core.c 84.5 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

16
#define pr_fmt(fmt) "%s: " fmt, __func__
17

18 19
#include <linux/kernel.h>
#include <linux/init.h>
20
#include <linux/debugfs.h>
21
#include <linux/device.h>
22
#include <linux/slab.h>
23
#include <linux/async.h>
24 25 26
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
27
#include <linux/delay.h>
28 29
#include <linux/of.h>
#include <linux/regulator/of_regulator.h>
30 31 32
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
33
#include <linux/module.h>
34

35 36 37
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

38 39
#include "dummy.h"

M
Mark Brown 已提交
40 41
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 43 44 45 46 47 48 49 50
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

51 52 53
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
54
static bool has_full_constraints;
55
static bool board_wants_dummy_regulator;
56

57 58 59 60
#ifdef CONFIG_DEBUG_FS
static struct dentry *debugfs_root;
#endif

61
/*
62 63 64 65 66 67
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
68
	const char *dev_name;   /* The dev_name() for the consumer */
69
	const char *supply;
70
	struct regulator_dev *regulator;
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
87 88 89
#ifdef CONFIG_DEBUG_FS
	struct dentry *debugfs;
#endif
90 91 92
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
93
static int _regulator_disable(struct regulator_dev *rdev);
94 95 96 97 98
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
99 100
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
101 102 103
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
104

105 106 107 108 109 110 111 112 113 114
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
 * retruns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
		dev_warn(dev, "%s property in node %s references invalid phandle",
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

164 165 166 167 168 169 170
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
171
		rdev_err(rdev, "no constraints\n");
172 173 174
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175
		rdev_err(rdev, "operation not allowed\n");
176 177 178 179 180 181 182 183
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

184 185
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186
			 *min_uV, *max_uV);
187
		return -EINVAL;
188
	}
189 190 191 192

	return 0;
}

193 194 195 196 197 198 199 200 201
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
202 203 204 205 206 207 208
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

209 210 211 212 213 214 215 216 217 218 219 220
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

221 222 223 224 225 226 227
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
228
		rdev_err(rdev, "no constraints\n");
229 230 231
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232
		rdev_err(rdev, "operation not allowed\n");
233 234 235 236 237 238 239 240
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

241 242
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243
			 *min_uA, *max_uA);
244
		return -EINVAL;
245
	}
246 247 248 249 250

	return 0;
}

/* operating mode constraint check */
251
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252
{
253
	switch (*mode) {
254 255 256 257 258 259
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
260
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
261 262 263
		return -EINVAL;
	}

264
	if (!rdev->constraints) {
265
		rdev_err(rdev, "no constraints\n");
266 267 268
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269
		rdev_err(rdev, "operation not allowed\n");
270 271
		return -EPERM;
	}
272 273 274 275 276 277 278 279

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
280
	}
281 282

	return -EINVAL;
283 284 285 286 287 288
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
289
		rdev_err(rdev, "no constraints\n");
290 291 292
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293
		rdev_err(rdev, "operation not allowed\n");
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
314
	struct regulator_dev *rdev = dev_get_drvdata(dev);
315 316 317 318 319 320 321 322
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
323
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324 325 326 327

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
328
	struct regulator_dev *rdev = dev_get_drvdata(dev);
329 330 331

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
332
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333

334 335 336 337 338
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

339
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
340 341
}

D
David Brownell 已提交
342
static ssize_t regulator_print_opmode(char *buf, int mode)
343 344 345 346 347 348 349 350 351 352 353 354 355 356
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
357 358
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
359
{
360
	struct regulator_dev *rdev = dev_get_drvdata(dev);
361

D
David Brownell 已提交
362 363
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
364
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
365 366 367

static ssize_t regulator_print_state(char *buf, int state)
{
368 369 370 371 372 373 374 375
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
376 377 378 379
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
380 381 382 383 384
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
385

386
	return ret;
D
David Brownell 已提交
387
}
388
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
389

D
David Brownell 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

431 432 433
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
434
	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 436 437 438 439 440

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
441
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 443 444 445

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
446
	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 448 449 450 451 452

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
453
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 455 456 457

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
458
	struct regulator_dev *rdev = dev_get_drvdata(dev);
459 460 461 462 463 464

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
465
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 467 468 469

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
470
	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 472 473 474 475 476

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
477
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 479 480 481

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
482
	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 484 485 486 487
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
488
		uA += regulator->uA_load;
489 490 491
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
492
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493 494 495 496

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
497
	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 499 500 501 502 503
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
504
	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 506 507 508 509 510 511 512 513 514 515 516 517

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
518
	struct regulator_dev *rdev = dev_get_drvdata(dev);
519 520 521

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
522 523
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
524 525 526 527

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
528
	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 530 531

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
532 533
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
534 535 536 537

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
538
	struct regulator_dev *rdev = dev_get_drvdata(dev);
539 540 541

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
542 543
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
544 545 546 547

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
548
	struct regulator_dev *rdev = dev_get_drvdata(dev);
549

D
David Brownell 已提交
550 551
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
552
}
553 554
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
555 556 557 558

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
559
	struct regulator_dev *rdev = dev_get_drvdata(dev);
560

D
David Brownell 已提交
561 562
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
563
}
564 565
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
566 567 568 569

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
570
	struct regulator_dev *rdev = dev_get_drvdata(dev);
571

D
David Brownell 已提交
572 573
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
574
}
575 576
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
577 578 579 580

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
581
	struct regulator_dev *rdev = dev_get_drvdata(dev);
582

D
David Brownell 已提交
583 584
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
585
}
586 587
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
588 589 590 591

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
592
	struct regulator_dev *rdev = dev_get_drvdata(dev);
593

D
David Brownell 已提交
594 595
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
596
}
597 598
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
599 600 601 602

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
603
	struct regulator_dev *rdev = dev_get_drvdata(dev);
604

D
David Brownell 已提交
605 606
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
607
}
608 609 610
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

611

612 613 614 615
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
616
static struct device_attribute regulator_dev_attrs[] = {
617
	__ATTR(name, 0444, regulator_name_show, NULL),
618 619 620 621 622 623 624
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
625
	struct regulator_dev *rdev = dev_get_drvdata(dev);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645 646 647
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
648
		return;
649 650

	/* get output voltage */
651
	output_uV = _regulator_get_voltage(rdev);
652 653 654 655
	if (output_uV <= 0)
		return;

	/* get input voltage */
656 657 658 659
	input_uV = 0;
	if (rdev->supply)
		input_uV = _regulator_get_voltage(rdev);
	if (input_uV <= 0)
660 661 662 663 664 665
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
666
		current_uA += sibling->uA_load;
667 668 669 670 671 672

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
673
	err = regulator_mode_constrain(rdev, &mode);
674 675 676 677 678 679 680 681
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
682 683 684 685 686 687 688 689 690 691 692
	bool can_set_state;

	can_set_state = rdev->desc->ops->set_suspend_enable &&
		rdev->desc->ops->set_suspend_disable;

	/* If we have no suspend mode configration don't set anything;
	 * only warn if the driver actually makes the suspend mode
	 * configurable.
	 */
	if (!rstate->enabled && !rstate->disabled) {
		if (can_set_state)
693
			rdev_warn(rdev, "No configuration\n");
694 695 696 697
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
698
		rdev_err(rdev, "invalid configuration\n");
699 700
		return -EINVAL;
	}
701

702
	if (!can_set_state) {
703
		rdev_err(rdev, "no way to set suspend state\n");
704
		return -EINVAL;
705
	}
706 707 708 709 710 711

	if (rstate->enabled)
		ret = rdev->desc->ops->set_suspend_enable(rdev);
	else
		ret = rdev->desc->ops->set_suspend_disable(rdev);
	if (ret < 0) {
712
		rdev_err(rdev, "failed to enabled/disable\n");
713 714 715 716 717 718
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
719
			rdev_err(rdev, "failed to set voltage\n");
720 721 722 723 724 725 726
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
727
			rdev_err(rdev, "failed to set mode\n");
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
758
	char buf[80] = "";
759 760
	int count = 0;
	int ret;
761

762
	if (constraints->min_uV && constraints->max_uV) {
763
		if (constraints->min_uV == constraints->max_uV)
764 765
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
766
		else
767 768 769 770 771 772 773 774 775 776 777 778
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

779 780 781 782
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

783
	if (constraints->min_uA && constraints->max_uA) {
784
		if (constraints->min_uA == constraints->max_uA)
785 786
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
787
		else
788 789 790 791 792 793 794 795 796
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
797
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798
	}
799

800 801 802 803 804 805 806 807 808
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

M
Mark Brown 已提交
809
	rdev_info(rdev, "%s\n", buf);
810 811
}

812
static int machine_constraints_voltage(struct regulator_dev *rdev,
813
	struct regulation_constraints *constraints)
814
{
815
	struct regulator_ops *ops = rdev->desc->ops;
816 817 818 819
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
820 821 822 823 824 825 826 827 828
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
829
	}
830

831 832 833 834 835 836 837 838 839 840 841
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

842 843
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
844
		if (count == 1 && !cmin) {
845
			cmin = 1;
846
			cmax = INT_MAX;
847 848
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
849 850
		}

851 852
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
853
			return 0;
854

855
		/* else require explicit machine-level constraints */
856
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857
			rdev_err(rdev, "invalid voltage constraints\n");
858
			return -EINVAL;
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
878
			rdev_err(rdev, "unsupportable voltage constraints\n");
879
			return -EINVAL;
880 881 882 883
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
884 885
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
886 887 888
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
889 890
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
891 892 893 894
			constraints->max_uV = max_uV;
		}
	}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
910
	const struct regulation_constraints *constraints)
911 912 913 914
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

915 916 917 918 919 920
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
921 922
	if (!rdev->constraints)
		return -ENOMEM;
923

924
	ret = machine_constraints_voltage(rdev, rdev->constraints);
925 926 927
	if (ret != 0)
		goto out;

928
	/* do we need to setup our suspend state */
929
	if (rdev->constraints->initial_state) {
930
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
931
		if (ret < 0) {
932
			rdev_err(rdev, "failed to set suspend state\n");
933 934 935
			goto out;
		}
	}
936

937
	if (rdev->constraints->initial_mode) {
938
		if (!ops->set_mode) {
939
			rdev_err(rdev, "no set_mode operation\n");
940 941 942 943
			ret = -EINVAL;
			goto out;
		}

944
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
945
		if (ret < 0) {
946
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
947 948 949 950
			goto out;
		}
	}

951 952 953
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
954 955
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
956 957
		ret = ops->enable(rdev);
		if (ret < 0) {
958
			rdev_err(rdev, "failed to enable\n");
959 960 961 962
			goto out;
		}
	}

963
	print_constraints(rdev);
964
	return 0;
965
out:
966 967
	kfree(rdev->constraints);
	rdev->constraints = NULL;
968 969 970 971 972
	return ret;
}

/**
 * set_supply - set regulator supply regulator
973 974
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
975 976 977 978 979 980
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
981
		      struct regulator_dev *supply_rdev)
982 983 984
{
	int err;

985 986 987
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
988 989
	if (rdev->supply == NULL) {
		err = -ENOMEM;
990
		return err;
991
	}
992 993

	return 0;
994 995 996
}

/**
997
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
998 999
 * @rdev:         regulator source
 * @consumer_dev: device the supply applies to
1000
 * @consumer_dev_name: dev_name() string for device supply applies to
1001
 * @supply:       symbolic name for supply
1002 1003 1004 1005 1006
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
1007 1008
 *
 * Only one of consumer_dev and consumer_dev_name may be specified.
1009 1010
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1011 1012
	struct device *consumer_dev, const char *consumer_dev_name,
	const char *supply)
1013 1014
{
	struct regulator_map *node;
1015
	int has_dev;
1016

1017 1018 1019 1020 1021 1022
	if (consumer_dev && consumer_dev_name)
		return -EINVAL;

	if (!consumer_dev_name && consumer_dev)
		consumer_dev_name = dev_name(consumer_dev);

1023 1024 1025
	if (supply == NULL)
		return -EINVAL;

1026 1027 1028 1029 1030
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1031
	list_for_each_entry(node, &regulator_map_list, list) {
1032 1033 1034 1035
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1036
			continue;
1037 1038
		}

1039 1040 1041 1042
		if (strcmp(node->supply, supply) != 0)
			continue;

		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1043 1044 1045 1046
			dev_name(&node->regulator->dev),
			node->regulator->desc->name,
			supply,
			dev_name(&rdev->dev), rdev_get_name(rdev));
1047 1048 1049
		return -EBUSY;
	}

1050
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1051 1052 1053 1054 1055 1056
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1057 1058 1059 1060 1061 1062
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1063 1064
	}

1065 1066 1067 1068
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1069 1070 1071 1072 1073 1074 1075
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1076
			kfree(node->dev_name);
1077 1078 1079 1080 1081
			kfree(node);
		}
	}
}

1082
#define REG_STR_SIZE	64
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
1102 1103 1104
		size = scnprintf(buf, REG_STR_SIZE,
				 "microamps_requested_%s-%s",
				 dev_name(dev), supply_name);
1105 1106 1107 1108
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1109
		sysfs_attr_init(&regulator->dev_attr.attr);
1110 1111 1112 1113 1114 1115 1116 1117
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
1118
			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1135 1136
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1137 1138
			goto link_name_err;
		}
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;
	}

#ifdef CONFIG_DEBUG_FS
	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
	if (IS_ERR_OR_NULL(regulator->debugfs)) {
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		regulator->debugfs = NULL;
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1158
	}
1159 1160
#endif

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1176 1177 1178 1179 1180 1181 1182
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
							 const char *supply)
{
	struct regulator_dev *r;
	struct device_node *node;

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
		if (node)
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
	}

	/* if not found, try doing it non-dt way */
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

	return NULL;
}

1207 1208 1209
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1210 1211 1212 1213
{
	struct regulator_dev *rdev;
	struct regulator_map *map;
	struct regulator *regulator = ERR_PTR(-ENODEV);
1214
	const char *devname = NULL;
1215
	int ret;
1216 1217

	if (id == NULL) {
1218
		pr_err("get() with no identifier\n");
1219 1220 1221
		return regulator;
	}

1222 1223 1224
	if (dev)
		devname = dev_name(dev);

1225 1226
	mutex_lock(&regulator_list_mutex);

1227 1228 1229 1230
	rdev = regulator_dev_lookup(dev, id);
	if (rdev)
		goto found;

1231
	list_for_each_entry(map, &regulator_map_list, list) {
1232 1233 1234 1235 1236 1237
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, id) == 0) {
1238
			rdev = map->regulator;
1239
			goto found;
1240
		}
1241
	}
1242

1243 1244 1245 1246 1247
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1248 1249 1250 1251 1252 1253 1254 1255
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1256 1257
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1258 1259 1260 1261 1262
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1263 1264 1265 1266
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1277 1278 1279
	if (!try_module_get(rdev->owner))
		goto out;

1280 1281 1282 1283
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1284
		goto out;
1285 1286
	}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1298
out:
1299
	mutex_unlock(&regulator_list_mutex);
1300

1301 1302
	return regulator;
}
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1321 1322
EXPORT_SYMBOL_GPL(regulator_get);

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

1402 1403 1404 1405
#ifdef CONFIG_DEBUG_FS
	debugfs_remove_recursive(regulator->debugfs);
#endif

1406 1407 1408 1409 1410 1411
	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
1412
	kfree(regulator->supply_name);
1413 1414 1415
	list_del(&regulator->list);
	kfree(regulator);

1416 1417 1418
	rdev->open_count--;
	rdev->exclusive = 0;

1419 1420 1421 1422 1423
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

	rc = devres_destroy(regulator->dev, devm_regulator_release,
			    devm_regulator_match, regulator);
	WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

1463 1464 1465
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1466
	int ret, delay;
1467 1468

	/* check voltage and requested load before enabling */
1469 1470 1471
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1472

1473 1474 1475 1476 1477 1478 1479
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1480
			if (!rdev->desc->ops->enable)
1481
				return -EINVAL;
1482 1483

			/* Query before enabling in case configuration
L
Lucas De Marchi 已提交
1484
			 * dependent.  */
1485 1486 1487 1488
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1489
				rdev_warn(rdev, "enable_time() failed: %d\n",
1490
					   ret);
1491
				delay = 0;
1492
			}
1493

1494 1495
			trace_regulator_enable(rdev_get_name(rdev));

1496 1497 1498 1499 1500 1501 1502
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1503 1504
			trace_regulator_enable_delay(rdev_get_name(rdev));

1505
			if (delay >= 1000) {
1506
				mdelay(delay / 1000);
1507 1508
				udelay(delay % 1000);
			} else if (delay) {
1509
				udelay(delay);
1510
			}
1511

1512 1513
			trace_regulator_enable_complete(rdev_get_name(rdev));

1514
		} else if (ret < 0) {
1515
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1516 1517
			return ret;
		}
1518
		/* Fallthrough on positive return values - already enabled */
1519 1520
	}

1521 1522 1523
	rdev->use_count++;

	return 0;
1524 1525 1526 1527 1528 1529
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1530 1531 1532 1533
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1534
 * NOTE: the output value can be set by other drivers, boot loader or may be
1535
 * hardwired in the regulator.
1536 1537 1538
 */
int regulator_enable(struct regulator *regulator)
{
1539 1540
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1541

1542 1543 1544 1545 1546 1547
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1548
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1549
	ret = _regulator_enable(rdev);
1550
	mutex_unlock(&rdev->mutex);
1551

1552
	if (ret != 0 && rdev->supply)
1553 1554
		regulator_disable(rdev->supply);

1555 1556 1557 1558 1559
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1560
static int _regulator_disable(struct regulator_dev *rdev)
1561 1562 1563
{
	int ret = 0;

D
David Brownell 已提交
1564
	if (WARN(rdev->use_count <= 0,
1565
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1566 1567
		return -EIO;

1568
	/* are we the last user and permitted to disable ? */
1569 1570
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1571 1572

		/* we are last user */
1573 1574
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1575 1576
			trace_regulator_disable(rdev_get_name(rdev));

1577 1578
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1579
				rdev_err(rdev, "failed to disable\n");
1580 1581
				return ret;
			}
1582

1583 1584
			trace_regulator_disable_complete(rdev_get_name(rdev));

1585 1586
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1599

1600 1601 1602 1603 1604 1605 1606
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1607 1608 1609
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1610
 *
1611
 * NOTE: this will only disable the regulator output if no other consumer
1612 1613
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1614 1615 1616
 */
int regulator_disable(struct regulator *regulator)
{
1617 1618
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1619

1620
	mutex_lock(&rdev->mutex);
1621
	ret = _regulator_disable(rdev);
1622
	mutex_unlock(&rdev->mutex);
1623

1624 1625
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1626

1627 1628 1629 1630 1631
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1632
static int _regulator_force_disable(struct regulator_dev *rdev)
1633 1634 1635 1636 1637 1638 1639 1640
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1641
			rdev_err(rdev, "failed to force disable\n");
1642 1643 1644
			return ret;
		}
		/* notify other consumers that power has been forced off */
1645 1646
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1663
	struct regulator_dev *rdev = regulator->rdev;
1664 1665
	int ret;

1666
	mutex_lock(&rdev->mutex);
1667
	regulator->uA_load = 0;
1668
	ret = _regulator_force_disable(regulator->rdev);
1669
	mutex_unlock(&rdev->mutex);
1670

1671 1672 1673
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1674

1675 1676 1677 1678
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1726
	int ret;
1727 1728 1729 1730 1731

	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1732 1733 1734 1735 1736 1737
	ret = schedule_delayed_work(&rdev->disable_work,
				    msecs_to_jiffies(ms));
	if (ret < 0)
		return ret;
	else
		return 0;
1738 1739 1740
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1741 1742
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1743
	/* If we don't know then assume that the regulator is always on */
1744
	if (!rdev->desc->ops->is_enabled)
1745
		return 1;
1746

1747
	return rdev->desc->ops->is_enabled(rdev);
1748 1749 1750 1751 1752 1753
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1754 1755 1756 1757 1758 1759 1760
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1761 1762 1763
 */
int regulator_is_enabled(struct regulator *regulator)
{
1764 1765 1766 1767 1768 1769 1770
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1771 1772 1773
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1797
 * zero if this selector code can't be used on this system, or a
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
1852
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1853

1854 1855 1856 1857
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
1858
	int delay = 0;
1859 1860 1861 1862
	unsigned int selector;

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

1863 1864 1865
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

1866 1867 1868 1869 1870 1871 1872 1873 1874
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);

		if (rdev->desc->ops->list_voltage)
			selector = rdev->desc->ops->list_voltage(rdev,
								 selector);
		else
			selector = -1;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	} else if (rdev->desc->ops->set_voltage_sel) {
		int best_val = INT_MAX;
		int i;

		selector = 0;

		/* Find the smallest voltage that falls within the specified
		 * range.
		 */
		for (i = 0; i < rdev->desc->n_voltages; i++) {
			ret = rdev->desc->ops->list_voltage(rdev, i);
			if (ret < 0)
				continue;

			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
				best_val = ret;
				selector = i;
			}
		}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		/*
		 * If we can't obtain the old selector there is not enough
		 * info to call set_voltage_time_sel().
		 */
		if (rdev->desc->ops->set_voltage_time_sel &&
		    rdev->desc->ops->get_voltage_sel) {
			unsigned int old_selector = 0;

			ret = rdev->desc->ops->get_voltage_sel(rdev);
			if (ret < 0)
				return ret;
			old_selector = ret;
			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		}

1911 1912 1913 1914 1915 1916
		if (best_val != INT_MAX) {
			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
			selector = best_val;
		} else {
			ret = -EINVAL;
		}
1917 1918 1919 1920
	} else {
		ret = -EINVAL;
	}

1921 1922 1923 1924 1925 1926 1927 1928
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

1929 1930 1931 1932
	if (ret == 0)
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
				     NULL);

1933 1934 1935 1936 1937
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);

	return ret;
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
1953
 * Regulator system constraints must be set for this regulator before
1954 1955 1956 1957 1958
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
1959
	int ret = 0;
1960 1961 1962

	mutex_lock(&rdev->mutex);

1963 1964 1965 1966 1967 1968 1969
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

1970
	/* sanity check */
1971 1972
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
1983

1984 1985 1986 1987
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

1988
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1989

1990 1991 1992 1993 1994 1995
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2088 2089
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2090
	int sel, ret;
2091 2092 2093 2094 2095

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2096
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2097
	} else if (rdev->desc->ops->get_voltage) {
2098
		ret = rdev->desc->ops->get_voltage(rdev);
2099
	} else {
2100
		return -EINVAL;
2101
	}
2102

2103 2104
	if (ret < 0)
		return ret;
2105
	return ret - rdev->constraints->uV_offset;
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2221
	int regulator_curr_mode;
2222 2223 2224 2225 2226 2227 2228 2229 2230

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2231 2232 2233 2234 2235 2236 2237 2238 2239
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2240
	/* constraints check */
2241
	ret = regulator_mode_constrain(rdev, &mode);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

2317 2318 2319 2320
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2321 2322
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2323 2324
	if (ret < 0) {
		ret = 0;
2325
		goto out;
2326
	}
2327 2328 2329 2330

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2331 2332 2333 2334 2335 2336
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2337
	/* get output voltage */
2338
	output_uV = _regulator_get_voltage(rdev);
2339
	if (output_uV <= 0) {
2340
		rdev_err(rdev, "invalid output voltage found\n");
2341 2342 2343 2344
		goto out;
	}

	/* get input voltage */
2345 2346
	input_uV = 0;
	if (rdev->supply)
2347
		input_uV = regulator_get_voltage(rdev->supply);
2348
	if (input_uV <= 0)
2349 2350
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2351
		rdev_err(rdev, "invalid input voltage found\n");
2352 2353 2354 2355 2356
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2357
		total_uA_load += consumer->uA_load;
2358 2359 2360 2361

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2362
	ret = regulator_mode_constrain(rdev, &mode);
2363
	if (ret < 0) {
2364 2365
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2366 2367 2368 2369
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2370
	if (ret < 0) {
2371
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2384
 * @nb: notifier block
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2399
 * @nb: notifier block
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2411 2412 2413
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2449 2450
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

2512 2513 2514 2515 2516 2517 2518
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2534
	LIST_HEAD(async_domain);
2535
	int i;
2536
	int ret = 0;
2537

2538 2539 2540 2541 2542 2543 2544
	for (i = 0; i < num_consumers; i++)
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2545
	for (i = 0; i < num_consumers; i++) {
2546 2547
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2548
			goto err;
2549
		}
2550 2551 2552 2553 2554
	}

	return 0;

err:
2555 2556 2557 2558 2559 2560
	for (i = 0; i < num_consumers; i++)
		if (consumers[i].ret == 0)
			regulator_disable(consumers[i].consumer);
		else
			pr_err("Failed to enable %s: %d\n",
			       consumers[i].supply, consumers[i].ret);
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were disabled will be disabled again prior to
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2593
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2594
	for (--i; i >= 0; --i)
2595 2596 2597 2598 2599 2600
		regulator_enable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2661
 * @rdev: regulator source
2662
 * @event: notifier block
2663
 * @data: callback-specific data.
2664 2665 2666
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2667
 * Note lock must be held by caller.
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2713 2714
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2734 2735 2736 2737 2738
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
2755
	if (ops->set_voltage || ops->set_voltage_sel) {
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	/* suspend mode constraints need multiple supporting methods */
	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
		return status;

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
#ifdef CONFIG_DEBUG_FS
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		rdev->debugfs = NULL;
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
#endif
}

2836 2837
/**
 * regulator_register - register regulator
2838 2839
 * @regulator_desc: regulator to register
 * @dev: struct device for the regulator
2840
 * @init_data: platform provided init data, passed through by driver
2841
 * @driver_data: private regulator data
2842 2843 2844 2845 2846
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2847
	struct device *dev, const struct regulator_init_data *init_data,
2848
	void *driver_data, struct device_node *of_node)
2849
{
2850
	const struct regulation_constraints *constraints = NULL;
2851 2852
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2853
	int ret, i;
2854
	const char *supply = NULL;
2855 2856 2857 2858 2859 2860 2861

	if (regulator_desc == NULL)
		return ERR_PTR(-EINVAL);

	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2862 2863
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2864 2865
		return ERR_PTR(-EINVAL);

2866 2867 2868
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
2869 2870
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
2871 2872 2873 2874 2875 2876

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2877 2878 2879 2880
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2881

2882 2883 2884 2885 2886 2887 2888
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2889
	rdev->reg_data = driver_data;
2890 2891 2892 2893 2894
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2895
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2896

2897
	/* preform any regulator specific init */
2898
	if (init_data && init_data->regulator_init) {
2899
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2900 2901
		if (ret < 0)
			goto clean;
2902 2903 2904
	}

	/* register with sysfs */
2905
	rdev->dev.class = &regulator_class;
2906
	rdev->dev.of_node = of_node;
2907
	rdev->dev.parent = dev;
2908 2909
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2910
	ret = device_register(&rdev->dev);
2911 2912
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
2913
		goto clean;
2914
	}
2915 2916 2917

	dev_set_drvdata(&rdev->dev, rdev);

2918
	/* set regulator constraints */
2919 2920 2921 2922
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
2923 2924 2925
	if (ret < 0)
		goto scrub;

2926 2927 2928 2929 2930
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

2931
	if (init_data && init_data->supply_regulator)
2932 2933 2934 2935 2936
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
2937 2938
		struct regulator_dev *r;

2939
		r = regulator_dev_lookup(dev, supply);
2940

2941 2942
		if (!r) {
			dev_err(dev, "Failed to find supply %s\n", supply);
2943
			ret = -ENODEV;
2944 2945 2946 2947 2948 2949
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
2950 2951 2952 2953 2954 2955 2956 2957

		/* Enable supply if rail is enabled */
		if (rdev->desc->ops->is_enabled &&
				rdev->desc->ops->is_enabled(rdev)) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
2958 2959
	}

2960
	/* add consumers devices */
2961 2962 2963 2964 2965
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev,
				init_data->consumer_supplies[i].dev_name,
2966
				init_data->consumer_supplies[i].supply);
2967 2968 2969 2970 2971
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
2972
		}
2973
	}
2974 2975

	list_add(&rdev->list, &regulator_list);
2976 2977

	rdev_init_debugfs(rdev);
2978
out:
2979 2980
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
2981

2982 2983 2984
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
2985
scrub:
2986
	kfree(rdev->constraints);
D
David Brownell 已提交
2987
	device_unregister(&rdev->dev);
2988 2989 2990 2991
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
2992 2993 2994 2995
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
2996 2997 2998 2999 3000
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3001
 * @rdev: regulator to unregister
3002 3003 3004 3005 3006 3007 3008 3009 3010
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

	mutex_lock(&regulator_list_mutex);
3011 3012 3013
#ifdef CONFIG_DEBUG_FS
	debugfs_remove_recursive(rdev->debugfs);
#endif
3014
	flush_work_sync(&rdev->disable_work.work);
3015
	WARN_ON(rdev->open_count);
3016
	unset_regulator_supplies(rdev);
3017 3018
	list_del(&rdev->list);
	if (rdev->supply)
3019
		regulator_put(rdev->supply);
3020
	kfree(rdev->constraints);
3021
	device_unregister(&rdev->dev);
3022 3023 3024 3025 3026
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3027
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3050
			rdev_err(rdev, "failed to prepare\n");
3051 3052 3053 3054 3055 3056 3057 3058 3059
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
			if (ops->is_enabled && !ops->is_enabled(rdev))
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3134 3135
/**
 * rdev_get_drvdata - get rdev regulator driver data
3136
 * @rdev: regulator
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3173
 * @rdev: regulator
3174 3175 3176 3177 3178 3179 3180
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}

static const struct file_operations supply_map_fops = {
	.read = supply_map_read_file,
	.llseek = default_llseek,
};
#endif

3230 3231
static int __init regulator_init(void)
{
3232 3233 3234 3235
	int ret;

	ret = class_register(&regulator_class);

3236 3237 3238 3239 3240 3241
#ifdef CONFIG_DEBUG_FS
	debugfs_root = debugfs_create_dir("regulator", NULL);
	if (IS_ERR(debugfs_root) || !debugfs_root) {
		pr_warn("regulator: Failed to create debugfs directory\n");
		debugfs_root = NULL;
	}
3242 3243 3244 3245

	if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
				       NULL, &supply_map_fops)))
		pr_warn("regulator: Failed to create supplies debugfs\n");
3246 3247
#endif

3248 3249 3250
	regulator_dummy_init();

	return ret;
3251 3252 3253 3254
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3273
		if (!ops->disable || (c && c->always_on))
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3293
			rdev_info(rdev, "disabling\n");
3294 3295
			ret = ops->disable(rdev);
			if (ret != 0) {
3296
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3297 3298 3299 3300 3301 3302 3303
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3304
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);