em28xx-input.c 15.1 KB
Newer Older
1
/*
2 3 4 5
  handle em28xx IR remotes via linux kernel input layer.

   Copyright (C) 2005 Ludovico Cavedon <cavedon@sssup.it>
		      Markus Rechberger <mrechberger@gmail.com>
6
		      Mauro Carvalho Chehab <mchehab@infradead.org>
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
		      Sascha Sommer <saschasommer@freenet.de>

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 23 24 25 26 27 28 29 30
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/usb.h>

31
#include "em28xx.h"
32

33 34 35 36
#define EM28XX_SNAPSHOT_KEY KEY_CAMERA
#define EM28XX_SBUTTON_QUERY_INTERVAL 500
#define EM28XX_R0C_USBSUSP_SNAPSHOT 0x20

37
static unsigned int ir_debug;
38
module_param(ir_debug, int, 0644);
39
MODULE_PARM_DESC(ir_debug, "enable debug messages [IR]");
40

41
#define i2cdprintk(fmt, arg...) \
42
	if (ir_debug) { \
43
		printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
44
	}
45

46 47 48 49 50 51 52 53 54
#define dprintk(fmt, arg...) \
	if (ir_debug) { \
		printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
	}

/**********************************************************
 Polling structure used by em28xx IR's
 **********************************************************/

55 56 57 58 59 60 61
struct em28xx_ir_poll_result {
	unsigned int toggle_bit:1;
	unsigned int read_count:7;
	u8 rc_address;
	u8 rc_data[4]; /* 1 byte on em2860/2880, 4 on em2874 */
};

62 63 64 65 66 67 68 69 70
struct em28xx_IR {
	struct em28xx *dev;
	struct input_dev *input;
	struct ir_input_state ir;
	char name[32];
	char phys[32];

	/* poll external decoder */
	int polling;
71
	struct delayed_work work;
72
	unsigned int last_toggle:1;
73
	unsigned int full_code:1;
74 75
	unsigned int last_readcount;
	unsigned int repeat_interval;
76

77
	int  (*get_key)(struct em28xx_IR *, struct em28xx_ir_poll_result *);
78 79 80 81

	/* IR device properties */

	struct ir_dev_props props;
82 83 84 85 86
};

/**********************************************************
 I2C IR based get keycodes - should be used with ir-kbd-i2c
 **********************************************************/
87

88
int em28xx_get_key_terratec(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
89 90 91 92
{
	unsigned char b;

	/* poll IR chip */
93
	if (1 != i2c_master_recv(ir->c, &b, 1)) {
94
		i2cdprintk("read error\n");
95 96 97 98
		return -EIO;
	}

	/* it seems that 0xFE indicates that a button is still hold
99 100
	   down, while 0xff indicates that no button is hold
	   down. 0xfe sequences are sometimes interrupted by 0xFF */
101

102
	i2cdprintk("key %02x\n", b);
103

104
	if (b == 0xff)
105 106
		return 0;

107
	if (b == 0xfe)
108 109 110 111 112 113 114 115
		/* keep old data */
		return 1;

	*ir_key = b;
	*ir_raw = b;
	return 1;
}

116
int em28xx_get_key_em_haup(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
117 118
{
	unsigned char buf[2];
119 120
	u16 code;
	int size;
121 122

	/* poll IR chip */
123 124 125
	size = i2c_master_recv(ir->c, buf, sizeof(buf));

	if (size != 2)
126 127 128
		return -EIO;

	/* Does eliminate repeated parity code */
129
	if (buf[1] == 0xff)
130 131
		return 0;

132
	ir->old = buf[1];
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	/*
	 * Rearranges bits to the right order.
	 * The bit order were determined experimentally by using
	 * The original Hauppauge Grey IR and another RC5 that uses addr=0x08
	 * The RC5 code has 14 bits, but we've experimentally determined
	 * the meaning for only 11 bits.
	 * So, the code translation is not complete. Yet, it is enough to
	 * work with the provided RC5 IR.
	 */
	code =
		 ((buf[0] & 0x01) ? 0x0020 : 0) | /* 		0010 0000 */
		 ((buf[0] & 0x02) ? 0x0010 : 0) | /* 		0001 0000 */
		 ((buf[0] & 0x04) ? 0x0008 : 0) | /* 		0000 1000 */
		 ((buf[0] & 0x08) ? 0x0004 : 0) | /* 		0000 0100 */
		 ((buf[0] & 0x10) ? 0x0002 : 0) | /* 		0000 0010 */
		 ((buf[0] & 0x20) ? 0x0001 : 0) | /* 		0000 0001 */
		 ((buf[1] & 0x08) ? 0x1000 : 0) | /* 0001 0000		  */
		 ((buf[1] & 0x10) ? 0x0800 : 0) | /* 0000 1000		  */
		 ((buf[1] & 0x20) ? 0x0400 : 0) | /* 0000 0100		  */
		 ((buf[1] & 0x40) ? 0x0200 : 0) | /* 0000 0010		  */
		 ((buf[1] & 0x80) ? 0x0100 : 0);  /* 0000 0001		  */

	i2cdprintk("ir hauppauge (em2840): code=0x%02x (rcv=0x%02x%02x)\n",
			code, buf[1], buf[0]);
158 159 160 161 162 163 164

	/* return key */
	*ir_key = code;
	*ir_raw = code;
	return 1;
}

165 166
int em28xx_get_key_pinnacle_usb_grey(struct IR_i2c *ir, u32 *ir_key,
				     u32 *ir_raw)
167 168 169 170 171
{
	unsigned char buf[3];

	/* poll IR chip */

172
	if (3 != i2c_master_recv(ir->c, buf, 3)) {
173
		i2cdprintk("read error\n");
174 175 176
		return -EIO;
	}

177
	i2cdprintk("key %02x\n", buf[2]&0x3f);
178
	if (buf[0] != 0x00)
179 180 181 182 183 184 185 186
		return 0;

	*ir_key = buf[2]&0x3f;
	*ir_raw = buf[2]&0x3f;

	return 1;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
int em28xx_get_key_winfast_usbii_deluxe(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
{
	unsigned char subaddr, keydetect, key;

	struct i2c_msg msg[] = { { .addr = ir->c->addr, .flags = 0, .buf = &subaddr, .len = 1},

				{ .addr = ir->c->addr, .flags = I2C_M_RD, .buf = &keydetect, .len = 1} };

	subaddr = 0x10;
	if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
		i2cdprintk("read error\n");
		return -EIO;
	}
	if (keydetect == 0x00)
		return 0;

	subaddr = 0x00;
	msg[1].buf = &key;
	if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
		i2cdprintk("read error\n");
	return -EIO;
	}
	if (key == 0x00)
		return 0;

	*ir_key = key;
	*ir_raw = key;
	return 1;
}

217 218 219 220
/**********************************************************
 Poll based get keycode functions
 **********************************************************/

221 222 223
/* This is for the em2860/em2880 */
static int default_polling_getkey(struct em28xx_IR *ir,
				  struct em28xx_ir_poll_result *poll_result)
224 225 226
{
	struct em28xx *dev = ir->dev;
	int rc;
227
	u8 msg[3] = { 0, 0, 0 };
228

229 230 231
	/* Read key toggle, brand, and key code
	   on registers 0x45, 0x46 and 0x47
	 */
232
	rc = dev->em28xx_read_reg_req_len(dev, 0, EM28XX_R45_IR,
233
					  msg, sizeof(msg));
234 235 236
	if (rc < 0)
		return rc;

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	/* Infrared toggle (Reg 0x45[7]) */
	poll_result->toggle_bit = (msg[0] >> 7);

	/* Infrared read count (Reg 0x45[6:0] */
	poll_result->read_count = (msg[0] & 0x7f);

	/* Remote Control Address (Reg 0x46) */
	poll_result->rc_address = msg[1];

	/* Remote Control Data (Reg 0x47) */
	poll_result->rc_data[0] = msg[2];

	return 0;
}

static int em2874_polling_getkey(struct em28xx_IR *ir,
				 struct em28xx_ir_poll_result *poll_result)
{
	struct em28xx *dev = ir->dev;
	int rc;
	u8 msg[5] = { 0, 0, 0, 0, 0 };

	/* Read key toggle, brand, and key code
	   on registers 0x51-55
	 */
	rc = dev->em28xx_read_reg_req_len(dev, 0, EM2874_R51_IR,
					  msg, sizeof(msg));
	if (rc < 0)
		return rc;

	/* Infrared toggle (Reg 0x51[7]) */
	poll_result->toggle_bit = (msg[0] >> 7);

	/* Infrared read count (Reg 0x51[6:0] */
	poll_result->read_count = (msg[0] & 0x7f);

	/* Remote Control Address (Reg 0x52) */
	poll_result->rc_address = msg[1];

	/* Remote Control Data (Reg 0x53-55) */
	poll_result->rc_data[0] = msg[2];
	poll_result->rc_data[1] = msg[3];
	poll_result->rc_data[2] = msg[4];

	return 0;
282 283 284 285 286 287 288 289
}

/**********************************************************
 Polling code for em28xx
 **********************************************************/

static void em28xx_ir_handle_key(struct em28xx_IR *ir)
{
290 291 292 293 294 295 296 297
	int result;
	int do_sendkey = 0;
	struct em28xx_ir_poll_result poll_result;

	/* read the registers containing the IR status */
	result = ir->get_key(ir, &poll_result);
	if (result < 0) {
		dprintk("ir->get_key() failed %d\n", result);
298
		return;
299
	}
300

301
	dprintk("ir->get_key result tb=%02x rc=%02x lr=%02x data=%02x%02x\n",
302
		poll_result.toggle_bit, poll_result.read_count,
303 304
		ir->last_readcount, poll_result.rc_address,
		poll_result.rc_data[0]);
305 306 307 308 309 310 311 312 313

	if (ir->dev->chip_id == CHIP_ID_EM2874) {
		/* The em2874 clears the readcount field every time the
		   register is read.  The em2860/2880 datasheet says that it
		   is supposed to clear the readcount, but it doesn't.  So with
		   the em2874, we are looking for a non-zero read count as
		   opposed to a readcount that is incrementing */
		ir->last_readcount = 0;
	}
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	if (poll_result.read_count == 0) {
		/* The button has not been pressed since the last read */
	} else if (ir->last_toggle != poll_result.toggle_bit) {
		/* A button has been pressed */
		dprintk("button has been pressed\n");
		ir->last_toggle = poll_result.toggle_bit;
		ir->repeat_interval = 0;
		do_sendkey = 1;
	} else if (poll_result.toggle_bit == ir->last_toggle &&
		   poll_result.read_count > 0 &&
		   poll_result.read_count != ir->last_readcount) {
		/* The button is still being held down */
		dprintk("button being held down\n");

		/* Debouncer for first keypress */
		if (ir->repeat_interval++ > 9) {
			/* Start repeating after 1 second */
			do_sendkey = 1;
333
		}
334 335 336 337
	}

	if (do_sendkey) {
		dprintk("sending keypress\n");
338 339 340 341 342 343 344 345 346

		if (ir->full_code)
			ir_input_keydown(ir->input, &ir->ir,
					 poll_result.rc_address << 8 |
					 poll_result.rc_data[0]);
		else
			ir_input_keydown(ir->input, &ir->ir,
					 poll_result.rc_data[0]);

347 348
		ir_input_nokey(ir->input, &ir->ir);
	}
349 350 351

	ir->last_readcount = poll_result.read_count;
	return;
352 353 354 355
}

static void em28xx_ir_work(struct work_struct *work)
{
356
	struct em28xx_IR *ir = container_of(work, struct em28xx_IR, work.work);
357 358

	em28xx_ir_handle_key(ir);
359
	schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling));
360 361
}

362
static void em28xx_ir_start(struct em28xx_IR *ir)
363
{
364 365
	INIT_DELAYED_WORK(&ir->work, em28xx_ir_work);
	schedule_delayed_work(&ir->work, 0);
366 367 368 369
}

static void em28xx_ir_stop(struct em28xx_IR *ir)
{
370
	cancel_delayed_work_sync(&ir->work);
371 372
}

373
int em28xx_ir_change_protocol(void *priv, u64 ir_type)
374
{
375 376 377 378
	int rc = 0;
	struct em28xx_IR *ir = priv;
	struct em28xx *dev = ir->dev;
	u8 ir_config = EM2874_IR_RC5;
379 380

	/* Adjust xclk based o IR table for RC5/NEC tables */
381

382
	dev->board.ir_codes->ir_type = IR_TYPE_OTHER;
383
	if (ir_type == IR_TYPE_RC5) {
384 385
		dev->board.xclk |= EM28XX_XCLK_IR_RC5_MODE;
		ir->full_code = 1;
386
	} else if (ir_type == IR_TYPE_NEC) {
387 388 389
		dev->board.xclk &= ~EM28XX_XCLK_IR_RC5_MODE;
		ir_config = EM2874_IR_NEC;
		ir->full_code = 1;
390 391 392
	} else
		rc = -EINVAL;

393 394
	dev->board.ir_codes->ir_type = ir_type;

395 396
	em28xx_write_reg_bits(dev, EM28XX_R0F_XCLK, dev->board.xclk,
			      EM28XX_XCLK_IR_RC5_MODE);
397

398 399 400 401 402
	/* Setup the proper handler based on the chip */
	switch (dev->chip_id) {
	case CHIP_ID_EM2860:
	case CHIP_ID_EM2883:
		ir->get_key = default_polling_getkey;
403
		break;
404 405 406 407 408 409
	case CHIP_ID_EM2874:
		ir->get_key = em2874_polling_getkey;
		em28xx_write_regs(dev, EM2874_R50_IR_CONFIG, &ir_config, 1);
		break;
	default:
		printk("Unrecognized em28xx chip id: IR not supported\n");
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
		rc = -EINVAL;
	}

	return rc;
}

int em28xx_ir_init(struct em28xx *dev)
{
	struct em28xx_IR *ir;
	struct input_dev *input_dev;
	int err = -ENOMEM;

	if (dev->board.ir_codes == NULL) {
		/* No remote control support */
		return 0;
425 426
	}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	ir = kzalloc(sizeof(*ir), GFP_KERNEL);
	input_dev = input_allocate_device();
	if (!ir || !input_dev)
		goto err_out_free;

	/* record handles to ourself */
	ir->dev = dev;
	dev->ir = ir;

	ir->input = input_dev;

	/*
	 * em2874 supports more protocols. For now, let's just announce
	 * the two protocols that were already tested
	 */
	ir->props.allowed_protos = IR_TYPE_RC5 | IR_TYPE_NEC;
	ir->props.priv = ir;
	ir->props.change_protocol = em28xx_ir_change_protocol;

446 447 448
	/* This is how often we ask the chip for IR information */
	ir->polling = 100; /* ms */

449 450 451 452 453 454 455
	/* init input device */
	snprintf(ir->name, sizeof(ir->name), "em28xx IR (%s)",
						dev->name);

	usb_make_path(dev->udev, ir->phys, sizeof(ir->phys));
	strlcat(ir->phys, "/input0", sizeof(ir->phys));

456 457
	/* Set IR protocol */
	em28xx_ir_change_protocol(ir, dev->board.ir_codes->ir_type);
458
	err = ir_input_init(input_dev, &ir->ir, IR_TYPE_OTHER);
459 460 461
	if (err < 0)
		goto err_out_free;

462 463 464 465 466 467 468 469
	input_dev->name = ir->name;
	input_dev->phys = ir->phys;
	input_dev->id.bustype = BUS_USB;
	input_dev->id.version = 1;
	input_dev->id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
	input_dev->id.product = le16_to_cpu(dev->udev->descriptor.idProduct);

	input_dev->dev.parent = &dev->udev->dev;
470

471 472 473 474

	em28xx_ir_start(ir);

	/* all done */
475 476
	err = ir_input_register(ir->input, dev->board.ir_codes,
				&ir->props);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	if (err)
		goto err_out_stop;

	return 0;
 err_out_stop:
	em28xx_ir_stop(ir);
	dev->ir = NULL;
 err_out_free:
	kfree(ir);
	return err;
}

int em28xx_ir_fini(struct em28xx *dev)
{
	struct em28xx_IR *ir = dev->ir;

	/* skip detach on non attached boards */
	if (!ir)
		return 0;

	em28xx_ir_stop(ir);
498
	ir_input_unregister(ir->input);
499 500 501 502 503 504 505 506 507 508 509
	kfree(ir);

	/* done */
	dev->ir = NULL;
	return 0;
}

/**********************************************************
 Handle Webcam snapshot button
 **********************************************************/

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
static void em28xx_query_sbutton(struct work_struct *work)
{
	/* Poll the register and see if the button is depressed */
	struct em28xx *dev =
		container_of(work, struct em28xx, sbutton_query_work.work);
	int ret;

	ret = em28xx_read_reg(dev, EM28XX_R0C_USBSUSP);

	if (ret & EM28XX_R0C_USBSUSP_SNAPSHOT) {
		u8 cleared;
		/* Button is depressed, clear the register */
		cleared = ((u8) ret) & ~EM28XX_R0C_USBSUSP_SNAPSHOT;
		em28xx_write_regs(dev, EM28XX_R0C_USBSUSP, &cleared, 1);

		/* Not emulate the keypress */
		input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY,
				 1);
		/* Now unpress the key */
		input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY,
				 0);
	}

	/* Schedule next poll */
	schedule_delayed_work(&dev->sbutton_query_work,
			      msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL));
}

void em28xx_register_snapshot_button(struct em28xx *dev)
{
	struct input_dev *input_dev;
	int err;

	em28xx_info("Registering snapshot button...\n");
	input_dev = input_allocate_device();
	if (!input_dev) {
		em28xx_errdev("input_allocate_device failed\n");
		return;
	}

	usb_make_path(dev->udev, dev->snapshot_button_path,
		      sizeof(dev->snapshot_button_path));
	strlcat(dev->snapshot_button_path, "/sbutton",
		sizeof(dev->snapshot_button_path));
	INIT_DELAYED_WORK(&dev->sbutton_query_work, em28xx_query_sbutton);

	input_dev->name = "em28xx snapshot button";
	input_dev->phys = dev->snapshot_button_path;
	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP);
	set_bit(EM28XX_SNAPSHOT_KEY, input_dev->keybit);
	input_dev->keycodesize = 0;
	input_dev->keycodemax = 0;
	input_dev->id.bustype = BUS_USB;
	input_dev->id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
	input_dev->id.product = le16_to_cpu(dev->udev->descriptor.idProduct);
	input_dev->id.version = 1;
	input_dev->dev.parent = &dev->udev->dev;

	err = input_register_device(input_dev);
	if (err) {
		em28xx_errdev("input_register_device failed\n");
		input_free_device(input_dev);
		return;
	}

	dev->sbutton_input_dev = input_dev;
	schedule_delayed_work(&dev->sbutton_query_work,
			      msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL));
	return;

}

void em28xx_deregister_snapshot_button(struct em28xx *dev)
{
	if (dev->sbutton_input_dev != NULL) {
		em28xx_info("Deregistering snapshot button\n");
		cancel_rearming_delayed_work(&dev->sbutton_query_work);
		input_unregister_device(dev->sbutton_input_dev);
		dev->sbutton_input_dev = NULL;
	}
	return;
}