 * All current users do not store or use an atomic like update
	 */
	smp_mb__after_atomic();
1093
	if (swait_active(&vcpu->wq)) {
1094 1095 1096 1097 1098
		/*
		 * The vcpu gave up the cpu voluntarily, mark it as a good
		 * yield-candidate.
		 */
		vcpu->preempted = true;
1099
		swake_up(&vcpu->wq);
1100
		vcpu->stat.halt_wakeup++;
1101
	}
1102 1103 1104 1105 1106
	/*
	 * The VCPU might not be sleeping but is executing the VSIE. Let's
	 * kick it, so it leaves the SIE to process the request.
	 */
	kvm_s390_vsie_kick(vcpu);
1107 1108
}

1109 1110 1111
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
{
	struct kvm_vcpu *vcpu;
1112
	u64 sltime;
1113 1114

	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1115
	sltime = __calculate_sltime(vcpu);
1116

1117 1118 1119 1120
	/*
	 * If the monotonic clock runs faster than the tod clock we might be
	 * woken up too early and have to go back to sleep to avoid deadlocks.
	 */
1121
	if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1122 1123
		return HRTIMER_RESTART;
	kvm_s390_vcpu_wakeup(vcpu);
1124 1125
	return HRTIMER_NORESTART;
}
1126

1127 1128 1129 1130
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1131
	spin_lock(&li->lock);
1132 1133 1134
	li->pending_irqs = 0;
	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	memset(&li->irq, 0, sizeof(li->irq));
1135
	spin_unlock(&li->lock);
1136

1137
	sca_clear_ext_call(vcpu);
1138 1139
}

1140
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1141
{
1142
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1143
	deliver_irq_t func;
1144
	int rc = 0;
1145
	unsigned long irq_type;
1146
	unsigned long irqs;
1147 1148 1149

	__reset_intercept_indicators(vcpu);

1150 1151
	/* pending ckc conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1152
	if (ckc_irq_pending(vcpu))
1153 1154
		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);

1155 1156 1157 1158 1159
	/* pending cpu timer conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
	if (cpu_timer_irq_pending(vcpu))
		set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);

1160
	while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1161
		/* bits are in the order of interrupt priority */
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
		if (is_ioirq(irq_type)) {
			rc = __deliver_io(vcpu, irq_type);
		} else {
			func = deliver_irq_funcs[irq_type];
			if (!func) {
				WARN_ON_ONCE(func == NULL);
				clear_bit(irq_type, &li->pending_irqs);
				continue;
			}
			rc = func(vcpu);
1173
		}
1174
	}
1175

1176
	set_intercept_indicators(vcpu);
1177 1178

	return rc;
1179 1180
}

1181
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1182 1183 1184
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1185 1186 1187 1188
	VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
				   irq->u.pgm.code, 0);

1189 1190 1191 1192 1193 1194 1195
	if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
		/* auto detection if no valid ILC was given */
		irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
		irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
		irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
	}

1196 1197
	if (irq->u.pgm.code == PGM_PER) {
		li->irq.pgm.code |= PGM_PER;
1198
		li->irq.pgm.flags = irq->u.pgm.flags;
1199 1200 1201 1202 1203 1204 1205 1206
		/* only modify PER related information */
		li->irq.pgm.per_address = irq->u.pgm.per_address;
		li->irq.pgm.per_code = irq->u.pgm.per_code;
		li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
		li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
	} else if (!(irq->u.pgm.code & PGM_PER)) {
		li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
				   irq->u.pgm.code;
1207
		li->irq.pgm.flags = irq->u.pgm.flags;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		/* only modify non-PER information */
		li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
		li->irq.pgm.mon_code = irq->u.pgm.mon_code;
		li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
		li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
		li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
		li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
	} else {
		li->irq.pgm = irq->u.pgm;
	}
1218
	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1219 1220 1221
	return 0;
}

1222
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1223 1224 1225
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1226 1227
	VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
		   irq->u.ext.ext_params2);
1228 1229
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
				   irq->u.ext.ext_params,
1230
				   irq->u.ext.ext_params2);
1231 1232 1233

	li->irq.ext = irq->u.ext;
	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1234
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1235 1236 1237
	return 0;
}

1238
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1239 1240
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1241
	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1242
	uint16_t src_id = irq->u.extcall.code;
1243

1244
	VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1245
		   src_id);
1246
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1247
				   src_id, 0);
1248 1249

	/* sending vcpu invalid */
1250
	if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1251 1252
		return -EINVAL;

1253
	if (sclp.has_sigpif)
1254
		return sca_inject_ext_call(vcpu, src_id);
1255

1256
	if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1257
		return -EBUSY;
1258
	*extcall = irq->u.extcall;
1259
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1260 1261 1262
	return 0;
}

1263
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1264 1265
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1266
	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1267

1268
	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1269
		   irq->u.prefix.address);
1270
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1271
				   irq->u.prefix.address, 0);
1272

1273 1274 1275
	if (!is_vcpu_stopped(vcpu))
		return -EBUSY;

1276 1277
	*prefix = irq->u.prefix;
	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1278 1279 1280
	return 0;
}

1281
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1282
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1283 1284
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1285
	struct kvm_s390_stop_info *stop = &li->irq.stop;
1286
	int rc = 0;
1287

1288
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1289

1290 1291 1292
	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
		return -EINVAL;

1293 1294 1295 1296 1297 1298 1299 1300 1301
	if (is_vcpu_stopped(vcpu)) {
		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
			rc = kvm_s390_store_status_unloaded(vcpu,
						KVM_S390_STORE_STATUS_NOADDR);
		return rc;
	}

	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
		return -EBUSY;
1302
	stop->flags = irq->u.stop.flags;
1303
	__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
1304 1305 1306 1307
	return 0;
}

static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
1308
				 struct kvm_s390_irq *irq)
1309 1310 1311
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1312
	VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1313
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1314 1315

	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1316 1317 1318 1319
	return 0;
}

static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1320
				   struct kvm_s390_irq *irq)
1321 1322 1323
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1324
	VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1325 1326
		   irq->u.emerg.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1327
				   irq->u.emerg.code, 0);
1328

1329 1330 1331 1332
	/* sending vcpu invalid */
	if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
		return -EINVAL;

1333
	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1334
	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1335
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1336 1337 1338
	return 0;
}

1339
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1340 1341
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1342
	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1343

1344
	VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1345
		   irq->u.mchk.mcic);
1346
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1347
				   irq->u.mchk.mcic);
1348 1349

	/*
1350 1351 1352 1353 1354 1355
	 * Because repressible machine checks can be indicated along with
	 * exigent machine checks (PoP, Chapter 11, Interruption action)
	 * we need to combine cr14, mcic and external damage code.
	 * Failing storage address and the logout area should not be or'ed
	 * together, we just indicate the last occurrence of the corresponding
	 * machine check
1356
	 */
1357
	mchk->cr14 |= irq->u.mchk.cr14;
1358
	mchk->mcic |= irq->u.mchk.mcic;
1359 1360 1361 1362
	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
	       sizeof(mchk->fixed_logout));
1363 1364 1365 1366
	if (mchk->mcic & MCHK_EX_MASK)
		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
	else if (mchk->mcic & MCHK_REP_MASK)
		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1367 1368 1369
	return 0;
}

1370
static int __inject_ckc(struct kvm_vcpu *vcpu)
1371 1372 1373
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1374
	VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1375
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1376
				   0, 0);
1377 1378

	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1379
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1380 1381 1382
	return 0;
}

1383
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1384 1385 1386
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1387
	VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1388
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1389
				   0, 0);
1390 1391

	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1392
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1393 1394 1395
	return 0;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
						  int isc, u32 schid)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	struct kvm_s390_interrupt_info *iter;
	u16 id = (schid & 0xffff0000U) >> 16;
	u16 nr = schid & 0x0000ffffU;

	spin_lock(&fi->lock);
	list_for_each_entry(iter, isc_list, list) {
		if (schid && (id != iter->io.subchannel_id ||
			      nr != iter->io.subchannel_nr))
			continue;
		/* found an appropriate entry */
		list_del_init(&iter->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
		if (list_empty(isc_list))
1414
			clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1415 1416 1417 1418 1419 1420
		spin_unlock(&fi->lock);
		return iter;
	}
	spin_unlock(&fi->lock);
	return NULL;
}
1421

1422 1423 1424 1425
/*
 * Dequeue and return an I/O interrupt matching any of the interruption
 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
 */
1426
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
						    u64 isc_mask, u32 schid)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int isc;

	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
		if (isc_mask & isc_to_isc_bits(isc))
			inti = get_io_int(kvm, isc, schid);
	}
	return inti;
}

#define SCCB_MASK 0xFFFFFFF8
#define SCCB_EVENT_PENDING 0x3

static int __inject_service(struct kvm *kvm,
			     struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
	/*
	 * Early versions of the QEMU s390 bios will inject several
	 * service interrupts after another without handling a
	 * condition code indicating busy.
	 * We will silently ignore those superfluous sccb values.
	 * A future version of QEMU will take care of serialization
	 * of servc requests
	 */
	if (fi->srv_signal.ext_params & SCCB_MASK)
		goto out;
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
out:
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_virtio(struct kvm *kvm,
			    struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

static int __inject_pfault_done(struct kvm *kvm,
				 struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_PFAULT] >=
		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_PFAULT] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

#define CR_PENDING_SUBCLASS 28
static int __inject_float_mchk(struct kvm *kvm,
				struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
	fi->mchk.mcic |= inti->mchk.mcic;
	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1518 1519
{
	struct kvm_s390_float_interrupt *fi;
1520 1521
	struct list_head *list;
	int isc;
1522 1523 1524

	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1525 1526 1527
	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
J
Jens Freimann 已提交
1528
	}
1529 1530
	fi->counters[FIRQ_CNTR_IO] += 1;

1531 1532 1533 1534 1535 1536 1537
	if (inti->type & KVM_S390_INT_IO_AI_MASK)
		VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
	else
		VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);
1538 1539 1540
	isc = int_word_to_isc(inti->io.io_int_word);
	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	list_add_tail(&inti->list, list);
1541
	set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1542
	spin_unlock(&fi->lock);
1543
	return 0;
1544
}
1545

1546 1547 1548 1549
/*
 * Find a destination VCPU for a floating irq and kick it.
 */
static void __floating_irq_kick(struct kvm *kvm, u64 type)
1550
{
1551
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1552
	struct kvm_s390_local_interrupt *li;
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	struct kvm_vcpu *dst_vcpu;
	int sigcpu, online_vcpus, nr_tries = 0;

	online_vcpus = atomic_read(&kvm->online_vcpus);
	if (!online_vcpus)
		return;

	/* find idle VCPUs first, then round robin */
	sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
	if (sigcpu == online_vcpus) {
		do {
			sigcpu = fi->next_rr_cpu;
			fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
			/* avoid endless loops if all vcpus are stopped */
			if (nr_tries++ >= online_vcpus)
				return;
		} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
	}
	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);

	/* make the VCPU drop out of the SIE, or wake it up if sleeping */
	li = &dst_vcpu->arch.local_int;
	spin_lock(&li->lock);
	switch (type) {
	case KVM_S390_MCHK:
1578
		atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
1579 1580
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1581
		atomic_or(CPUSTAT_IO_INT, li->cpuflags);
1582 1583
		break;
	default:
1584
		atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1585 1586 1587 1588 1589 1590 1591 1592
		break;
	}
	spin_unlock(&li->lock);
	kvm_s390_vcpu_wakeup(dst_vcpu);
}

static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
{
1593 1594
	u64 type = READ_ONCE(inti->type);
	int rc;
1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	switch (type) {
	case KVM_S390_MCHK:
		rc = __inject_float_mchk(kvm, inti);
		break;
	case KVM_S390_INT_VIRTIO:
		rc = __inject_virtio(kvm, inti);
		break;
	case KVM_S390_INT_SERVICE:
		rc = __inject_service(kvm, inti);
		break;
	case KVM_S390_INT_PFAULT_DONE:
		rc = __inject_pfault_done(kvm, inti);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		rc = __inject_io(kvm, inti);
		break;
	default:
J
Jens Freimann 已提交
1613
		rc = -EINVAL;
1614
	}
1615 1616 1617
	if (rc)
		return rc;

1618
	__floating_irq_kick(kvm, type);
1619
	return 0;
1620 1621 1622 1623 1624 1625
}

int kvm_s390_inject_vm(struct kvm *kvm,
		       struct kvm_s390_interrupt *s390int)
{
	struct kvm_s390_interrupt_info *inti;
1626
	int rc;
1627

1628 1629 1630 1631
	inti = kzalloc(sizeof(*inti), GFP_KERNEL);
	if (!inti)
		return -ENOMEM;

1632 1633
	inti->type = s390int->type;
	switch (inti->type) {
1634
	case KVM_S390_INT_VIRTIO:
1635
		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1636 1637 1638 1639 1640
			 s390int->parm, s390int->parm64);
		inti->ext.ext_params = s390int->parm;
		inti->ext.ext_params2 = s390int->parm64;
		break;
	case KVM_S390_INT_SERVICE:
1641
		VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
1642 1643
		inti->ext.ext_params = s390int->parm;
		break;
1644 1645 1646
	case KVM_S390_INT_PFAULT_DONE:
		inti->ext.ext_params2 = s390int->parm64;
		break;
1647
	case KVM_S390_MCHK:
1648
		VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
1649 1650 1651 1652
			 s390int->parm64);
		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
		inti->mchk.mcic = s390int->parm64;
		break;
1653 1654 1655 1656 1657 1658
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		inti->io.subchannel_id = s390int->parm >> 16;
		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
		inti->io.io_int_parm = s390int->parm64 >> 32;
		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
		break;
1659 1660 1661 1662
	default:
		kfree(inti);
		return -EINVAL;
	}
1663 1664
	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
				 2);
1665

1666 1667 1668 1669
	rc = __inject_vm(kvm, inti);
	if (rc)
		kfree(inti);
	return rc;
1670 1671
}

1672
int kvm_s390_reinject_io_int(struct kvm *kvm,
1673 1674
			      struct kvm_s390_interrupt_info *inti)
{
1675
	return __inject_vm(kvm, inti);
1676 1677
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
		       struct kvm_s390_irq *irq)
{
	irq->type = s390int->type;
	switch (irq->type) {
	case KVM_S390_PROGRAM_INT:
		if (s390int->parm & 0xffff0000)
			return -EINVAL;
		irq->u.pgm.code = s390int->parm;
		break;
	case KVM_S390_SIGP_SET_PREFIX:
		irq->u.prefix.address = s390int->parm;
		break;
1691 1692 1693
	case KVM_S390_SIGP_STOP:
		irq->u.stop.flags = s390int->parm;
		break;
1694
	case KVM_S390_INT_EXTERNAL_CALL:
1695
		if (s390int->parm & 0xffff0000)
1696 1697 1698 1699
			return -EINVAL;
		irq->u.extcall.code = s390int->parm;
		break;
	case KVM_S390_INT_EMERGENCY:
1700
		if (s390int->parm & 0xffff0000)
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
			return -EINVAL;
		irq->u.emerg.code = s390int->parm;
		break;
	case KVM_S390_MCHK:
		irq->u.mchk.mcic = s390int->parm64;
		break;
	}
	return 0;
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
}

void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	spin_lock(&li->lock);
	li->irq.stop.flags = 0;
	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
	spin_unlock(&li->lock);
}

1728
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1729
{
1730
	int rc;
1731

1732
	switch (irq->type) {
1733
	case KVM_S390_PROGRAM_INT:
1734
		rc = __inject_prog(vcpu, irq);
1735
		break;
1736
	case KVM_S390_SIGP_SET_PREFIX:
1737
		rc = __inject_set_prefix(vcpu, irq);
1738
		break;
1739
	case KVM_S390_SIGP_STOP:
1740
		rc = __inject_sigp_stop(vcpu, irq);
1741
		break;
1742
	case KVM_S390_RESTART:
1743
		rc = __inject_sigp_restart(vcpu, irq);
1744
		break;
1745
	case KVM_S390_INT_CLOCK_COMP:
1746
		rc = __inject_ckc(vcpu);
1747
		break;
1748
	case KVM_S390_INT_CPU_TIMER:
1749
		rc = __inject_cpu_timer(vcpu);
1750
		break;
1751
	case KVM_S390_INT_EXTERNAL_CALL:
1752
		rc = __inject_extcall(vcpu, irq);
1753
		break;
1754
	case KVM_S390_INT_EMERGENCY:
1755
		rc = __inject_sigp_emergency(vcpu, irq);
1756
		break;
1757
	case KVM_S390_MCHK:
1758
		rc = __inject_mchk(vcpu, irq);
1759
		break;
1760
	case KVM_S390_INT_PFAULT_INIT:
1761
		rc = __inject_pfault_init(vcpu, irq);
1762
		break;
1763 1764
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
1765
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1766
	default:
1767
		rc = -EINVAL;
1768
	}
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

	return rc;
}

int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	int rc;

	spin_lock(&li->lock);
	rc = do_inject_vcpu(vcpu, irq);
1780
	spin_unlock(&li->lock);
1781 1782 1783
	if (!rc)
		kvm_s390_vcpu_wakeup(vcpu);
	return rc;
1784
}
1785

1786
static inline void clear_irq_list(struct list_head *_list)
1787
{
1788
	struct kvm_s390_interrupt_info *inti, *n;
1789

1790
	list_for_each_entry_safe(inti, n, _list, list) {
1791 1792 1793 1794 1795
		list_del(&inti->list);
		kfree(inti);
	}
}

1796 1797
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
		       struct kvm_s390_irq *irq)
1798
{
1799
	irq->type = inti->type;
1800
	switch (inti->type) {
1801 1802
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1803
	case KVM_S390_INT_VIRTIO:
1804
		irq->u.ext = inti->ext;
1805 1806
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1807
		irq->u.io = inti->io;
1808 1809 1810 1811
		break;
	}
}

1812 1813 1814 1815 1816 1817
void kvm_s390_clear_float_irqs(struct kvm *kvm)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	int i;

	spin_lock(&fi->lock);
1818 1819 1820
	fi->pending_irqs = 0;
	memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
	memset(&fi->mchk, 0, sizeof(fi->mchk));
1821 1822 1823 1824 1825 1826 1827
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		clear_irq_list(&fi->lists[i]);
	for (i = 0; i < FIRQ_MAX_COUNT; i++)
		fi->counters[i] = 0;
	spin_unlock(&fi->lock);
};

1828
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
1829 1830 1831
{
	struct kvm_s390_interrupt_info *inti;
	struct kvm_s390_float_interrupt *fi;
1832
	struct kvm_s390_irq *buf;
1833
	struct kvm_s390_irq *irq;
1834
	int max_irqs;
1835 1836
	int ret = 0;
	int n = 0;
1837
	int i;
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
		return -EINVAL;

	/*
	 * We are already using -ENOMEM to signal
	 * userspace it may retry with a bigger buffer,
	 * so we need to use something else for this case
	 */
	buf = vzalloc(len);
	if (!buf)
		return -ENOBUFS;

	max_irqs = len / sizeof(struct kvm_s390_irq);

1853 1854
	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
		list_for_each_entry(inti, &fi->lists[i], list) {
			if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
			}
			inti_to_irq(inti, &buf[n]);
			n++;
		}
	}
	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
1867
		if (n == max_irqs) {
1868 1869
			/* signal userspace to try again */
			ret = -ENOMEM;
1870
			goto out;
1871
		}
1872 1873 1874
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_INT_SERVICE;
		irq->u.ext = fi->srv_signal;
1875 1876
		n++;
	}
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
		}
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = fi->mchk;
		n++;
}

out:
1890
	spin_unlock(&fi->lock);
1891 1892 1893 1894 1895
	if (!ret && n > 0) {
		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
			ret = -EFAULT;
	}
	vfree(buf);
1896 1897 1898 1899

	return ret < 0 ? ret : n;
}

Y
Yi Min Zhao 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_all ais;

	if (attr->attr < sizeof(ais))
		return -EINVAL;

	if (!test_kvm_facility(kvm, 72))
		return -ENOTSUPP;

	mutex_lock(&fi->ais_lock);
	ais.simm = fi->simm;
	ais.nimm = fi->nimm;
	mutex_unlock(&fi->ais_lock);

	if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
		return -EFAULT;

	return 0;
}

1922 1923 1924 1925 1926 1927
static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r;

	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
1928
		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
1929 1930
					  attr->attr);
		break;
Y
Yi Min Zhao 已提交
1931 1932 1933
	case KVM_DEV_FLIC_AISM_ALL:
		r = flic_ais_mode_get_all(dev->kvm, attr);
		break;
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	default:
		r = -EINVAL;
	}

	return r;
}

static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
				     u64 addr)
{
	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
	void *target = NULL;
	void __user *source;
	u64 size;

	if (get_user(inti->type, (u64 __user *)addr))
		return -EFAULT;

	switch (inti->type) {
1953 1954
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
		target = (void *) &inti->ext;
		source = &uptr->u.ext;
		size = sizeof(inti->ext);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		target = (void *) &inti->io;
		source = &uptr->u.io;
		size = sizeof(inti->io);
		break;
	case KVM_S390_MCHK:
		target = (void *) &inti->mchk;
		source = &uptr->u.mchk;
		size = sizeof(inti->mchk);
		break;
	default:
		return -EINVAL;
	}

	if (copy_from_user(target, source, size))
		return -EFAULT;

	return 0;
}

static int enqueue_floating_irq(struct kvm_device *dev,
				struct kvm_device_attr *attr)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int r = 0;
	int len = attr->attr;

	if (len % sizeof(struct kvm_s390_irq) != 0)
		return -EINVAL;
	else if (len > KVM_S390_FLIC_MAX_BUFFER)
		return -EINVAL;

	while (len >= sizeof(struct kvm_s390_irq)) {
		inti = kzalloc(sizeof(*inti), GFP_KERNEL);
		if (!inti)
			return -ENOMEM;

		r = copy_irq_from_user(inti, attr->addr);
		if (r) {
			kfree(inti);
			return r;
		}
J
Jens Freimann 已提交
2003 2004 2005 2006 2007
		r = __inject_vm(dev->kvm, inti);
		if (r) {
			kfree(inti);
			return r;
		}
2008 2009 2010 2011 2012 2013 2014
		len -= sizeof(struct kvm_s390_irq);
		attr->addr += sizeof(struct kvm_s390_irq);
	}

	return r;
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
{
	if (id >= MAX_S390_IO_ADAPTERS)
		return NULL;
	return kvm->arch.adapters[id];
}

static int register_io_adapter(struct kvm_device *dev,
			       struct kvm_device_attr *attr)
{
	struct s390_io_adapter *adapter;
	struct kvm_s390_io_adapter adapter_info;

	if (copy_from_user(&adapter_info,
			   (void __user *)attr->addr, sizeof(adapter_info)))
		return -EFAULT;

	if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
	    (dev->kvm->arch.adapters[adapter_info.id] != NULL))
		return -EINVAL;

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter)
		return -ENOMEM;

	INIT_LIST_HEAD(&adapter->maps);
	init_rwsem(&adapter->maps_lock);
	atomic_set(&adapter->nr_maps, 0);
	adapter->id = adapter_info.id;
	adapter->isc = adapter_info.isc;
	adapter->maskable = adapter_info.maskable;
	adapter->masked = false;
	adapter->swap = adapter_info.swap;
2048 2049
	adapter->suppressible = (adapter_info.flags) &
				KVM_S390_ADAPTER_SUPPRESSIBLE;
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	dev->kvm->arch.adapters[adapter->id] = adapter;

	return 0;
}

int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
{
	int ret;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter || !adapter->maskable)
		return -EINVAL;
	ret = adapter->masked;
	adapter->masked = masked;
	return ret;
}

static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map;
	int ret;

	if (!adapter || !addr)
		return -EINVAL;

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (!map) {
		ret = -ENOMEM;
		goto out;
	}
	INIT_LIST_HEAD(&map->list);
	map->guest_addr = addr;
2083
	map->addr = gmap_translate(kvm->arch.gmap, addr);
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	if (map->addr == -EFAULT) {
		ret = -EFAULT;
		goto out;
	}
	ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
	if (ret < 0)
		goto out;
	BUG_ON(ret != 1);
	down_write(&adapter->maps_lock);
	if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
		list_add_tail(&map->list, &adapter->maps);
		ret = 0;
	} else {
		put_page(map->page);
		ret = -EINVAL;
	}
	up_write(&adapter->maps_lock);
out:
	if (ret)
		kfree(map);
	return ret;
}

static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map, *tmp;
	int found = 0;

	if (!adapter || !addr)
		return -EINVAL;

	down_write(&adapter->maps_lock);
	list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
		if (map->guest_addr == addr) {
			found = 1;
			atomic_dec(&adapter->nr_maps);
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
			break;
		}
	}
	up_write(&adapter->maps_lock);

	return found ? 0 : -EINVAL;
}

void kvm_s390_destroy_adapters(struct kvm *kvm)
{
	int i;
	struct s390_map_info *map, *tmp;

	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
		if (!kvm->arch.adapters[i])
			continue;
		list_for_each_entry_safe(map, tmp,
					 &kvm->arch.adapters[i]->maps, list) {
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
		}
		kfree(kvm->arch.adapters[i]);
	}
}

static int modify_io_adapter(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	struct kvm_s390_io_adapter_req req;
	struct s390_io_adapter *adapter;
	int ret;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	adapter = get_io_adapter(dev->kvm, req.id);
	if (!adapter)
		return -EINVAL;
	switch (req.type) {
	case KVM_S390_IO_ADAPTER_MASK:
		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
		if (ret > 0)
			ret = 0;
		break;
	case KVM_S390_IO_ADAPTER_MAP:
		ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
		break;
	case KVM_S390_IO_ADAPTER_UNMAP:
		ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)

{
	const u64 isc_mask = 0xffUL << 24; /* all iscs set */
	u32 schid;

	if (attr->flags)
		return -EINVAL;
	if (attr->attr != sizeof(schid))
		return -EINVAL;
	if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
		return -EFAULT;
	kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
	/*
	 * If userspace is conforming to the architecture, we can have at most
	 * one pending I/O interrupt per subchannel, so this is effectively a
	 * clear all.
	 */
	return 0;
}

2203 2204 2205 2206 2207 2208
static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_req req;
	int ret = 0;

2209
	if (!test_kvm_facility(kvm, 72))
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		return -ENOTSUPP;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	if (req.isc > MAX_ISC)
		return -EINVAL;

	trace_kvm_s390_modify_ais_mode(req.isc,
				       (fi->simm & AIS_MODE_MASK(req.isc)) ?
				       (fi->nimm & AIS_MODE_MASK(req.isc)) ?
				       2 : KVM_S390_AIS_MODE_SINGLE :
				       KVM_S390_AIS_MODE_ALL, req.mode);

	mutex_lock(&fi->ais_lock);
	switch (req.mode) {
	case KVM_S390_AIS_MODE_ALL:
		fi->simm &= ~AIS_MODE_MASK(req.isc);
		fi->nimm &= ~AIS_MODE_MASK(req.isc);
		break;
	case KVM_S390_AIS_MODE_SINGLE:
		fi->simm |= AIS_MODE_MASK(req.isc);
		fi->nimm &= ~AIS_MODE_MASK(req.isc);
		break;
	default:
		ret = -EINVAL;
	}
	mutex_unlock(&fi->ais_lock);

	return ret;
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
static int kvm_s390_inject_airq(struct kvm *kvm,
				struct s390_io_adapter *adapter)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_interrupt s390int = {
		.type = KVM_S390_INT_IO(1, 0, 0, 0),
		.parm = 0,
		.parm64 = (adapter->isc << 27) | 0x80000000,
	};
	int ret = 0;

2253
	if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
		return kvm_s390_inject_vm(kvm, &s390int);

	mutex_lock(&fi->ais_lock);
	if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
		trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
		goto out;
	}

	ret = kvm_s390_inject_vm(kvm, &s390int);
	if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
		fi->nimm |= AIS_MODE_MASK(adapter->isc);
		trace_kvm_s390_modify_ais_mode(adapter->isc,
					       KVM_S390_AIS_MODE_SINGLE, 2);
	}
out:
	mutex_unlock(&fi->ais_lock);
	return ret;
}

static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
{
	unsigned int id = attr->attr;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter)
		return -EINVAL;

	return kvm_s390_inject_airq(kvm, adapter);
}

Y
Yi Min Zhao 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_all ais;

	if (!test_kvm_facility(kvm, 72))
		return -ENOTSUPP;

	if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
		return -EFAULT;

	mutex_lock(&fi->ais_lock);
	fi->simm = ais.simm;
	fi->nimm = ais.nimm;
	mutex_unlock(&fi->ais_lock);

	return 0;
}

2303 2304 2305
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r = 0;
2306 2307
	unsigned int i;
	struct kvm_vcpu *vcpu;
2308 2309 2310 2311 2312 2313

	switch (attr->group) {
	case KVM_DEV_FLIC_ENQUEUE:
		r = enqueue_floating_irq(dev, attr);
		break;
	case KVM_DEV_FLIC_CLEAR_IRQS:
2314
		kvm_s390_clear_float_irqs(dev->kvm);
2315
		break;
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	case KVM_DEV_FLIC_APF_ENABLE:
		dev->kvm->arch.gmap->pfault_enabled = 1;
		break;
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
		dev->kvm->arch.gmap->pfault_enabled = 0;
		/*
		 * Make sure no async faults are in transition when
		 * clearing the queues. So we don't need to worry
		 * about late coming workers.
		 */
		synchronize_srcu(&dev->kvm->srcu);
		kvm_for_each_vcpu(i, vcpu, dev->kvm)
			kvm_clear_async_pf_completion_queue(vcpu);
		break;
2330 2331 2332 2333 2334 2335
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
		r = register_io_adapter(dev, attr);
		break;
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
		r = modify_io_adapter(dev, attr);
		break;
2336 2337 2338
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
		r = clear_io_irq(dev->kvm, attr);
		break;
2339 2340 2341
	case KVM_DEV_FLIC_AISM:
		r = modify_ais_mode(dev->kvm, attr);
		break;
2342 2343 2344
	case KVM_DEV_FLIC_AIRQ_INJECT:
		r = flic_inject_airq(dev->kvm, attr);
		break;
Y
Yi Min Zhao 已提交
2345 2346 2347
	case KVM_DEV_FLIC_AISM_ALL:
		r = flic_ais_mode_set_all(dev->kvm, attr);
		break;
2348 2349 2350 2351 2352 2353 2354
	default:
		r = -EINVAL;
	}

	return r;
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
static int flic_has_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
	case KVM_DEV_FLIC_ENQUEUE:
	case KVM_DEV_FLIC_CLEAR_IRQS:
	case KVM_DEV_FLIC_APF_ENABLE:
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2366
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2367
	case KVM_DEV_FLIC_AISM:
2368
	case KVM_DEV_FLIC_AIRQ_INJECT:
Y
Yi Min Zhao 已提交
2369
	case KVM_DEV_FLIC_AISM_ALL:
2370 2371 2372 2373 2374
		return 0;
	}
	return -ENXIO;
}

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
static int flic_create(struct kvm_device *dev, u32 type)
{
	if (!dev)
		return -EINVAL;
	if (dev->kvm->arch.flic)
		return -EINVAL;
	dev->kvm->arch.flic = dev;
	return 0;
}

static void flic_destroy(struct kvm_device *dev)
{
	dev->kvm->arch.flic = NULL;
	kfree(dev);
}

/* s390 floating irq controller (flic) */
struct kvm_device_ops kvm_flic_ops = {
	.name = "kvm-flic",
	.get_attr = flic_get_attr,
	.set_attr = flic_set_attr,
2396
	.has_attr = flic_has_attr,
2397 2398 2399
	.create = flic_create,
	.destroy = flic_destroy,
};
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
{
	unsigned long bit;

	bit = bit_nr + (addr % PAGE_SIZE) * 8;

	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
}

static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
					  u64 addr)
{
	struct s390_map_info *map;

	if (!adapter)
		return NULL;

	list_for_each_entry(map, &adapter->maps, list) {
		if (map->guest_addr == addr)
			return map;
	}
	return NULL;
}

static int adapter_indicators_set(struct kvm *kvm,
				  struct s390_io_adapter *adapter,
				  struct kvm_s390_adapter_int *adapter_int)
{
	unsigned long bit;
	int summary_set, idx;
	struct s390_map_info *info;
	void *map;

	info = get_map_info(adapter, adapter_int->ind_addr);
	if (!info)
		return -1;
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
	set_bit(bit, map);
	idx = srcu_read_lock(&kvm->srcu);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	info = get_map_info(adapter, adapter_int->summary_addr);
	if (!info) {
		srcu_read_unlock(&kvm->srcu, idx);
		return -1;
	}
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->summary_offset,
			  adapter->swap);
	summary_set = test_and_set_bit(bit, map);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	srcu_read_unlock(&kvm->srcu, idx);
	return summary_set ? 0 : 1;
}

/*
 * < 0 - not injected due to error
 * = 0 - coalesced, summary indicator already active
 * > 0 - injected interrupt
 */
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
			   struct kvm *kvm, int irq_source_id, int level,
			   bool line_status)
{
	int ret;
	struct s390_io_adapter *adapter;

	/* We're only interested in the 0->1 transition. */
	if (!level)
		return 0;
	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
	if (!adapter)
		return -1;
	down_read(&adapter->maps_lock);
	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
	up_read(&adapter->maps_lock);
	if ((ret > 0) && !adapter->masked) {
2480
		ret = kvm_s390_inject_airq(kvm, adapter);
2481 2482 2483 2484 2485 2486
		if (ret == 0)
			ret = 1;
	}
	return ret;
}

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
/*
 * Inject the machine check to the guest.
 */
void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
				     struct mcck_volatile_info *mcck_info)
{
	struct kvm_s390_interrupt_info inti;
	struct kvm_s390_irq irq;
	struct kvm_s390_mchk_info *mchk;
	union mci mci;
	__u64 cr14 = 0;         /* upper bits are not used */
2498
	int rc;
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

	mci.val = mcck_info->mcic;
	if (mci.sr)
		cr14 |= MCCK_CR14_RECOVERY_SUB_MASK;
	if (mci.dg)
		cr14 |= MCCK_CR14_DEGRAD_SUB_MASK;
	if (mci.w)
		cr14 |= MCCK_CR14_WARN_SUB_MASK;

	mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
	mchk->cr14 = cr14;
	mchk->mcic = mcck_info->mcic;
	mchk->ext_damage_code = mcck_info->ext_damage_code;
	mchk->failing_storage_address = mcck_info->failing_storage_address;
	if (mci.ck) {
		/* Inject the floating machine check */
		inti.type = KVM_S390_MCHK;
2516
		rc = __inject_vm(vcpu->kvm, &inti);
2517 2518 2519
	} else {
		/* Inject the machine check to specified vcpu */
		irq.type = KVM_S390_MCHK;
2520
		rc = kvm_s390_inject_vcpu(vcpu, &irq);
2521
	}
2522
	WARN_ON_ONCE(rc);
2523 2524
}

2525 2526
int kvm_set_routing_entry(struct kvm *kvm,
			  struct kvm_kernel_irq_routing_entry *e,
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
			  const struct kvm_irq_routing_entry *ue)
{
	int ret;

	switch (ue->type) {
	case KVM_IRQ_ROUTING_S390_ADAPTER:
		e->set = set_adapter_int;
		e->adapter.summary_addr = ue->u.adapter.summary_addr;
		e->adapter.ind_addr = ue->u.adapter.ind_addr;
		e->adapter.summary_offset = ue->u.adapter.summary_offset;
		e->adapter.ind_offset = ue->u.adapter.ind_offset;
		e->adapter.adapter_id = ue->u.adapter.adapter_id;
		ret = 0;
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
		int irq_source_id, int level, bool line_status)
{
	return -EINVAL;
}
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637

int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_irq *buf;
	int r = 0;
	int n;

	buf = vmalloc(len);
	if (!buf)
		return -ENOMEM;

	if (copy_from_user((void *) buf, irqstate, len)) {
		r = -EFAULT;
		goto out_free;
	}

	/*
	 * Don't allow setting the interrupt state
	 * when there are already interrupts pending
	 */
	spin_lock(&li->lock);
	if (li->pending_irqs) {
		r = -EBUSY;
		goto out_unlock;
	}

	for (n = 0; n < len / sizeof(*buf); n++) {
		r = do_inject_vcpu(vcpu, &buf[n]);
		if (r)
			break;
	}

out_unlock:
	spin_unlock(&li->lock);
out_free:
	vfree(buf);

	return r;
}

static void store_local_irq(struct kvm_s390_local_interrupt *li,
			    struct kvm_s390_irq *irq,
			    unsigned long irq_type)
{
	switch (irq_type) {
	case IRQ_PEND_MCHK_EX:
	case IRQ_PEND_MCHK_REP:
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = li->irq.mchk;
		break;
	case IRQ_PEND_PROG:
		irq->type = KVM_S390_PROGRAM_INT;
		irq->u.pgm = li->irq.pgm;
		break;
	case IRQ_PEND_PFAULT_INIT:
		irq->type = KVM_S390_INT_PFAULT_INIT;
		irq->u.ext = li->irq.ext;
		break;
	case IRQ_PEND_EXT_EXTERNAL:
		irq->type = KVM_S390_INT_EXTERNAL_CALL;
		irq->u.extcall = li->irq.extcall;
		break;
	case IRQ_PEND_EXT_CLOCK_COMP:
		irq->type = KVM_S390_INT_CLOCK_COMP;
		break;
	case IRQ_PEND_EXT_CPU_TIMER:
		irq->type = KVM_S390_INT_CPU_TIMER;
		break;
	case IRQ_PEND_SIGP_STOP:
		irq->type = KVM_S390_SIGP_STOP;
		irq->u.stop = li->irq.stop;
		break;
	case IRQ_PEND_RESTART:
		irq->type = KVM_S390_RESTART;
		break;
	case IRQ_PEND_SET_PREFIX:
		irq->type = KVM_S390_SIGP_SET_PREFIX;
		irq->u.prefix = li->irq.prefix;
		break;
	}
}

int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
{
2638
	int scn;
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	unsigned long pending_irqs;
	struct kvm_s390_irq irq;
	unsigned long irq_type;
	int cpuaddr;
	int n = 0;

	spin_lock(&li->lock);
	pending_irqs = li->pending_irqs;
	memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
	       sizeof(sigp_emerg_pending));
	spin_unlock(&li->lock);

	for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
		memset(&irq, 0, sizeof(irq));
		if (irq_type == IRQ_PEND_EXT_EMERGENCY)
			continue;
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
		for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
			memset(&irq, 0, sizeof(irq));
			if (n + sizeof(irq) > len)
				return -ENOBUFS;
			irq.type = KVM_S390_INT_EMERGENCY;
			irq.u.emerg.code = cpuaddr;
			if (copy_to_user(&buf[n], &irq, sizeof(irq)))
				return -EFAULT;
			n += sizeof(irq);
		}
	}

2678
	if (sca_ext_call_pending(vcpu, &scn)) {
2679 2680 2681 2682
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		memset(&irq, 0, sizeof(irq));
		irq.type = KVM_S390_INT_EXTERNAL_CALL;
2683
		irq.u.extcall.code = scn;
2684 2685 2686 2687 2688 2689 2690
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	return n;
}