nmi.c 15.4 KB
Newer Older
D
Don Zickus 已提交
1 2 3
/*
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4
 *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
D
Don Zickus 已提交
5 6 7 8 9 10 11 12 13 14 15 16
 *
 *  Pentium III FXSR, SSE support
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */

/*
 * Handle hardware traps and faults.
 */
#include <linux/spinlock.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/nmi.h>
17
#include <linux/debugfs.h>
18 19 20
#include <linux/delay.h>
#include <linux/hardirq.h>
#include <linux/slab.h>
21
#include <linux/export.h>
D
Don Zickus 已提交
22 23 24 25 26 27 28 29

#if defined(CONFIG_EDAC)
#include <linux/edac.h>
#endif

#include <linux/atomic.h>
#include <asm/traps.h>
#include <asm/mach_traps.h>
30
#include <asm/nmi.h>
31
#include <asm/x86_init.h>
32

D
Dave Hansen 已提交
33 34 35
#define CREATE_TRACE_POINTS
#include <trace/events/nmi.h>

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
struct nmi_desc {
	spinlock_t lock;
	struct list_head head;
};

static struct nmi_desc nmi_desc[NMI_MAX] = 
{
	{
		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
		.head = LIST_HEAD_INIT(nmi_desc[0].head),
	},
	{
		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
		.head = LIST_HEAD_INIT(nmi_desc[1].head),
	},
51 52 53 54 55 56 57 58
	{
		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
		.head = LIST_HEAD_INIT(nmi_desc[2].head),
	},
	{
		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
		.head = LIST_HEAD_INIT(nmi_desc[3].head),
	},
59 60

};
D
Don Zickus 已提交
61

D
Don Zickus 已提交
62 63 64 65 66 67 68 69 70
struct nmi_stats {
	unsigned int normal;
	unsigned int unknown;
	unsigned int external;
	unsigned int swallow;
};

static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);

D
Don Zickus 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
static int ignore_nmis;

int unknown_nmi_panic;
/*
 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 * only be used in NMI handler.
 */
static DEFINE_RAW_SPINLOCK(nmi_reason_lock);

static int __init setup_unknown_nmi_panic(char *str)
{
	unknown_nmi_panic = 1;
	return 1;
}
__setup("unknown_nmi_panic", setup_unknown_nmi_panic);

87 88
#define nmi_to_desc(type) (&nmi_desc[type])

89 90 91 92 93 94 95 96 97
static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
static int __init nmi_warning_debugfs(void)
{
	debugfs_create_u64("nmi_longest_ns", 0644,
			arch_debugfs_dir, &nmi_longest_ns);
	return 0;
}
fs_initcall(nmi_warning_debugfs);

98
static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
99 100 101 102 103 104 105 106 107 108 109 110 111
{
	struct nmi_desc *desc = nmi_to_desc(type);
	struct nmiaction *a;
	int handled=0;

	rcu_read_lock();

	/*
	 * NMIs are edge-triggered, which means if you have enough
	 * of them concurrently, you can lose some because only one
	 * can be latched at any given time.  Walk the whole list
	 * to handle those situations.
	 */
112 113
	list_for_each_entry_rcu(a, &desc->head, list) {
		u64 before, delta, whole_msecs;
114
		int remainder_ns, decimal_msecs, thishandled;
115

P
Peter Zijlstra 已提交
116
		before = sched_clock();
D
Dave Hansen 已提交
117 118
		thishandled = a->handler(type, regs);
		handled += thishandled;
P
Peter Zijlstra 已提交
119
		delta = sched_clock() - before;
D
Dave Hansen 已提交
120
		trace_nmi_handler(a->handler, (int)delta, thishandled);
121 122 123 124 125

		if (delta < nmi_longest_ns)
			continue;

		nmi_longest_ns = delta;
126 127 128
		whole_msecs = delta;
		remainder_ns = do_div(whole_msecs, (1000 * 1000));
		decimal_msecs = remainder_ns / 1000;
129 130 131 132 133
		printk_ratelimited(KERN_INFO
			"INFO: NMI handler (%ps) took too long to run: "
			"%lld.%03d msecs\n", a->handler, whole_msecs,
			decimal_msecs);
	}
134 135 136 137 138 139 140

	rcu_read_unlock();

	/* return total number of NMI events handled */
	return handled;
}

141
int __register_nmi_handler(unsigned int type, struct nmiaction *action)
142 143 144 145
{
	struct nmi_desc *desc = nmi_to_desc(type);
	unsigned long flags;

146 147 148
	if (!action->handler)
		return -EINVAL;

149 150
	spin_lock_irqsave(&desc->lock, flags);

151 152 153 154 155 156
	/*
	 * most handlers of type NMI_UNKNOWN never return because
	 * they just assume the NMI is theirs.  Just a sanity check
	 * to manage expectations
	 */
	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
157 158
	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
159

160 161 162 163 164 165 166 167 168 169 170 171
	/*
	 * some handlers need to be executed first otherwise a fake
	 * event confuses some handlers (kdump uses this flag)
	 */
	if (action->flags & NMI_FLAG_FIRST)
		list_add_rcu(&action->list, &desc->head);
	else
		list_add_tail_rcu(&action->list, &desc->head);
	
	spin_unlock_irqrestore(&desc->lock, flags);
	return 0;
}
172
EXPORT_SYMBOL(__register_nmi_handler);
173

174
void unregister_nmi_handler(unsigned int type, const char *name)
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
{
	struct nmi_desc *desc = nmi_to_desc(type);
	struct nmiaction *n;
	unsigned long flags;

	spin_lock_irqsave(&desc->lock, flags);

	list_for_each_entry_rcu(n, &desc->head, list) {
		/*
		 * the name passed in to describe the nmi handler
		 * is used as the lookup key
		 */
		if (!strcmp(n->name, name)) {
			WARN(in_nmi(),
				"Trying to free NMI (%s) from NMI context!\n", n->name);
			list_del_rcu(&n->list);
			break;
		}
	}

	spin_unlock_irqrestore(&desc->lock, flags);
	synchronize_rcu();
}
EXPORT_SYMBOL_GPL(unregister_nmi_handler);

200
static __kprobes void
D
Don Zickus 已提交
201 202
pci_serr_error(unsigned char reason, struct pt_regs *regs)
{
203 204 205 206
	/* check to see if anyone registered against these types of errors */
	if (nmi_handle(NMI_SERR, regs, false))
		return;

D
Don Zickus 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
		 reason, smp_processor_id());

	/*
	 * On some machines, PCI SERR line is used to report memory
	 * errors. EDAC makes use of it.
	 */
#if defined(CONFIG_EDAC)
	if (edac_handler_set()) {
		edac_atomic_assert_error();
		return;
	}
#endif

	if (panic_on_unrecovered_nmi)
		panic("NMI: Not continuing");

	pr_emerg("Dazed and confused, but trying to continue\n");

	/* Clear and disable the PCI SERR error line. */
	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
	outb(reason, NMI_REASON_PORT);
}

231
static __kprobes void
D
Don Zickus 已提交
232 233 234 235
io_check_error(unsigned char reason, struct pt_regs *regs)
{
	unsigned long i;

236 237 238 239
	/* check to see if anyone registered against these types of errors */
	if (nmi_handle(NMI_IO_CHECK, regs, false))
		return;

D
Don Zickus 已提交
240 241 242
	pr_emerg(
	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
		 reason, smp_processor_id());
243
	show_regs(regs);
D
Don Zickus 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

	if (panic_on_io_nmi)
		panic("NMI IOCK error: Not continuing");

	/* Re-enable the IOCK line, wait for a few seconds */
	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
	outb(reason, NMI_REASON_PORT);

	i = 20000;
	while (--i) {
		touch_nmi_watchdog();
		udelay(100);
	}

	reason &= ~NMI_REASON_CLEAR_IOCHK;
	outb(reason, NMI_REASON_PORT);
}

262
static __kprobes void
D
Don Zickus 已提交
263 264
unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
{
265 266
	int handled;

267 268 269 270 271 272 273
	/*
	 * Use 'false' as back-to-back NMIs are dealt with one level up.
	 * Of course this makes having multiple 'unknown' handlers useless
	 * as only the first one is ever run (unless it can actually determine
	 * if it caused the NMI)
	 */
	handled = nmi_handle(NMI_UNKNOWN, regs, false);
D
Don Zickus 已提交
274 275
	if (handled) {
		__this_cpu_add(nmi_stats.unknown, handled);
D
Don Zickus 已提交
276
		return;
D
Don Zickus 已提交
277 278 279 280
	}

	__this_cpu_add(nmi_stats.unknown, 1);

D
Don Zickus 已提交
281 282 283 284 285 286 287 288 289 290
	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
		 reason, smp_processor_id());

	pr_emerg("Do you have a strange power saving mode enabled?\n");
	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
		panic("NMI: Not continuing");

	pr_emerg("Dazed and confused, but trying to continue\n");
}

291 292 293
static DEFINE_PER_CPU(bool, swallow_nmi);
static DEFINE_PER_CPU(unsigned long, last_nmi_rip);

294
static __kprobes void default_do_nmi(struct pt_regs *regs)
D
Don Zickus 已提交
295 296
{
	unsigned char reason = 0;
297
	int handled;
298
	bool b2b = false;
D
Don Zickus 已提交
299 300 301 302 303 304

	/*
	 * CPU-specific NMI must be processed before non-CPU-specific
	 * NMI, otherwise we may lose it, because the CPU-specific
	 * NMI can not be detected/processed on other CPUs.
	 */
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

	/*
	 * Back-to-back NMIs are interesting because they can either
	 * be two NMI or more than two NMIs (any thing over two is dropped
	 * due to NMI being edge-triggered).  If this is the second half
	 * of the back-to-back NMI, assume we dropped things and process
	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
	 */
	if (regs->ip == __this_cpu_read(last_nmi_rip))
		b2b = true;
	else
		__this_cpu_write(swallow_nmi, false);

	__this_cpu_write(last_nmi_rip, regs->ip);

	handled = nmi_handle(NMI_LOCAL, regs, b2b);
D
Don Zickus 已提交
321
	__this_cpu_add(nmi_stats.normal, handled);
322 323 324 325 326 327 328 329 330 331 332
	if (handled) {
		/*
		 * There are cases when a NMI handler handles multiple
		 * events in the current NMI.  One of these events may
		 * be queued for in the next NMI.  Because the event is
		 * already handled, the next NMI will result in an unknown
		 * NMI.  Instead lets flag this for a potential NMI to
		 * swallow.
		 */
		if (handled > 1)
			__this_cpu_write(swallow_nmi, true);
D
Don Zickus 已提交
333
		return;
334
	}
D
Don Zickus 已提交
335 336 337

	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
	raw_spin_lock(&nmi_reason_lock);
338
	reason = x86_platform.get_nmi_reason();
D
Don Zickus 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351

	if (reason & NMI_REASON_MASK) {
		if (reason & NMI_REASON_SERR)
			pci_serr_error(reason, regs);
		else if (reason & NMI_REASON_IOCHK)
			io_check_error(reason, regs);
#ifdef CONFIG_X86_32
		/*
		 * Reassert NMI in case it became active
		 * meanwhile as it's edge-triggered:
		 */
		reassert_nmi();
#endif
D
Don Zickus 已提交
352
		__this_cpu_add(nmi_stats.external, 1);
D
Don Zickus 已提交
353 354 355 356 357
		raw_spin_unlock(&nmi_reason_lock);
		return;
	}
	raw_spin_unlock(&nmi_reason_lock);

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	/*
	 * Only one NMI can be latched at a time.  To handle
	 * this we may process multiple nmi handlers at once to
	 * cover the case where an NMI is dropped.  The downside
	 * to this approach is we may process an NMI prematurely,
	 * while its real NMI is sitting latched.  This will cause
	 * an unknown NMI on the next run of the NMI processing.
	 *
	 * We tried to flag that condition above, by setting the
	 * swallow_nmi flag when we process more than one event.
	 * This condition is also only present on the second half
	 * of a back-to-back NMI, so we flag that condition too.
	 *
	 * If both are true, we assume we already processed this
	 * NMI previously and we swallow it.  Otherwise we reset
	 * the logic.
	 *
	 * There are scenarios where we may accidentally swallow
	 * a 'real' unknown NMI.  For example, while processing
	 * a perf NMI another perf NMI comes in along with a
	 * 'real' unknown NMI.  These two NMIs get combined into
	 * one (as descibed above).  When the next NMI gets
	 * processed, it will be flagged by perf as handled, but
	 * noone will know that there was a 'real' unknown NMI sent
	 * also.  As a result it gets swallowed.  Or if the first
	 * perf NMI returns two events handled then the second
	 * NMI will get eaten by the logic below, again losing a
	 * 'real' unknown NMI.  But this is the best we can do
	 * for now.
	 */
	if (b2b && __this_cpu_read(swallow_nmi))
D
Don Zickus 已提交
389
		__this_cpu_add(nmi_stats.swallow, 1);
390 391
	else
		unknown_nmi_error(reason, regs);
D
Don Zickus 已提交
392 393
}

394 395 396 397 398 399 400
/*
 * NMIs can hit breakpoints which will cause it to lose its
 * NMI context with the CPU when the breakpoint does an iret.
 */
#ifdef CONFIG_X86_32
/*
 * For i386, NMIs use the same stack as the kernel, and we can
401 402 403
 * add a workaround to the iret problem in C (preventing nested
 * NMIs if an NMI takes a trap). Simply have 3 states the NMI
 * can be in:
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
 *
 *  1) not running
 *  2) executing
 *  3) latched
 *
 * When no NMI is in progress, it is in the "not running" state.
 * When an NMI comes in, it goes into the "executing" state.
 * Normally, if another NMI is triggered, it does not interrupt
 * the running NMI and the HW will simply latch it so that when
 * the first NMI finishes, it will restart the second NMI.
 * (Note, the latch is binary, thus multiple NMIs triggering,
 *  when one is running, are ignored. Only one NMI is restarted.)
 *
 * If an NMI hits a breakpoint that executes an iret, another
 * NMI can preempt it. We do not want to allow this new NMI
 * to run, but we want to execute it when the first one finishes.
420 421 422 423 424 425 426 427 428 429 430
 * We set the state to "latched", and the exit of the first NMI will
 * perform a dec_return, if the result is zero (NOT_RUNNING), then
 * it will simply exit the NMI handler. If not, the dec_return
 * would have set the state to NMI_EXECUTING (what we want it to
 * be when we are running). In this case, we simply jump back
 * to rerun the NMI handler again, and restart the 'latched' NMI.
 *
 * No trap (breakpoint or page fault) should be hit before nmi_restart,
 * thus there is no race between the first check of state for NOT_RUNNING
 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
 * at this point.
431 432 433 434 435 436 437 438
 *
 * In case the NMI takes a page fault, we need to save off the CR2
 * because the NMI could have preempted another page fault and corrupt
 * the CR2 that is about to be read. As nested NMIs must be restarted
 * and they can not take breakpoints or page faults, the update of the
 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
 * Otherwise, there would be a race of another nested NMI coming in
 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
439 440
 */
enum nmi_states {
441
	NMI_NOT_RUNNING = 0,
442 443 444 445
	NMI_EXECUTING,
	NMI_LATCHED,
};
static DEFINE_PER_CPU(enum nmi_states, nmi_state);
446
static DEFINE_PER_CPU(unsigned long, nmi_cr2);
447 448 449

#define nmi_nesting_preprocess(regs)					\
	do {								\
450 451
		if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {	\
			this_cpu_write(nmi_state, NMI_LATCHED);		\
452 453
			return;						\
		}							\
454
		this_cpu_write(nmi_state, NMI_EXECUTING);		\
455
		this_cpu_write(nmi_cr2, read_cr2());			\
456 457
	} while (0);							\
	nmi_restart:
458 459 460

#define nmi_nesting_postprocess()					\
	do {								\
461 462
		if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))	\
			write_cr2(this_cpu_read(nmi_cr2));		\
463
		if (this_cpu_dec_return(nmi_state))			\
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
			goto nmi_restart;				\
	} while (0)
#else /* x86_64 */
/*
 * In x86_64 things are a bit more difficult. This has the same problem
 * where an NMI hitting a breakpoint that calls iret will remove the
 * NMI context, allowing a nested NMI to enter. What makes this more
 * difficult is that both NMIs and breakpoints have their own stack.
 * When a new NMI or breakpoint is executed, the stack is set to a fixed
 * point. If an NMI is nested, it will have its stack set at that same
 * fixed address that the first NMI had, and will start corrupting the
 * stack. This is handled in entry_64.S, but the same problem exists with
 * the breakpoint stack.
 *
 * If a breakpoint is being processed, and the debug stack is being used,
 * if an NMI comes in and also hits a breakpoint, the stack pointer
 * will be set to the same fixed address as the breakpoint that was
 * interrupted, causing that stack to be corrupted. To handle this case,
 * check if the stack that was interrupted is the debug stack, and if
 * so, change the IDT so that new breakpoints will use the current stack
 * and not switch to the fixed address. On return of the NMI, switch back
 * to the original IDT.
 */
static DEFINE_PER_CPU(int, update_debug_stack);
488

489 490
static inline void nmi_nesting_preprocess(struct pt_regs *regs)
{
491 492 493 494 495 496 497 498
	/*
	 * If we interrupted a breakpoint, it is possible that
	 * the nmi handler will have breakpoints too. We need to
	 * change the IDT such that breakpoints that happen here
	 * continue to use the NMI stack.
	 */
	if (unlikely(is_debug_stack(regs->sp))) {
		debug_stack_set_zero();
499
		this_cpu_write(update_debug_stack, 1);
500
	}
501 502 503 504
}

static inline void nmi_nesting_postprocess(void)
{
505
	if (unlikely(this_cpu_read(update_debug_stack))) {
506
		debug_stack_reset();
507 508
		this_cpu_write(update_debug_stack, 0);
	}
509 510 511 512 513 514 515 516
}
#endif

dotraplinkage notrace __kprobes void
do_nmi(struct pt_regs *regs, long error_code)
{
	nmi_nesting_preprocess(regs);

D
Don Zickus 已提交
517 518 519 520 521 522 523 524
	nmi_enter();

	inc_irq_stat(__nmi_count);

	if (!ignore_nmis)
		default_do_nmi(regs);

	nmi_exit();
525

526 527
	/* On i386, may loop back to preprocess */
	nmi_nesting_postprocess();
D
Don Zickus 已提交
528 529 530 531 532 533 534 535 536 537 538
}

void stop_nmi(void)
{
	ignore_nmis++;
}

void restart_nmi(void)
{
	ignore_nmis--;
}
539 540 541 542 543 544

/* reset the back-to-back NMI logic */
void local_touch_nmi(void)
{
	__this_cpu_write(last_nmi_rip, 0);
}
545
EXPORT_SYMBOL_GPL(local_touch_nmi);