intel_ips.c 42.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * Copyright (c) 2009-2010 Intel Corporation
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Authors:
 *	Jesse Barnes <jbarnes@virtuousgeek.org>
 */

/*
 * Some Intel Ibex Peak based platforms support so-called "intelligent
 * power sharing", which allows the CPU and GPU to cooperate to maximize
 * performance within a given TDP (thermal design point).  This driver
 * performs the coordination between the CPU and GPU, monitors thermal and
 * power statistics in the platform, and initializes power monitoring
 * hardware.  It also provides a few tunables to control behavior.  Its
 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
 * by tracking power and thermal budget; secondarily it can boost turbo
 * performance by allocating more power or thermal budget to the CPU or GPU
 * based on available headroom and activity.
 *
 * The basic algorithm is driven by a 5s moving average of tempurature.  If
 * thermal headroom is available, the CPU and/or GPU power clamps may be
 * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
 * we scale back the clamp.  Aside from trigger events (when we're critically
 * close or over our TDP) we don't adjust the clamps more than once every
 * five seconds.
 *
 * The thermal device (device 31, function 6) has a set of registers that
 * are updated by the ME firmware.  The ME should also take the clamp values
 * written to those registers and write them to the CPU, but we currently
 * bypass that functionality and write the CPU MSR directly.
 *
 * UNSUPPORTED:
 *   - dual MCP configs
 *
 * TODO:
 *   - handle CPU hotplug
 *   - provide turbo enable/disable api
 *
 * Related documents:
 *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
 *   - CDI 401376 - Ibex Peak EDS
 *   - ref 26037, 26641 - IPS BIOS spec
 *   - ref 26489 - Nehalem BIOS writer's guide
 *   - ref 26921 - Ibex Peak BIOS Specification
 */

#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/string.h>
#include <linux/tick.h>
#include <linux/timer.h>
#include <drm/i915_drm.h>
#include <asm/msr.h>
#include <asm/processor.h>

#define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32

/*
 * Package level MSRs for monitor/control
 */
#define PLATFORM_INFO	0xce
#define   PLATFORM_TDP		(1<<29)
#define   PLATFORM_RATIO	(1<<28)

#define IA32_MISC_ENABLE	0x1a0
#define   IA32_MISC_TURBO_EN	(1ULL<<38)

#define TURBO_POWER_CURRENT_LIMIT	0x1ac
#define   TURBO_TDC_OVR_EN	(1UL<<31)
#define   TURBO_TDC_MASK	(0x000000007fff0000UL)
#define   TURBO_TDC_SHIFT	(16)
#define   TURBO_TDP_OVR_EN	(1UL<<15)
#define   TURBO_TDP_MASK	(0x0000000000003fffUL)

/*
 * Core/thread MSRs for monitoring
 */
#define IA32_PERF_CTL		0x199
#define   IA32_PERF_TURBO_DIS	(1ULL<<32)

/*
 * Thermal PCI device regs
 */
#define THM_CFG_TBAR	0x10
#define THM_CFG_TBAR_HI	0x14

#define THM_TSIU	0x00
#define THM_TSE		0x01
#define   TSE_EN	0xb8
#define THM_TSS		0x02
#define THM_TSTR	0x03
#define THM_TSTTP	0x04
#define THM_TSCO	0x08
#define THM_TSES	0x0c
#define THM_TSGPEN	0x0d
#define   TSGPEN_HOT_LOHI	(1<<1)
#define   TSGPEN_CRIT_LOHI	(1<<2)
#define THM_TSPC	0x0e
#define THM_PPEC	0x10
#define THM_CTA		0x12
#define THM_PTA		0x14
#define   PTA_SLOPE_MASK	(0xff00)
#define   PTA_SLOPE_SHIFT	8
#define   PTA_OFFSET_MASK	(0x00ff)
#define THM_MGTA	0x16
#define   MGTA_SLOPE_MASK	(0xff00)
#define   MGTA_SLOPE_SHIFT	8
#define   MGTA_OFFSET_MASK	(0x00ff)
#define THM_TRC		0x1a
#define   TRC_CORE2_EN	(1<<15)
#define   TRC_THM_EN	(1<<12)
#define   TRC_C6_WAR	(1<<8)
#define   TRC_CORE1_EN	(1<<7)
#define   TRC_CORE_PWR	(1<<6)
#define   TRC_PCH_EN	(1<<5)
#define   TRC_MCH_EN	(1<<4)
#define   TRC_DIMM4	(1<<3)
#define   TRC_DIMM3	(1<<2)
#define   TRC_DIMM2	(1<<1)
#define   TRC_DIMM1	(1<<0)
#define THM_TES		0x20
#define THM_TEN		0x21
#define   TEN_UPDATE_EN	1
#define THM_PSC		0x24
#define   PSC_NTG	(1<<0) /* No GFX turbo support */
#define   PSC_NTPC	(1<<1) /* No CPU turbo support */
#define   PSC_PP_DEF	(0<<2) /* Perf policy up to driver */
#define   PSP_PP_PC	(1<<2) /* BIOS prefers CPU perf */
#define   PSP_PP_BAL	(2<<2) /* BIOS wants balanced perf */
#define   PSP_PP_GFX	(3<<2) /* BIOS prefers GFX perf */
#define   PSP_PBRT	(1<<4) /* BIOS run time support */
#define THM_CTV1	0x30
#define   CTV_TEMP_ERROR (1<<15)
#define   CTV_TEMP_MASK	0x3f
#define   CTV_
#define THM_CTV2	0x32
#define THM_CEC		0x34 /* undocumented power accumulator in joules */
#define THM_AE		0x3f
#define THM_HTS		0x50 /* 32 bits */
#define   HTS_PCPL_MASK	(0x7fe00000)
#define   HTS_PCPL_SHIFT 21
#define   HTS_GPL_MASK  (0x001ff000)
#define   HTS_GPL_SHIFT 12
#define   HTS_PP_MASK	(0x00000c00)
#define   HTS_PP_SHIFT  10
#define   HTS_PP_DEF	0
#define   HTS_PP_PROC	1
#define   HTS_PP_BAL	2
#define   HTS_PP_GFX	3
#define   HTS_PCTD_DIS	(1<<9)
#define   HTS_GTD_DIS	(1<<8)
#define   HTS_PTL_MASK  (0x000000fe)
#define   HTS_PTL_SHIFT 1
#define   HTS_NVV	(1<<0)
#define THM_HTSHI	0x54 /* 16 bits */
#define   HTS2_PPL_MASK		(0x03ff)
#define   HTS2_PRST_MASK	(0x3c00)
#define   HTS2_PRST_SHIFT	10
#define   HTS2_PRST_UNLOADED	0
#define   HTS2_PRST_RUNNING	1
#define   HTS2_PRST_TDISOP	2 /* turbo disabled due to power */
#define   HTS2_PRST_TDISHT	3 /* turbo disabled due to high temp */
#define   HTS2_PRST_TDISUSR	4 /* user disabled turbo */
#define   HTS2_PRST_TDISPLAT	5 /* platform disabled turbo */
#define   HTS2_PRST_TDISPM	6 /* power management disabled turbo */
#define   HTS2_PRST_TDISERR	7 /* some kind of error disabled turbo */
#define THM_PTL		0x56
#define THM_MGTV	0x58
#define   TV_MASK	0x000000000000ff00
#define   TV_SHIFT	8
#define THM_PTV		0x60
#define   PTV_MASK	0x00ff
#define THM_MMGPC	0x64
#define THM_MPPC	0x66
#define THM_MPCPC	0x68
#define THM_TSPIEN	0x82
#define   TSPIEN_AUX_LOHI	(1<<0)
#define   TSPIEN_HOT_LOHI	(1<<1)
#define   TSPIEN_CRIT_LOHI	(1<<2)
#define   TSPIEN_AUX2_LOHI	(1<<3)
#define THM_TSLOCK	0x83
#define THM_ATR		0x84
#define THM_TOF		0x87
#define THM_STS		0x98
#define   STS_PCPL_MASK		(0x7fe00000)
#define   STS_PCPL_SHIFT	21
#define   STS_GPL_MASK		(0x001ff000)
#define   STS_GPL_SHIFT		12
#define   STS_PP_MASK		(0x00000c00)
#define   STS_PP_SHIFT		10
#define   STS_PP_DEF		0
#define   STS_PP_PROC		1
#define   STS_PP_BAL		2
#define   STS_PP_GFX		3
#define   STS_PCTD_DIS		(1<<9)
#define   STS_GTD_DIS		(1<<8)
#define   STS_PTL_MASK		(0x000000fe)
#define   STS_PTL_SHIFT		1
#define   STS_NVV		(1<<0)
#define THM_SEC		0x9c
#define   SEC_ACK	(1<<0)
#define THM_TC3		0xa4
#define THM_TC1		0xa8
#define   STS_PPL_MASK		(0x0003ff00)
#define   STS_PPL_SHIFT		16
#define THM_TC2		0xac
#define THM_DTV		0xb0
#define THM_ITV		0xd8
232
#define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
#define   ITV_ME_SEQNO_SHIFT (16)
#define   ITV_MCH_TEMP_MASK 0x0000ff00
#define   ITV_MCH_TEMP_SHIFT (8)
#define   ITV_PCH_TEMP_MASK 0x000000ff

#define thm_readb(off) readb(ips->regmap + (off))
#define thm_readw(off) readw(ips->regmap + (off))
#define thm_readl(off) readl(ips->regmap + (off))
#define thm_readq(off) readq(ips->regmap + (off))

#define thm_writeb(off, val) writeb((val), ips->regmap + (off))
#define thm_writew(off, val) writew((val), ips->regmap + (off))
#define thm_writel(off, val) writel((val), ips->regmap + (off))

static const int IPS_ADJUST_PERIOD = 5000; /* ms */

/* For initial average collection */
static const int IPS_SAMPLE_PERIOD = 200; /* ms */
static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
#define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)

/* Per-SKU limits */
struct ips_mcp_limits {
	int cpu_family;
	int cpu_model; /* includes extended model... */
	int mcp_power_limit; /* mW units */
	int core_power_limit;
	int mch_power_limit;
	int core_temp_limit; /* degrees C */
	int mch_temp_limit;
};

/* Max temps are -10 degrees C to avoid PROCHOT# */

struct ips_mcp_limits ips_sv_limits = {
	.mcp_power_limit = 35000,
	.core_power_limit = 29000,
	.mch_power_limit = 20000,
	.core_temp_limit = 95,
	.mch_temp_limit = 90
};

struct ips_mcp_limits ips_lv_limits = {
	.mcp_power_limit = 25000,
	.core_power_limit = 21000,
	.mch_power_limit = 13000,
	.core_temp_limit = 95,
	.mch_temp_limit = 90
};

struct ips_mcp_limits ips_ulv_limits = {
	.mcp_power_limit = 18000,
	.core_power_limit = 14000,
	.mch_power_limit = 11000,
	.core_temp_limit = 95,
	.mch_temp_limit = 90
};

struct ips_driver {
	struct pci_dev *dev;
	void *regmap;
	struct task_struct *monitor;
	struct task_struct *adjust;
	struct dentry *debug_root;

	/* Average CPU core temps (all averages in .01 degrees C for precision) */
	u16 ctv1_avg_temp;
	u16 ctv2_avg_temp;
	/* GMCH average */
	u16 mch_avg_temp;
	/* Average for the CPU (both cores?) */
	u16 mcp_avg_temp;
	/* Average power consumption (in mW) */
	u32 cpu_avg_power;
	u32 mch_avg_power;

	/* Offset values */
	u16 cta_val;
	u16 pta_val;
	u16 mgta_val;

	/* Maximums & prefs, protected by turbo status lock */
	spinlock_t turbo_status_lock;
	u16 mcp_temp_limit;
	u16 mcp_power_limit;
	u16 core_power_limit;
	u16 mch_power_limit;
	bool cpu_turbo_enabled;
	bool __cpu_turbo_on;
	bool gpu_turbo_enabled;
	bool __gpu_turbo_on;
	bool gpu_preferred;
	bool poll_turbo_status;
	bool second_cpu;
327
	bool turbo_toggle_allowed;
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	struct ips_mcp_limits *limits;

	/* Optional MCH interfaces for if i915 is in use */
	unsigned long (*read_mch_val)(void);
	bool (*gpu_raise)(void);
	bool (*gpu_lower)(void);
	bool (*gpu_busy)(void);
	bool (*gpu_turbo_disable)(void);

	/* For restoration at unload */
	u64 orig_turbo_limit;
	u64 orig_turbo_ratios;
};

/**
 * ips_cpu_busy - is CPU busy?
 * @ips: IPS driver struct
 *
 * Check CPU for load to see whether we should increase its thermal budget.
 *
 * RETURNS:
 * True if the CPU could use more power, false otherwise.
 */
static bool ips_cpu_busy(struct ips_driver *ips)
{
	if ((avenrun[0] >> FSHIFT) > 1)
		return true;

	return false;
}

/**
 * ips_cpu_raise - raise CPU power clamp
 * @ips: IPS driver struct
 *
 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
 * this platform.
 *
 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
 * long as we haven't hit the TDP limit for the SKU).
 */
static void ips_cpu_raise(struct ips_driver *ips)
{
	u64 turbo_override;
	u16 cur_tdp_limit, new_tdp_limit;

	if (!ips->cpu_turbo_enabled)
		return;

	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);

	cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
	new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */

	/* Clamp to SKU TDP limit */
	if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
		new_tdp_limit = cur_tdp_limit;

	thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);

	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);

	turbo_override &= ~TURBO_TDP_MASK;
	turbo_override |= new_tdp_limit;

	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
}

/**
 * ips_cpu_lower - lower CPU power clamp
 * @ips: IPS driver struct
 *
 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
 *
 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
 * as low as the platform limits will allow (though we could go lower there
 * wouldn't be much point).
 */
static void ips_cpu_lower(struct ips_driver *ips)
{
	u64 turbo_override;
	u16 cur_limit, new_limit;

	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);

	cur_limit = turbo_override & TURBO_TDP_MASK;
	new_limit = cur_limit - 8; /* 1W decrease */

	/* Clamp to SKU TDP limit */
	if (((new_limit * 10) / 8) < (ips->orig_turbo_limit & TURBO_TDP_MASK))
		new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;

	thm_writew(THM_MPCPC, (new_limit * 10) / 8);

	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);

	turbo_override &= ~TURBO_TDP_MASK;
	turbo_override |= new_limit;

	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
}

/**
 * do_enable_cpu_turbo - internal turbo enable function
 * @data: unused
 *
 * Internal function for actually updating MSRs.  When we enable/disable
 * turbo, we need to do it on each CPU; this function is the one called
 * by on_each_cpu() when needed.
 */
static void do_enable_cpu_turbo(void *data)
{
	u64 perf_ctl;

	rdmsrl(IA32_PERF_CTL, perf_ctl);
	if (perf_ctl & IA32_PERF_TURBO_DIS) {
		perf_ctl &= ~IA32_PERF_TURBO_DIS;
		wrmsrl(IA32_PERF_CTL, perf_ctl);
	}
}

/**
 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
 * @ips: IPS driver struct
 *
 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
 * all logical threads.
 */
static void ips_enable_cpu_turbo(struct ips_driver *ips)
{
	/* Already on, no need to mess with MSRs */
	if (ips->__cpu_turbo_on)
		return;

464 465
	if (ips->turbo_toggle_allowed)
		on_each_cpu(do_enable_cpu_turbo, ips, 1);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

	ips->__cpu_turbo_on = true;
}

/**
 * do_disable_cpu_turbo - internal turbo disable function
 * @data: unused
 *
 * Internal function for actually updating MSRs.  When we enable/disable
 * turbo, we need to do it on each CPU; this function is the one called
 * by on_each_cpu() when needed.
 */
static void do_disable_cpu_turbo(void *data)
{
	u64 perf_ctl;

	rdmsrl(IA32_PERF_CTL, perf_ctl);
	if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
		perf_ctl |= IA32_PERF_TURBO_DIS;
		wrmsrl(IA32_PERF_CTL, perf_ctl);
	}
}

/**
 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
 * @ips: IPS driver struct
 *
 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
 * all logical threads.
 */
static void ips_disable_cpu_turbo(struct ips_driver *ips)
{
	/* Already off, leave it */
	if (!ips->__cpu_turbo_on)
		return;

502 503
	if (ips->turbo_toggle_allowed)
		on_each_cpu(do_disable_cpu_turbo, ips, 1);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

	ips->__cpu_turbo_on = false;
}

/**
 * ips_gpu_busy - is GPU busy?
 * @ips: IPS driver struct
 *
 * Check GPU for load to see whether we should increase its thermal budget.
 * We need to call into the i915 driver in this case.
 *
 * RETURNS:
 * True if the GPU could use more power, false otherwise.
 */
static bool ips_gpu_busy(struct ips_driver *ips)
{
520 521 522 523
	if (!ips->gpu_turbo_enabled)
		return false;

	return ips->gpu_busy();
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
}

/**
 * ips_gpu_raise - raise GPU power clamp
 * @ips: IPS driver struct
 *
 * Raise the GPU frequency/power if possible.  We need to call into the
 * i915 driver in this case.
 */
static void ips_gpu_raise(struct ips_driver *ips)
{
	if (!ips->gpu_turbo_enabled)
		return;

	if (!ips->gpu_raise())
		ips->gpu_turbo_enabled = false;

	return;
}

/**
 * ips_gpu_lower - lower GPU power clamp
 * @ips: IPS driver struct
 *
 * Lower GPU frequency/power if possible.  Need to call i915.
 */
static void ips_gpu_lower(struct ips_driver *ips)
{
	if (!ips->gpu_turbo_enabled)
		return;

	if (!ips->gpu_lower())
		ips->gpu_turbo_enabled = false;

	return;
}

/**
 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
 * @ips: IPS driver struct
 *
 * Call into the graphics driver indicating that it can safely use
 * turbo mode.
 */
static void ips_enable_gpu_turbo(struct ips_driver *ips)
{
	if (ips->__gpu_turbo_on)
		return;
	ips->__gpu_turbo_on = true;
}

/**
 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
 * @ips: IPS driver struct
 *
 * Request that the graphics driver disable turbo mode.
 */
static void ips_disable_gpu_turbo(struct ips_driver *ips)
{
	/* Avoid calling i915 if turbo is already disabled */
	if (!ips->__gpu_turbo_on)
		return;

	if (!ips->gpu_turbo_disable())
		dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
	else
		ips->__gpu_turbo_on = false;
}

/**
 * mcp_exceeded - check whether we're outside our thermal & power limits
 * @ips: IPS driver struct
 *
 * Check whether the MCP is over its thermal or power budget.
 */
static bool mcp_exceeded(struct ips_driver *ips)
{
	unsigned long flags;
	bool ret = false;

	spin_lock_irqsave(&ips->turbo_status_lock, flags);
	if (ips->mcp_avg_temp > (ips->mcp_temp_limit * 100))
		ret = true;
	if (ips->cpu_avg_power + ips->mch_avg_power > ips->mcp_power_limit)
		ret = true;
	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);

	if (ret)
J
Jesse Barnes 已提交
612
		dev_info(&ips->dev->dev,
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
			 "MCP power or thermal limit exceeded\n");

	return ret;
}

/**
 * cpu_exceeded - check whether a CPU core is outside its limits
 * @ips: IPS driver struct
 * @cpu: CPU number to check
 *
 * Check a given CPU's average temp or power is over its limit.
 */
static bool cpu_exceeded(struct ips_driver *ips, int cpu)
{
	unsigned long flags;
	int avg;
	bool ret = false;

	spin_lock_irqsave(&ips->turbo_status_lock, flags);
	avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
	if (avg > (ips->limits->core_temp_limit * 100))
		ret = true;
635
	if (ips->cpu_avg_power > ips->core_power_limit * 100)
636 637 638 639
		ret = true;
	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);

	if (ret)
J
Jesse Barnes 已提交
640
		dev_info(&ips->dev->dev,
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
			 "CPU power or thermal limit exceeded\n");

	return ret;
}

/**
 * mch_exceeded - check whether the GPU is over budget
 * @ips: IPS driver struct
 *
 * Check the MCH temp & power against their maximums.
 */
static bool mch_exceeded(struct ips_driver *ips)
{
	unsigned long flags;
	bool ret = false;

	spin_lock_irqsave(&ips->turbo_status_lock, flags);
	if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
		ret = true;
660 661
	if (ips->mch_avg_power > ips->mch_power_limit)
		ret = true;
662 663 664 665 666
	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);

	return ret;
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
/**
 * verify_limits - verify BIOS provided limits
 * @ips: IPS structure
 *
 * BIOS can optionally provide non-default limits for power and temp.  Check
 * them here and use the defaults if the BIOS values are not provided or
 * are otherwise unusable.
 */
static void verify_limits(struct ips_driver *ips)
{
	if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
	    ips->mcp_power_limit > 35000)
		ips->mcp_power_limit = ips->limits->mcp_power_limit;

	if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
	    ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
	    ips->mcp_temp_limit > 150)
		ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
					  ips->limits->mch_temp_limit);
}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
/**
 * update_turbo_limits - get various limits & settings from regs
 * @ips: IPS driver struct
 *
 * Update the IPS power & temp limits, along with turbo enable flags,
 * based on latest register contents.
 *
 * Used at init time and for runtime BIOS support, which requires polling
 * the regs for updates (as a result of AC->DC transition for example).
 *
 * LOCKING:
 * Caller must hold turbo_status_lock (outside of init)
 */
static void update_turbo_limits(struct ips_driver *ips)
{
	u32 hts = thm_readl(THM_HTS);

	ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
	ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
	ips->core_power_limit = thm_readw(THM_MPCPC);
	ips->mch_power_limit = thm_readw(THM_MMGPC);
	ips->mcp_temp_limit = thm_readw(THM_PTL);
	ips->mcp_power_limit = thm_readw(THM_MPPC);

712
	verify_limits(ips);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
	/* Ignore BIOS CPU vs GPU pref */
}

/**
 * ips_adjust - adjust power clamp based on thermal state
 * @data: ips driver structure
 *
 * Wake up every 5s or so and check whether we should adjust the power clamp.
 * Check CPU and GPU load to determine which needs adjustment.  There are
 * several things to consider here:
 *   - do we need to adjust up or down?
 *   - is CPU busy?
 *   - is GPU busy?
 *   - is CPU in turbo?
 *   - is GPU in turbo?
 *   - is CPU or GPU preferred? (CPU is default)
 *
 * So, given the above, we do the following:
 *   - up (TDP available)
 *     - CPU not busy, GPU not busy - nothing
 *     - CPU busy, GPU not busy - adjust CPU up
 *     - CPU not busy, GPU busy - adjust GPU up
 *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
 *       non-preferred unit if necessary
 *   - down (at TDP limit)
 *     - adjust both CPU and GPU down if possible
 *
		cpu+ gpu+	cpu+gpu-	cpu-gpu+	cpu-gpu-
cpu < gpu <	cpu+gpu+	cpu+		gpu+		nothing
cpu < gpu >=	cpu+gpu-(mcp<)	cpu+gpu-(mcp<)	gpu-		gpu-
cpu >= gpu <	cpu-gpu+(mcp<)	cpu-		cpu-gpu+(mcp<)	cpu-
cpu >= gpu >=	cpu-gpu-	cpu-gpu-	cpu-gpu-	cpu-gpu-
 *
 */
static int ips_adjust(void *data)
{
	struct ips_driver *ips = data;
	unsigned long flags;

	dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");

	/*
	 * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
	 * often isn't recommended due to ME interaction.
	 */
	do {
		bool cpu_busy = ips_cpu_busy(ips);
		bool gpu_busy = ips_gpu_busy(ips);

		spin_lock_irqsave(&ips->turbo_status_lock, flags);
		if (ips->poll_turbo_status)
			update_turbo_limits(ips);
		spin_unlock_irqrestore(&ips->turbo_status_lock, flags);

		/* Update turbo status if necessary */
		if (ips->cpu_turbo_enabled)
			ips_enable_cpu_turbo(ips);
		else
			ips_disable_cpu_turbo(ips);

		if (ips->gpu_turbo_enabled)
			ips_enable_gpu_turbo(ips);
		else
			ips_disable_gpu_turbo(ips);

		/* We're outside our comfort zone, crank them down */
779
		if (mcp_exceeded(ips)) {
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
			ips_cpu_lower(ips);
			ips_gpu_lower(ips);
			goto sleep;
		}

		if (!cpu_exceeded(ips, 0) && cpu_busy)
			ips_cpu_raise(ips);
		else
			ips_cpu_lower(ips);

		if (!mch_exceeded(ips) && gpu_busy)
			ips_gpu_raise(ips);
		else
			ips_gpu_lower(ips);

sleep:
		schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
	} while (!kthread_should_stop());

	dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");

	return 0;
}

/*
 * Helpers for reading out temp/power values and calculating their
 * averages for the decision making and monitoring functions.
 */

static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
{
	u64 total = 0;
	int i;
	u16 avg;

	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
		total += (u64)(array[i] * 100);

	do_div(total, IPS_SAMPLE_COUNT);

	avg = (u16)total;

	return avg;
}

static u16 read_mgtv(struct ips_driver *ips)
{
	u16 ret;
	u64 slope, offset;
	u64 val;

	val = thm_readq(THM_MGTV);
	val = (val & TV_MASK) >> TV_SHIFT;

	slope = offset = thm_readw(THM_MGTA);
	slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
	offset = offset & MGTA_OFFSET_MASK;

	ret = ((val * slope + 0x40) >> 7) + offset;

840
	return 0; /* MCH temp reporting buggy */
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
}

static u16 read_ptv(struct ips_driver *ips)
{
	u16 val, slope, offset;

	slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
	offset = ips->pta_val & PTA_OFFSET_MASK;

	val = thm_readw(THM_PTV) & PTV_MASK;

	return val;
}

static u16 read_ctv(struct ips_driver *ips, int cpu)
{
	int reg = cpu ? THM_CTV2 : THM_CTV1;
	u16 val;

	val = thm_readw(reg);
	if (!(val & CTV_TEMP_ERROR))
		val = (val) >> 6; /* discard fractional component */
	else
		val = 0;

	return val;
}

static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
{
	u32 val;
	u32 ret;

	/*
	 * CEC is in joules/65535.  Take difference over time to
	 * get watts.
	 */
	val = thm_readl(THM_CEC);

	/* period is in ms and we want mW */
	ret = (((val - *last) * 1000) / period);
	ret = (ret * 1000) / 65535;
	*last = val;

	return ret;
}

static const u16 temp_decay_factor = 2;
static u16 update_average_temp(u16 avg, u16 val)
{
	u16 ret;

	/* Multiply by 100 for extra precision */
	ret = (val * 100 / temp_decay_factor) +
		(((temp_decay_factor - 1) * avg) / temp_decay_factor);
	return ret;
}

static const u16 power_decay_factor = 2;
static u16 update_average_power(u32 avg, u32 val)
{
	u32 ret;

	ret = (val / power_decay_factor) +
		(((power_decay_factor - 1) * avg) / power_decay_factor);

	return ret;
}

static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
{
	u64 total = 0;
	u32 avg;
	int i;

	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
		total += array[i];

	do_div(total, IPS_SAMPLE_COUNT);
	avg = (u32)total;

	return avg;
}

static void monitor_timeout(unsigned long arg)
{
	wake_up_process((struct task_struct *)arg);
}

/**
 * ips_monitor - temp/power monitoring thread
 * @data: ips driver structure
 *
 * This is the main function for the IPS driver.  It monitors power and
 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
 *
 * We keep a 5s moving average of power consumption and tempurature.  Using
 * that data, along with CPU vs GPU preference, we adjust the power clamps
 * up or down.
 */
static int ips_monitor(void *data)
{
	struct ips_driver *ips = data;
	struct timer_list timer;
	unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
	int i;
947 948
	u32 *cpu_samples, *mchp_samples, old_cpu_power;
	u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
949 950 951 952 953 954 955 956
	u8 cur_seqno, last_seqno;

	mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
	ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
	ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
	mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
	cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
	mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
957 958
	if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
			!cpu_samples || !mchp_samples) {
959 960 961 962 963 964 965
		dev_err(&ips->dev->dev,
			"failed to allocate sample array, ips disabled\n");
		kfree(mcp_samples);
		kfree(ctv1_samples);
		kfree(ctv2_samples);
		kfree(mch_samples);
		kfree(cpu_samples);
966
		kfree(mchp_samples);
967 968 969 970 971 972 973
		return -ENOMEM;
	}

	last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
		ITV_ME_SEQNO_SHIFT;
	seqno_timestamp = get_jiffies_64();

974
	old_cpu_power = thm_readl(THM_CEC);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));

	/* Collect an initial average */
	for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
		u32 mchp, cpu_power;
		u16 val;

		mcp_samples[i] = read_ptv(ips);

		val = read_ctv(ips, 0);
		ctv1_samples[i] = val;

		val = read_ctv(ips, 1);
		ctv2_samples[i] = val;

		val = read_mgtv(ips);
		mch_samples[i] = val;

		cpu_power = get_cpu_power(ips, &old_cpu_power,
					  IPS_SAMPLE_PERIOD);
		cpu_samples[i] = cpu_power;

		if (ips->read_mch_val) {
			mchp = ips->read_mch_val();
			mchp_samples[i] = mchp;
		}

		schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
		if (kthread_should_stop())
			break;
	}

	ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
	ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
	ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
	ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
	ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
	ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
	kfree(mcp_samples);
	kfree(ctv1_samples);
	kfree(ctv2_samples);
	kfree(mch_samples);
	kfree(cpu_samples);
	kfree(mchp_samples);

	/* Start the adjustment thread now that we have data */
	wake_up_process(ips->adjust);

	/*
	 * Ok, now we have an initial avg.  From here on out, we track the
	 * running avg using a decaying average calculation.  This allows
	 * us to reduce the sample frequency if the CPU and GPU are idle.
	 */
	old_cpu_power = thm_readl(THM_CEC);
	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
	last_sample_period = IPS_SAMPLE_PERIOD;

	setup_deferrable_timer_on_stack(&timer, monitor_timeout,
					(unsigned long)current);
	do {
		u32 cpu_val, mch_val;
		u16 val;

		/* MCP itself */
		val = read_ptv(ips);
		ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);

		/* Processor 0 */
		val = read_ctv(ips, 0);
		ips->ctv1_avg_temp =
			update_average_temp(ips->ctv1_avg_temp, val);
		/* Power */
		cpu_val = get_cpu_power(ips, &old_cpu_power,
					last_sample_period);
		ips->cpu_avg_power =
			update_average_power(ips->cpu_avg_power, cpu_val);

		if (ips->second_cpu) {
			/* Processor 1 */
			val = read_ctv(ips, 1);
			ips->ctv2_avg_temp =
				update_average_temp(ips->ctv2_avg_temp, val);
		}

		/* MCH */
		val = read_mgtv(ips);
		ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
		/* Power */
		if (ips->read_mch_val) {
			mch_val = ips->read_mch_val();
			ips->mch_avg_power =
				update_average_power(ips->mch_avg_power,
						     mch_val);
		}

		/*
		 * Make sure ME is updating thermal regs.
		 * Note:
		 * If it's been more than a second since the last update,
		 * the ME is probably hung.
		 */
		cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
			ITV_ME_SEQNO_SHIFT;
		if (cur_seqno == last_seqno &&
		    time_after(jiffies, seqno_timestamp + HZ)) {
			dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
		} else {
			seqno_timestamp = get_jiffies_64();
			last_seqno = cur_seqno;
		}

		last_msecs = jiffies_to_msecs(jiffies);
		expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);

		__set_current_state(TASK_UNINTERRUPTIBLE);
		mod_timer(&timer, expire);
		schedule();

		/* Calculate actual sample period for power averaging */
		last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
		if (!last_sample_period)
			last_sample_period = 1;
	} while (!kthread_should_stop());

	del_timer_sync(&timer);
	destroy_timer_on_stack(&timer);

	dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");

	return 0;
}

#if 0
#define THM_DUMPW(reg) \
	{ \
	u16 val = thm_readw(reg); \
	dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
	}
#define THM_DUMPL(reg) \
	{ \
	u32 val = thm_readl(reg); \
	dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
	}
#define THM_DUMPQ(reg) \
	{ \
	u64 val = thm_readq(reg); \
	dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
	}

static void dump_thermal_info(struct ips_driver *ips)
{
	u16 ptl;

	ptl = thm_readw(THM_PTL);
	dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);

	THM_DUMPW(THM_CTA);
	THM_DUMPW(THM_TRC);
	THM_DUMPW(THM_CTV1);
	THM_DUMPL(THM_STS);
	THM_DUMPW(THM_PTV);
	THM_DUMPQ(THM_MGTV);
}
#endif

/**
 * ips_irq_handler - handle temperature triggers and other IPS events
 * @irq: irq number
 * @arg: unused
 *
 * Handle temperature limit trigger events, generally by lowering the clamps.
 * If we're at a critical limit, we clamp back to the lowest possible value
 * to prevent emergency shutdown.
 */
static irqreturn_t ips_irq_handler(int irq, void *arg)
{
	struct ips_driver *ips = arg;
	u8 tses = thm_readb(THM_TSES);
	u8 tes = thm_readb(THM_TES);

	if (!tses && !tes)
		return IRQ_NONE;

	dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
	dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);

	/* STS update from EC? */
	if (tes & 1) {
		u32 sts, tc1;

		sts = thm_readl(THM_STS);
		tc1 = thm_readl(THM_TC1);

		if (sts & STS_NVV) {
			spin_lock(&ips->turbo_status_lock);
			ips->core_power_limit = (sts & STS_PCPL_MASK) >>
				STS_PCPL_SHIFT;
			ips->mch_power_limit = (sts & STS_GPL_MASK) >>
				STS_GPL_SHIFT;
			/* ignore EC CPU vs GPU pref */
			ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
			ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
			ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
				STS_PTL_SHIFT;
			ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
				STS_PPL_SHIFT;
1181
			verify_limits(ips);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
			spin_unlock(&ips->turbo_status_lock);

			thm_writeb(THM_SEC, SEC_ACK);
		}
		thm_writeb(THM_TES, tes);
	}

	/* Thermal trip */
	if (tses) {
		dev_warn(&ips->dev->dev,
			 "thermal trip occurred, tses: 0x%04x\n", tses);
		thm_writeb(THM_TSES, tses);
	}

	return IRQ_HANDLED;
}

#ifndef CONFIG_DEBUG_FS
static void ips_debugfs_init(struct ips_driver *ips) { return; }
static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
#else

/* Expose current state and limits in debugfs if possible */

struct ips_debugfs_node {
	struct ips_driver *ips;
	char *name;
	int (*show)(struct seq_file *m, void *data);
};

static int show_cpu_temp(struct seq_file *m, void *data)
{
	struct ips_driver *ips = m->private;

	seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
		   ips->ctv1_avg_temp % 100);

	return 0;
}

static int show_cpu_power(struct seq_file *m, void *data)
{
	struct ips_driver *ips = m->private;

	seq_printf(m, "%dmW\n", ips->cpu_avg_power);

	return 0;
}

static int show_cpu_clamp(struct seq_file *m, void *data)
{
	u64 turbo_override;
	int tdp, tdc;

	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);

	tdp = (int)(turbo_override & TURBO_TDP_MASK);
	tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);

	/* Convert to .1W/A units */
	tdp = tdp * 10 / 8;
	tdc = tdc * 10 / 8;

	/* Watts Amperes */
	seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
		   tdc / 10, tdc % 10);

	return 0;
}

static int show_mch_temp(struct seq_file *m, void *data)
{
	struct ips_driver *ips = m->private;

	seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
		   ips->mch_avg_temp % 100);

	return 0;
}

static int show_mch_power(struct seq_file *m, void *data)
{
	struct ips_driver *ips = m->private;

	seq_printf(m, "%dmW\n", ips->mch_avg_power);

	return 0;
}

static struct ips_debugfs_node ips_debug_files[] = {
	{ NULL, "cpu_temp", show_cpu_temp },
	{ NULL, "cpu_power", show_cpu_power },
	{ NULL, "cpu_clamp", show_cpu_clamp },
	{ NULL, "mch_temp", show_mch_temp },
	{ NULL, "mch_power", show_mch_power },
};

static int ips_debugfs_open(struct inode *inode, struct file *file)
{
	struct ips_debugfs_node *node = inode->i_private;

	return single_open(file, node->show, node->ips);
}

static const struct file_operations ips_debugfs_ops = {
	.owner = THIS_MODULE,
	.open = ips_debugfs_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static void ips_debugfs_cleanup(struct ips_driver *ips)
{
	if (ips->debug_root)
		debugfs_remove_recursive(ips->debug_root);
	return;
}

static void ips_debugfs_init(struct ips_driver *ips)
{
	int i;

	ips->debug_root = debugfs_create_dir("ips", NULL);
	if (!ips->debug_root) {
		dev_err(&ips->dev->dev,
			"failed to create debugfs entries: %ld\n",
			PTR_ERR(ips->debug_root));
		return;
	}

	for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
		struct dentry *ent;
		struct ips_debugfs_node *node = &ips_debug_files[i];

		node->ips = ips;
		ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
					  ips->debug_root, node,
					  &ips_debugfs_ops);
		if (!ent) {
			dev_err(&ips->dev->dev,
				"failed to create debug file: %ld\n",
				PTR_ERR(ent));
			goto err_cleanup;
		}
	}

	return;

err_cleanup:
	ips_debugfs_cleanup(ips);
	return;
}
#endif /* CONFIG_DEBUG_FS */

/**
 * ips_detect_cpu - detect whether CPU supports IPS
 *
 * Walk our list and see if we're on a supported CPU.  If we find one,
 * return the limits for it.
 */
static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
{
	u64 turbo_power, misc_en;
	struct ips_mcp_limits *limits = NULL;
	u16 tdp;

	if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
		dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
		goto out;
	}

	rdmsrl(IA32_MISC_ENABLE, misc_en);
	/*
	 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
	 * turbo manually or we'll get an illegal MSR access, even though
	 * turbo will still be available.
	 */
1360 1361 1362 1363
	if (misc_en & IA32_MISC_TURBO_EN)
		ips->turbo_toggle_allowed = true;
	else
		ips->turbo_toggle_allowed = false;
1364 1365 1366 1367 1368 1369 1370

	if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
		limits = &ips_sv_limits;
	else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
		limits = &ips_lv_limits;
	else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
		limits = &ips_ulv_limits;
1371
	else {
1372
		dev_info(&ips->dev->dev, "No CPUID match found.\n");
1373 1374
		goto out;
	}
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
	tdp = turbo_power & TURBO_TDP_MASK;

	/* Sanity check TDP against CPU */
	if (limits->mcp_power_limit != (tdp / 8) * 1000) {
		dev_warn(&ips->dev->dev, "Warning: CPU TDP doesn't match expected value (found %d, expected %d)\n",
			 tdp / 8, limits->mcp_power_limit / 1000);
	}

out:
	return limits;
}

/**
 * ips_get_i915_syms - try to get GPU control methods from i915 driver
 * @ips: IPS driver
 *
 * The i915 driver exports several interfaces to allow the IPS driver to
 * monitor and control graphics turbo mode.  If we can find them, we can
 * enable graphics turbo, otherwise we must disable it to avoid exceeding
 * thermal and power limits in the MCP.
 */
static bool ips_get_i915_syms(struct ips_driver *ips)
{
	ips->read_mch_val = symbol_get(i915_read_mch_val);
	if (!ips->read_mch_val)
		goto out_err;
	ips->gpu_raise = symbol_get(i915_gpu_raise);
	if (!ips->gpu_raise)
		goto out_put_mch;
	ips->gpu_lower = symbol_get(i915_gpu_lower);
	if (!ips->gpu_lower)
		goto out_put_raise;
	ips->gpu_busy = symbol_get(i915_gpu_busy);
	if (!ips->gpu_busy)
		goto out_put_lower;
	ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
	if (!ips->gpu_turbo_disable)
		goto out_put_busy;

	return true;

out_put_busy:
1419
	symbol_put(i915_gpu_busy);
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
out_put_lower:
	symbol_put(i915_gpu_lower);
out_put_raise:
	symbol_put(i915_gpu_raise);
out_put_mch:
	symbol_put(i915_read_mch_val);
out_err:
	return false;
}

static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL,
		     PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
	{ 0, }
};

MODULE_DEVICE_TABLE(pci, ips_id_table);

static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	u64 platform_info;
	struct ips_driver *ips;
	u32 hts;
	int ret = 0;
	u16 htshi, trc, trc_required_mask;
	u8 tse;

	ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
	if (!ips)
		return -ENOMEM;

	pci_set_drvdata(dev, ips);
	ips->dev = dev;

	ips->limits = ips_detect_cpu(ips);
	if (!ips->limits) {
		dev_info(&dev->dev, "IPS not supported on this CPU\n");
		ret = -ENXIO;
		goto error_free;
	}

	spin_lock_init(&ips->turbo_status_lock);

1463 1464 1465 1466 1467 1468
	ret = pci_enable_device(dev);
	if (ret) {
		dev_err(&dev->dev, "can't enable PCI device, aborting\n");
		goto error_free;
	}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	if (!pci_resource_start(dev, 0)) {
		dev_err(&dev->dev, "TBAR not assigned, aborting\n");
		ret = -ENXIO;
		goto error_free;
	}

	ret = pci_request_regions(dev, "ips thermal sensor");
	if (ret) {
		dev_err(&dev->dev, "thermal resource busy, aborting\n");
		goto error_free;
	}


	ips->regmap = ioremap(pci_resource_start(dev, 0),
			      pci_resource_len(dev, 0));
	if (!ips->regmap) {
		dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
		ret = -EBUSY;
		goto error_release;
	}

	tse = thm_readb(THM_TSE);
	if (tse != TSE_EN) {
		dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
		ret = -ENXIO;
		goto error_unmap;
	}

	trc = thm_readw(THM_TRC);
	trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
	if ((trc & trc_required_mask) != trc_required_mask) {
		dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
		ret = -ENXIO;
		goto error_unmap;
	}

	if (trc & TRC_CORE2_EN)
		ips->second_cpu = true;

	update_turbo_limits(ips);
	dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
		ips->mcp_power_limit / 10);
	dev_dbg(&dev->dev, "max core power clamp: %dW\n",
		ips->core_power_limit / 10);
	/* BIOS may update limits at runtime */
	if (thm_readl(THM_PSC) & PSP_PBRT)
		ips->poll_turbo_status = true;

1517 1518 1519 1520 1521 1522 1523 1524
	if (!ips_get_i915_syms(ips)) {
		dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n");
		ips->gpu_turbo_enabled = false;
	} else {
		dev_dbg(&dev->dev, "graphics turbo enabled\n");
		ips->gpu_turbo_enabled = true;
	}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	/*
	 * Check PLATFORM_INFO MSR to make sure this chip is
	 * turbo capable.
	 */
	rdmsrl(PLATFORM_INFO, platform_info);
	if (!(platform_info & PLATFORM_TDP)) {
		dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
		ret = -ENODEV;
		goto error_unmap;
	}

	/*
	 * IRQ handler for ME interaction
	 * Note: don't use MSI here as the PCH has bugs.
	 */
	pci_disable_msi(dev);
	ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
			  ips);
	if (ret) {
		dev_err(&dev->dev, "request irq failed, aborting\n");
		goto error_unmap;
	}

	/* Enable aux, hot & critical interrupts */
	thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
		   TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
	thm_writeb(THM_TEN, TEN_UPDATE_EN);

	/* Collect adjustment values */
	ips->cta_val = thm_readw(THM_CTA);
	ips->pta_val = thm_readw(THM_PTA);
	ips->mgta_val = thm_readw(THM_MGTA);

	/* Save turbo limits & ratios */
	rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);

	ips_enable_cpu_turbo(ips);
	ips->cpu_turbo_enabled = true;

1564 1565 1566
	/* Create thermal adjust thread */
	ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
	if (IS_ERR(ips->adjust)) {
1567
		dev_err(&dev->dev,
1568
			"failed to create thermal adjust thread, aborting\n");
1569 1570
		ret = -ENOMEM;
		goto error_free_irq;
1571

1572 1573
	}

1574 1575 1576 1577 1578 1579
	/*
	 * Set up the work queue and monitor thread. The monitor thread
	 * will wake up ips_adjust thread.
	 */
	ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
	if (IS_ERR(ips->monitor)) {
1580
		dev_err(&dev->dev,
1581
			"failed to create thermal monitor thread, aborting\n");
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
		ret = -ENOMEM;
		goto error_thread_cleanup;
	}

	hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
		(ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
	htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;

	thm_writew(THM_HTSHI, htshi);
	thm_writel(THM_HTS, hts);

	ips_debugfs_init(ips);

	dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
		 ips->mcp_temp_limit);
	return ret;

error_thread_cleanup:
1600
	kthread_stop(ips->adjust);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
error_free_irq:
	free_irq(ips->dev->irq, ips);
error_unmap:
	iounmap(ips->regmap);
error_release:
	pci_release_regions(dev);
error_free:
	kfree(ips);
	return ret;
}

static void ips_remove(struct pci_dev *dev)
{
	struct ips_driver *ips = pci_get_drvdata(dev);
	u64 turbo_override;

	if (!ips)
		return;

	ips_debugfs_cleanup(ips);

	/* Release i915 driver */
	if (ips->read_mch_val)
		symbol_put(i915_read_mch_val);
	if (ips->gpu_raise)
		symbol_put(i915_gpu_raise);
	if (ips->gpu_lower)
		symbol_put(i915_gpu_lower);
	if (ips->gpu_busy)
		symbol_put(i915_gpu_busy);
	if (ips->gpu_turbo_disable)
		symbol_put(i915_gpu_turbo_disable);

	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
	turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
	wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);

	free_irq(ips->dev->irq, ips);
	if (ips->adjust)
		kthread_stop(ips->adjust);
	if (ips->monitor)
		kthread_stop(ips->monitor);
	iounmap(ips->regmap);
	pci_release_regions(dev);
	kfree(ips);
	dev_dbg(&dev->dev, "IPS driver removed\n");
}

#ifdef CONFIG_PM
static int ips_suspend(struct pci_dev *dev, pm_message_t state)
{
	return 0;
}

static int ips_resume(struct pci_dev *dev)
{
	return 0;
}
#else
#define ips_suspend NULL
#define ips_resume NULL
#endif /* CONFIG_PM */

static void ips_shutdown(struct pci_dev *dev)
{
}

static struct pci_driver ips_pci_driver = {
	.name = "intel ips",
	.id_table = ips_id_table,
	.probe = ips_probe,
	.remove = ips_remove,
	.suspend = ips_suspend,
	.resume = ips_resume,
	.shutdown = ips_shutdown,
};

static int __init ips_init(void)
{
	return pci_register_driver(&ips_pci_driver);
}
module_init(ips_init);

static void ips_exit(void)
{
	pci_unregister_driver(&ips_pci_driver);
	return;
}
module_exit(ips_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
MODULE_DESCRIPTION("Intelligent Power Sharing Driver");