mmu.c 57.2 KB
Newer Older
J
Jeremy Fitzhardinge 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * Xen mmu operations
 *
 * This file contains the various mmu fetch and update operations.
 * The most important job they must perform is the mapping between the
 * domain's pfn and the overall machine mfns.
 *
 * Xen allows guests to directly update the pagetable, in a controlled
 * fashion.  In other words, the guest modifies the same pagetable
 * that the CPU actually uses, which eliminates the overhead of having
 * a separate shadow pagetable.
 *
 * In order to allow this, it falls on the guest domain to map its
 * notion of a "physical" pfn - which is just a domain-local linear
 * address - into a real "machine address" which the CPU's MMU can
 * use.
 *
 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
 * inserted directly into the pagetable.  When creating a new
 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
 * when reading the content back with __(pgd|pmd|pte)_val, it converts
 * the mfn back into a pfn.
 *
 * The other constraint is that all pages which make up a pagetable
 * must be mapped read-only in the guest.  This prevents uncontrolled
 * guest updates to the pagetable.  Xen strictly enforces this, and
 * will disallow any pagetable update which will end up mapping a
 * pagetable page RW, and will disallow using any writable page as a
 * pagetable.
 *
 * Naively, when loading %cr3 with the base of a new pagetable, Xen
 * would need to validate the whole pagetable before going on.
 * Naturally, this is quite slow.  The solution is to "pin" a
 * pagetable, which enforces all the constraints on the pagetable even
 * when it is not actively in use.  This menas that Xen can be assured
 * that it is still valid when you do load it into %cr3, and doesn't
 * need to revalidate it.
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */
41
#include <linux/sched.h>
42
#include <linux/highmem.h>
J
Jeremy Fitzhardinge 已提交
43
#include <linux/debugfs.h>
J
Jeremy Fitzhardinge 已提交
44
#include <linux/bug.h>
45
#include <linux/vmalloc.h>
46
#include <linux/module.h>
47
#include <linux/gfp.h>
48
#include <linux/memblock.h>
49
#include <linux/seq_file.h>
J
Jeremy Fitzhardinge 已提交
50

51 52
#include <trace/events/xen.h>

J
Jeremy Fitzhardinge 已提交
53 54
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
55
#include <asm/fixmap.h>
J
Jeremy Fitzhardinge 已提交
56
#include <asm/mmu_context.h>
57
#include <asm/setup.h>
58
#include <asm/paravirt.h>
59
#include <asm/e820.h>
60
#include <asm/linkage.h>
61
#include <asm/page.h>
62
#include <asm/init.h>
J
Jeremy Fitzhardinge 已提交
63
#include <asm/pat.h>
A
Andrew Jones 已提交
64
#include <asm/smp.h>
J
Jeremy Fitzhardinge 已提交
65 66

#include <asm/xen/hypercall.h>
67
#include <asm/xen/hypervisor.h>
J
Jeremy Fitzhardinge 已提交
68

69
#include <xen/xen.h>
J
Jeremy Fitzhardinge 已提交
70 71
#include <xen/page.h>
#include <xen/interface/xen.h>
72
#include <xen/interface/hvm/hvm_op.h>
73
#include <xen/interface/version.h>
74
#include <xen/interface/memory.h>
75
#include <xen/hvc-console.h>
J
Jeremy Fitzhardinge 已提交
76

77
#include "multicalls.h"
J
Jeremy Fitzhardinge 已提交
78
#include "mmu.h"
J
Jeremy Fitzhardinge 已提交
79 80
#include "debugfs.h"

A
Alex Nixon 已提交
81 82
/*
 * Protects atomic reservation decrease/increase against concurrent increases.
83
 * Also protects non-atomic updates of current_pages and balloon lists.
A
Alex Nixon 已提交
84 85 86
 */
DEFINE_SPINLOCK(xen_reservation_lock);

87 88 89 90 91
/*
 * Identity map, in addition to plain kernel map.  This needs to be
 * large enough to allocate page table pages to allocate the rest.
 * Each page can map 2MB.
 */
92 93
#define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

#ifdef CONFIG_X86_64
/* l3 pud for userspace vsyscall mapping */
static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
#endif /* CONFIG_X86_64 */

/*
 * Note about cr3 (pagetable base) values:
 *
 * xen_cr3 contains the current logical cr3 value; it contains the
 * last set cr3.  This may not be the current effective cr3, because
 * its update may be being lazily deferred.  However, a vcpu looking
 * at its own cr3 can use this value knowing that it everything will
 * be self-consistent.
 *
 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 * hypercall to set the vcpu cr3 is complete (so it may be a little
 * out of date, but it will never be set early).  If one vcpu is
 * looking at another vcpu's cr3 value, it should use this variable.
 */
DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */


118 119 120 121 122 123
/*
 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 * redzone above it, so round it up to a PGD boundary.
 */
#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)

124 125 126 127 128 129 130
unsigned long arbitrary_virt_to_mfn(void *vaddr)
{
	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);

	return PFN_DOWN(maddr.maddr);
}

131
xmaddr_t arbitrary_virt_to_machine(void *vaddr)
J
Jeremy Fitzhardinge 已提交
132
{
133
	unsigned long address = (unsigned long)vaddr;
134
	unsigned int level;
135 136
	pte_t *pte;
	unsigned offset;
J
Jeremy Fitzhardinge 已提交
137

138 139 140 141 142 143 144 145
	/*
	 * if the PFN is in the linear mapped vaddr range, we can just use
	 * the (quick) virt_to_machine() p2m lookup
	 */
	if (virt_addr_valid(vaddr))
		return virt_to_machine(vaddr);

	/* otherwise we have to do a (slower) full page-table walk */
J
Jeremy Fitzhardinge 已提交
146

147 148 149
	pte = lookup_address(address, &level);
	BUG_ON(pte == NULL);
	offset = address & ~PAGE_MASK;
150
	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
J
Jeremy Fitzhardinge 已提交
151
}
152
EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
J
Jeremy Fitzhardinge 已提交
153 154 155 156 157

void make_lowmem_page_readonly(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
158
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
159

160
	pte = lookup_address(address, &level);
161 162
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
163 164 165 166 167 168 169 170 171 172 173

	ptev = pte_wrprotect(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}

void make_lowmem_page_readwrite(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
174
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
175

176
	pte = lookup_address(address, &level);
177 178
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
179 180 181 182 183 184 185 186

	ptev = pte_mkwrite(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}


187
static bool xen_page_pinned(void *ptr)
188 189 190 191 192 193
{
	struct page *page = virt_to_page(ptr);

	return PagePinned(page);
}

194
void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
195 196 197 198
{
	struct multicall_space mcs;
	struct mmu_update *u;

199 200
	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);

201 202 203 204
	mcs = xen_mc_entry(sizeof(*u));
	u = mcs.args;

	/* ptep might be kmapped when using 32-bit HIGHPTE */
205
	u->ptr = virt_to_machine(ptep).maddr;
206 207
	u->val = pte_val_ma(pteval);

208
	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
209 210 211

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}
212 213
EXPORT_SYMBOL_GPL(xen_set_domain_pte);

214
static void xen_extend_mmu_update(const struct mmu_update *update)
J
Jeremy Fitzhardinge 已提交
215
{
J
Jeremy Fitzhardinge 已提交
216 217
	struct multicall_space mcs;
	struct mmu_update *u;
J
Jeremy Fitzhardinge 已提交
218

219 220
	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));

J
Jeremy Fitzhardinge 已提交
221
	if (mcs.mc != NULL) {
222
		mcs.mc->args[1]++;
J
Jeremy Fitzhardinge 已提交
223
	} else {
224 225 226
		mcs = __xen_mc_entry(sizeof(*u));
		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
	}
J
Jeremy Fitzhardinge 已提交
227 228

	u = mcs.args;
229 230 231
	*u = *update;
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static void xen_extend_mmuext_op(const struct mmuext_op *op)
{
	struct multicall_space mcs;
	struct mmuext_op *u;

	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));

	if (mcs.mc != NULL) {
		mcs.mc->args[1]++;
	} else {
		mcs = __xen_mc_entry(sizeof(*u));
		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
	}

	u = mcs.args;
	*u = *op;
}

250
static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
251 252 253 254 255 256 257
{
	struct mmu_update u;

	preempt_disable();

	xen_mc_batch();

258 259
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
260
	u.val = pmd_val_ma(val);
261
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
262 263 264 265

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
J
Jeremy Fitzhardinge 已提交
266 267
}

268
static void xen_set_pmd(pmd_t *ptr, pmd_t val)
269
{
270 271
	trace_xen_mmu_set_pmd(ptr, val);

272 273
	/* If page is not pinned, we can just update the entry
	   directly */
274
	if (!xen_page_pinned(ptr)) {
275 276 277 278 279 280 281
		*ptr = val;
		return;
	}

	xen_set_pmd_hyper(ptr, val);
}

J
Jeremy Fitzhardinge 已提交
282 283 284 285 286 287
/*
 * Associate a virtual page frame with a given physical page frame
 * and protection flags for that frame.
 */
void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
{
J
Jeremy Fitzhardinge 已提交
288
	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
J
Jeremy Fitzhardinge 已提交
289 290
}

291
static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
J
Jeremy Fitzhardinge 已提交
292
{
293
	struct mmu_update u;
294

295 296
	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
		return false;
J
Jeremy Fitzhardinge 已提交
297

298
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
299

300 301 302
	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
	u.val = pte_val_ma(pteval);
	xen_extend_mmu_update(&u);
303

304
	xen_mc_issue(PARAVIRT_LAZY_MMU);
305

306 307 308
	return true;
}

309
static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
310 311
{
	if (!xen_batched_set_pte(ptep, pteval))
312
		native_set_pte(ptep, pteval);
J
Jeremy Fitzhardinge 已提交
313 314
}

315 316 317 318 319 320
static void xen_set_pte(pte_t *ptep, pte_t pteval)
{
	trace_xen_mmu_set_pte(ptep, pteval);
	__xen_set_pte(ptep, pteval);
}

321
static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
322 323
		    pte_t *ptep, pte_t pteval)
{
324 325
	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
	__xen_set_pte(ptep, pteval);
J
Jeremy Fitzhardinge 已提交
326 327
}

T
Tej 已提交
328 329
pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
				 unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
330
{
331
	/* Just return the pte as-is.  We preserve the bits on commit */
332
	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
333 334 335 336 337 338
	return *ptep;
}

void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
				 pte_t *ptep, pte_t pte)
{
339
	struct mmu_update u;
340

341
	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
342
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
343

344
	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
345
	u.val = pte_val_ma(pte);
346
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
347

348
	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
349 350
}

J
Jeremy Fitzhardinge 已提交
351 352
/* Assume pteval_t is equivalent to all the other *val_t types. */
static pteval_t pte_mfn_to_pfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
353
{
J
Jeremy Fitzhardinge 已提交
354
	if (val & _PAGE_PRESENT) {
355
		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
356 357
		unsigned long pfn = mfn_to_pfn(mfn);

J
Jeremy Fitzhardinge 已提交
358
		pteval_t flags = val & PTE_FLAGS_MASK;
359 360 361 362
		if (unlikely(pfn == ~0))
			val = flags & ~_PAGE_PRESENT;
		else
			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
363
	}
J
Jeremy Fitzhardinge 已提交
364

J
Jeremy Fitzhardinge 已提交
365
	return val;
J
Jeremy Fitzhardinge 已提交
366 367
}

J
Jeremy Fitzhardinge 已提交
368
static pteval_t pte_pfn_to_mfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
369
{
J
Jeremy Fitzhardinge 已提交
370
	if (val & _PAGE_PRESENT) {
371
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
J
Jeremy Fitzhardinge 已提交
372
		pteval_t flags = val & PTE_FLAGS_MASK;
373
		unsigned long mfn;
374

375 376 377 378
		if (!xen_feature(XENFEAT_auto_translated_physmap))
			mfn = get_phys_to_machine(pfn);
		else
			mfn = pfn;
379 380 381 382 383 384 385 386 387
		/*
		 * If there's no mfn for the pfn, then just create an
		 * empty non-present pte.  Unfortunately this loses
		 * information about the original pfn, so
		 * pte_mfn_to_pfn is asymmetric.
		 */
		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
			mfn = 0;
			flags = 0;
388 389 390 391 392 393 394 395 396 397 398
		} else {
			/*
			 * Paramount to do this test _after_ the
			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
			 * IDENTITY_FRAME_BIT resolves to true.
			 */
			mfn &= ~FOREIGN_FRAME_BIT;
			if (mfn & IDENTITY_FRAME_BIT) {
				mfn &= ~IDENTITY_FRAME_BIT;
				flags |= _PAGE_IOMAP;
			}
399 400
		}
		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
401 402
	}

J
Jeremy Fitzhardinge 已提交
403
	return val;
J
Jeremy Fitzhardinge 已提交
404 405
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419
static pteval_t iomap_pte(pteval_t val)
{
	if (val & _PAGE_PRESENT) {
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
		pteval_t flags = val & PTE_FLAGS_MASK;

		/* We assume the pte frame number is a MFN, so
		   just use it as-is. */
		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
	}

	return val;
}

420
static pteval_t xen_pte_val(pte_t pte)
J
Jeremy Fitzhardinge 已提交
421
{
J
Jeremy Fitzhardinge 已提交
422
	pteval_t pteval = pte.pte;
423
#if 0
J
Jeremy Fitzhardinge 已提交
424 425 426 427 428
	/* If this is a WC pte, convert back from Xen WC to Linux WC */
	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
		WARN_ON(!pat_enabled);
		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
	}
429
#endif
J
Jeremy Fitzhardinge 已提交
430 431 432 433
	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
		return pteval;

	return pte_mfn_to_pfn(pteval);
J
Jeremy Fitzhardinge 已提交
434
}
435
PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
J
Jeremy Fitzhardinge 已提交
436

437
static pgdval_t xen_pgd_val(pgd_t pgd)
J
Jeremy Fitzhardinge 已提交
438
{
J
Jeremy Fitzhardinge 已提交
439
	return pte_mfn_to_pfn(pgd.pgd);
J
Jeremy Fitzhardinge 已提交
440
}
441
PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
J
Jeremy Fitzhardinge 已提交
442

J
Jeremy Fitzhardinge 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 * are reserved for now, to correspond to the Intel-reserved PAT
 * types.
 *
 * We expect Linux's PAT set as follows:
 *
 * Idx  PTE flags        Linux    Xen    Default
 * 0                     WB       WB     WB
 * 1            PWT      WC       WT     WT
 * 2        PCD          UC-      UC-    UC-
 * 3        PCD PWT      UC       UC     UC
 * 4    PAT              WB       WC     WB
 * 5    PAT     PWT      WC       WP     WT
 * 6    PAT PCD          UC-      UC     UC-
 * 7    PAT PCD PWT      UC       UC     UC
 */

void xen_set_pat(u64 pat)
{
	/* We expect Linux to use a PAT setting of
	 * UC UC- WC WB (ignoring the PAT flag) */
	WARN_ON(pat != 0x0007010600070106ull);
}

468
static pte_t xen_make_pte(pteval_t pte)
J
Jeremy Fitzhardinge 已提交
469
{
470
	phys_addr_t addr = (pte & PTE_PFN_MASK);
471
#if 0
J
Jeremy Fitzhardinge 已提交
472 473 474 475 476 477 478 479 480 481 482 483
	/* If Linux is trying to set a WC pte, then map to the Xen WC.
	 * If _PAGE_PAT is set, then it probably means it is really
	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
	 * things work out OK...
	 *
	 * (We should never see kernel mappings with _PAGE_PSE set,
	 * but we could see hugetlbfs mappings, I think.).
	 */
	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
	}
484
#endif
485 486 487 488 489 490 491 492
	/*
	 * Unprivileged domains are allowed to do IOMAPpings for
	 * PCI passthrough, but not map ISA space.  The ISA
	 * mappings are just dummy local mappings to keep other
	 * parts of the kernel happy.
	 */
	if (unlikely(pte & _PAGE_IOMAP) &&
	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
493
		pte = iomap_pte(pte);
494 495
	} else {
		pte &= ~_PAGE_IOMAP;
496
		pte = pte_pfn_to_mfn(pte);
497
	}
498

J
Jeremy Fitzhardinge 已提交
499
	return native_make_pte(pte);
J
Jeremy Fitzhardinge 已提交
500
}
501
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
J
Jeremy Fitzhardinge 已提交
502

503
static pgd_t xen_make_pgd(pgdval_t pgd)
J
Jeremy Fitzhardinge 已提交
504
{
J
Jeremy Fitzhardinge 已提交
505 506
	pgd = pte_pfn_to_mfn(pgd);
	return native_make_pgd(pgd);
J
Jeremy Fitzhardinge 已提交
507
}
508
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
J
Jeremy Fitzhardinge 已提交
509

510
static pmdval_t xen_pmd_val(pmd_t pmd)
J
Jeremy Fitzhardinge 已提交
511
{
J
Jeremy Fitzhardinge 已提交
512
	return pte_mfn_to_pfn(pmd.pmd);
J
Jeremy Fitzhardinge 已提交
513
}
514
PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
515

516
static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
517
{
518
	struct mmu_update u;
519

J
Jeremy Fitzhardinge 已提交
520 521
	preempt_disable();

522 523
	xen_mc_batch();

524 525
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
526
	u.val = pud_val_ma(val);
527
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
528 529 530 531

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
532 533
}

534
static void xen_set_pud(pud_t *ptr, pud_t val)
535
{
536 537
	trace_xen_mmu_set_pud(ptr, val);

538 539
	/* If page is not pinned, we can just update the entry
	   directly */
540
	if (!xen_page_pinned(ptr)) {
541 542 543 544 545 546 547
		*ptr = val;
		return;
	}

	xen_set_pud_hyper(ptr, val);
}

548
#ifdef CONFIG_X86_PAE
549
static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
J
Jeremy Fitzhardinge 已提交
550
{
551
	trace_xen_mmu_set_pte_atomic(ptep, pte);
552
	set_64bit((u64 *)ptep, native_pte_val(pte));
J
Jeremy Fitzhardinge 已提交
553 554
}

555
static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
556
{
557
	trace_xen_mmu_pte_clear(mm, addr, ptep);
558 559
	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
		native_pte_clear(mm, addr, ptep);
J
Jeremy Fitzhardinge 已提交
560 561
}

562
static void xen_pmd_clear(pmd_t *pmdp)
J
Jeremy Fitzhardinge 已提交
563
{
564
	trace_xen_mmu_pmd_clear(pmdp);
565
	set_pmd(pmdp, __pmd(0));
J
Jeremy Fitzhardinge 已提交
566
}
567
#endif	/* CONFIG_X86_PAE */
J
Jeremy Fitzhardinge 已提交
568

569
static pmd_t xen_make_pmd(pmdval_t pmd)
J
Jeremy Fitzhardinge 已提交
570
{
J
Jeremy Fitzhardinge 已提交
571
	pmd = pte_pfn_to_mfn(pmd);
J
Jeremy Fitzhardinge 已提交
572
	return native_make_pmd(pmd);
J
Jeremy Fitzhardinge 已提交
573
}
574
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
J
Jeremy Fitzhardinge 已提交
575

576
#if PAGETABLE_LEVELS == 4
577
static pudval_t xen_pud_val(pud_t pud)
578 579 580
{
	return pte_mfn_to_pfn(pud.pud);
}
581
PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
582

583
static pud_t xen_make_pud(pudval_t pud)
584 585 586 587 588
{
	pud = pte_pfn_to_mfn(pud);

	return native_make_pud(pud);
}
589
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
590

591
static pgd_t *xen_get_user_pgd(pgd_t *pgd)
592
{
593 594 595
	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
	unsigned offset = pgd - pgd_page;
	pgd_t *user_ptr = NULL;
596

597 598 599 600 601 602
	if (offset < pgd_index(USER_LIMIT)) {
		struct page *page = virt_to_page(pgd_page);
		user_ptr = (pgd_t *)page->private;
		if (user_ptr)
			user_ptr += offset;
	}
603

604 605 606 607 608 609
	return user_ptr;
}

static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
{
	struct mmu_update u;
610 611 612

	u.ptr = virt_to_machine(ptr).maddr;
	u.val = pgd_val_ma(val);
613
	xen_extend_mmu_update(&u);
614 615 616 617 618 619 620 621 622
}

/*
 * Raw hypercall-based set_pgd, intended for in early boot before
 * there's a page structure.  This implies:
 *  1. The only existing pagetable is the kernel's
 *  2. It is always pinned
 *  3. It has no user pagetable attached to it
 */
623
static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
624 625 626 627 628 629
{
	preempt_disable();

	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
630 631 632 633 634 635

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

636
static void xen_set_pgd(pgd_t *ptr, pgd_t val)
637
{
638 639
	pgd_t *user_ptr = xen_get_user_pgd(ptr);

640 641
	trace_xen_mmu_set_pgd(ptr, user_ptr, val);

642 643
	/* If page is not pinned, we can just update the entry
	   directly */
644
	if (!xen_page_pinned(ptr)) {
645
		*ptr = val;
646
		if (user_ptr) {
647
			WARN_ON(xen_page_pinned(user_ptr));
648 649
			*user_ptr = val;
		}
650 651 652
		return;
	}

653 654 655 656 657 658 659 660 661
	/* If it's pinned, then we can at least batch the kernel and
	   user updates together. */
	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
	if (user_ptr)
		__xen_set_pgd_hyper(user_ptr, val);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
662 663 664
}
#endif	/* PAGETABLE_LEVELS == 4 */

665
/*
666 667 668 669 670 671 672 673 674 675 676 677 678 679
 * (Yet another) pagetable walker.  This one is intended for pinning a
 * pagetable.  This means that it walks a pagetable and calls the
 * callback function on each page it finds making up the page table,
 * at every level.  It walks the entire pagetable, but it only bothers
 * pinning pte pages which are below limit.  In the normal case this
 * will be STACK_TOP_MAX, but at boot we need to pin up to
 * FIXADDR_TOP.
 *
 * For 32-bit the important bit is that we don't pin beyond there,
 * because then we start getting into Xen's ptes.
 *
 * For 64-bit, we must skip the Xen hole in the middle of the address
 * space, just after the big x86-64 virtual hole.
 */
I
Ian Campbell 已提交
680 681 682 683
static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
			  int (*func)(struct mm_struct *mm, struct page *,
				      enum pt_level),
			  unsigned long limit)
J
Jeremy Fitzhardinge 已提交
684
{
685
	int flush = 0;
686 687 688
	unsigned hole_low, hole_high;
	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
	unsigned pgdidx, pudidx, pmdidx;
689

690 691 692
	/* The limit is the last byte to be touched */
	limit--;
	BUG_ON(limit >= FIXADDR_TOP);
J
Jeremy Fitzhardinge 已提交
693 694

	if (xen_feature(XENFEAT_auto_translated_physmap))
695 696
		return 0;

697 698 699 700 701
	/*
	 * 64-bit has a great big hole in the middle of the address
	 * space, which contains the Xen mappings.  On 32-bit these
	 * will end up making a zero-sized hole and so is a no-op.
	 */
702
	hole_low = pgd_index(USER_LIMIT);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	hole_high = pgd_index(PAGE_OFFSET);

	pgdidx_limit = pgd_index(limit);
#if PTRS_PER_PUD > 1
	pudidx_limit = pud_index(limit);
#else
	pudidx_limit = 0;
#endif
#if PTRS_PER_PMD > 1
	pmdidx_limit = pmd_index(limit);
#else
	pmdidx_limit = 0;
#endif

	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
718
		pud_t *pud;
J
Jeremy Fitzhardinge 已提交
719

720 721
		if (pgdidx >= hole_low && pgdidx < hole_high)
			continue;
722

723
		if (!pgd_val(pgd[pgdidx]))
J
Jeremy Fitzhardinge 已提交
724
			continue;
725

726
		pud = pud_offset(&pgd[pgdidx], 0);
J
Jeremy Fitzhardinge 已提交
727 728

		if (PTRS_PER_PUD > 1) /* not folded */
729
			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
730

731
		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
732 733
			pmd_t *pmd;

734 735 736
			if (pgdidx == pgdidx_limit &&
			    pudidx > pudidx_limit)
				goto out;
J
Jeremy Fitzhardinge 已提交
737

738
			if (pud_none(pud[pudidx]))
J
Jeremy Fitzhardinge 已提交
739
				continue;
740

741
			pmd = pmd_offset(&pud[pudidx], 0);
J
Jeremy Fitzhardinge 已提交
742 743

			if (PTRS_PER_PMD > 1) /* not folded */
744
				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
745

746 747 748 749 750 751 752
			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
				struct page *pte;

				if (pgdidx == pgdidx_limit &&
				    pudidx == pudidx_limit &&
				    pmdidx > pmdidx_limit)
					goto out;
J
Jeremy Fitzhardinge 已提交
753

754
				if (pmd_none(pmd[pmdidx]))
J
Jeremy Fitzhardinge 已提交
755 756
					continue;

757
				pte = pmd_page(pmd[pmdidx]);
758
				flush |= (*func)(mm, pte, PT_PTE);
J
Jeremy Fitzhardinge 已提交
759 760 761
			}
		}
	}
762

763
out:
764 765
	/* Do the top level last, so that the callbacks can use it as
	   a cue to do final things like tlb flushes. */
766
	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
767 768

	return flush;
J
Jeremy Fitzhardinge 已提交
769 770
}

I
Ian Campbell 已提交
771 772 773 774 775 776 777 778
static int xen_pgd_walk(struct mm_struct *mm,
			int (*func)(struct mm_struct *mm, struct page *,
				    enum pt_level),
			unsigned long limit)
{
	return __xen_pgd_walk(mm, mm->pgd, func, limit);
}

779 780
/* If we're using split pte locks, then take the page's lock and
   return a pointer to it.  Otherwise return NULL. */
781
static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
782 783 784
{
	spinlock_t *ptl = NULL;

785
#if USE_SPLIT_PTLOCKS
786
	ptl = __pte_lockptr(page);
787
	spin_lock_nest_lock(ptl, &mm->page_table_lock);
788 789 790 791 792
#endif

	return ptl;
}

793
static void xen_pte_unlock(void *v)
794 795 796 797 798 799 800
{
	spinlock_t *ptl = v;
	spin_unlock(ptl);
}

static void xen_do_pin(unsigned level, unsigned long pfn)
{
801
	struct mmuext_op op;
802

803 804 805 806
	op.cmd = level;
	op.arg1.mfn = pfn_to_mfn(pfn);

	xen_extend_mmuext_op(&op);
807 808
}

809 810
static int xen_pin_page(struct mm_struct *mm, struct page *page,
			enum pt_level level)
811
{
812
	unsigned pgfl = TestSetPagePinned(page);
813 814 815 816 817 818 819 820 821 822 823 824
	int flush;

	if (pgfl)
		flush = 0;		/* already pinned */
	else if (PageHighMem(page))
		/* kmaps need flushing if we found an unpinned
		   highpage */
		flush = 1;
	else {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
		struct multicall_space mcs = __xen_mc_entry(0);
825
		spinlock_t *ptl;
826 827 828

		flush = 0;

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		/*
		 * We need to hold the pagetable lock between the time
		 * we make the pagetable RO and when we actually pin
		 * it.  If we don't, then other users may come in and
		 * attempt to update the pagetable by writing it,
		 * which will fail because the memory is RO but not
		 * pinned, so Xen won't do the trap'n'emulate.
		 *
		 * If we're using split pte locks, we can't hold the
		 * entire pagetable's worth of locks during the
		 * traverse, because we may wrap the preempt count (8
		 * bits).  The solution is to mark RO and pin each PTE
		 * page while holding the lock.  This means the number
		 * of locks we end up holding is never more than a
		 * batch size (~32 entries, at present).
		 *
		 * If we're not using split pte locks, we needn't pin
		 * the PTE pages independently, because we're
		 * protected by the overall pagetable lock.
		 */
849 850
		ptl = NULL;
		if (level == PT_PTE)
851
			ptl = xen_pte_lock(page, mm);
852

853 854
		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL_RO),
855 856
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

857
		if (ptl) {
858 859 860 861
			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);

			/* Queue a deferred unlock for when this batch
			   is completed. */
862
			xen_mc_callback(xen_pte_unlock, ptl);
863
		}
864 865 866 867
	}

	return flush;
}
J
Jeremy Fitzhardinge 已提交
868

869 870 871
/* This is called just after a mm has been created, but it has not
   been used yet.  We need to make sure that its pagetable is all
   read-only, and can be pinned. */
872
static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
J
Jeremy Fitzhardinge 已提交
873
{
874 875
	trace_xen_mmu_pgd_pin(mm, pgd);

876
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
877

I
Ian Campbell 已提交
878
	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
879
		/* re-enable interrupts for flushing */
J
Jeremy Fitzhardinge 已提交
880
		xen_mc_issue(0);
881

882
		kmap_flush_unused();
883

J
Jeremy Fitzhardinge 已提交
884 885
		xen_mc_batch();
	}
886

887 888 889 890 891 892 893
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));

		if (user_pgd) {
894
			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
T
Tej 已提交
895 896
			xen_do_pin(MMUEXT_PIN_L4_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
897 898 899
		}
	}
#else /* CONFIG_X86_32 */
900 901
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is pinnable */
902
	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
903
		     PT_PMD);
904
#endif
905
	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
906
#endif /* CONFIG_X86_64 */
907
	xen_mc_issue(0);
J
Jeremy Fitzhardinge 已提交
908 909
}

910 911 912 913 914
static void xen_pgd_pin(struct mm_struct *mm)
{
	__xen_pgd_pin(mm, mm->pgd);
}

915 916 917 918 919
/*
 * On save, we need to pin all pagetables to make sure they get their
 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 * them (unpinned pgds are not currently in use, probably because the
 * process is under construction or destruction).
920 921 922 923
 *
 * Expected to be called in stop_machine() ("equivalent to taking
 * every spinlock in the system"), so the locking doesn't really
 * matter all that much.
924 925 926 927
 */
void xen_mm_pin_all(void)
{
	struct page *page;
928

A
Andrea Arcangeli 已提交
929
	spin_lock(&pgd_lock);
930

931 932
	list_for_each_entry(page, &pgd_list, lru) {
		if (!PagePinned(page)) {
933
			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
934 935 936 937
			SetPageSavePinned(page);
		}
	}

A
Andrea Arcangeli 已提交
938
	spin_unlock(&pgd_lock);
J
Jeremy Fitzhardinge 已提交
939 940
}

941 942 943 944 945
/*
 * The init_mm pagetable is really pinned as soon as its created, but
 * that's before we have page structures to store the bits.  So do all
 * the book-keeping now.
 */
946
static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
947
				  enum pt_level level)
J
Jeremy Fitzhardinge 已提交
948
{
949 950 951
	SetPagePinned(page);
	return 0;
}
J
Jeremy Fitzhardinge 已提交
952

953
static void __init xen_mark_init_mm_pinned(void)
954
{
955
	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
956
}
J
Jeremy Fitzhardinge 已提交
957

958 959
static int xen_unpin_page(struct mm_struct *mm, struct page *page,
			  enum pt_level level)
960
{
961
	unsigned pgfl = TestClearPagePinned(page);
J
Jeremy Fitzhardinge 已提交
962

963 964 965
	if (pgfl && !PageHighMem(page)) {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
966 967 968
		spinlock_t *ptl = NULL;
		struct multicall_space mcs;

969 970 971 972 973 974 975
		/*
		 * Do the converse to pin_page.  If we're using split
		 * pte locks, we must be holding the lock for while
		 * the pte page is unpinned but still RO to prevent
		 * concurrent updates from seeing it in this
		 * partially-pinned state.
		 */
976
		if (level == PT_PTE) {
977
			ptl = xen_pte_lock(page, mm);
978

979 980
			if (ptl)
				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
981 982 983
		}

		mcs = __xen_mc_entry(0);
984 985 986

		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL),
987 988 989 990
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

		if (ptl) {
			/* unlock when batch completed */
991
			xen_mc_callback(xen_pte_unlock, ptl);
992
		}
993 994 995
	}

	return 0;		/* never need to flush on unpin */
J
Jeremy Fitzhardinge 已提交
996 997
}

998
/* Release a pagetables pages back as normal RW */
999
static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1000
{
1001 1002
	trace_xen_mmu_pgd_unpin(mm, pgd);

1003 1004
	xen_mc_batch();

1005
	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1006

1007 1008 1009 1010 1011
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		if (user_pgd) {
T
Tej 已提交
1012 1013
			xen_do_pin(MMUEXT_UNPIN_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
1014
			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1015 1016 1017 1018
		}
	}
#endif

1019 1020
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is unpinned */
1021
	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1022
		       PT_PMD);
1023
#endif
1024

I
Ian Campbell 已提交
1025
	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1026 1027 1028

	xen_mc_issue(0);
}
J
Jeremy Fitzhardinge 已提交
1029

1030 1031 1032 1033 1034
static void xen_pgd_unpin(struct mm_struct *mm)
{
	__xen_pgd_unpin(mm, mm->pgd);
}

1035 1036 1037 1038 1039 1040 1041 1042
/*
 * On resume, undo any pinning done at save, so that the rest of the
 * kernel doesn't see any unexpected pinned pagetables.
 */
void xen_mm_unpin_all(void)
{
	struct page *page;

A
Andrea Arcangeli 已提交
1043
	spin_lock(&pgd_lock);
1044 1045 1046 1047

	list_for_each_entry(page, &pgd_list, lru) {
		if (PageSavePinned(page)) {
			BUG_ON(!PagePinned(page));
1048
			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1049 1050 1051 1052
			ClearPageSavePinned(page);
		}
	}

A
Andrea Arcangeli 已提交
1053
	spin_unlock(&pgd_lock);
1054 1055
}

1056
static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
J
Jeremy Fitzhardinge 已提交
1057
{
1058
	spin_lock(&next->page_table_lock);
1059
	xen_pgd_pin(next);
1060
	spin_unlock(&next->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1061 1062
}

1063
static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1064
{
1065
	spin_lock(&mm->page_table_lock);
1066
	xen_pgd_pin(mm);
1067
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1068 1069 1070
}


J
Jeremy Fitzhardinge 已提交
1071 1072 1073 1074 1075 1076
#ifdef CONFIG_SMP
/* Another cpu may still have their %cr3 pointing at the pagetable, so
   we need to repoint it somewhere else before we can unpin it. */
static void drop_other_mm_ref(void *info)
{
	struct mm_struct *mm = info;
1077
	struct mm_struct *active_mm;
J
Jeremy Fitzhardinge 已提交
1078

1079
	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1080

1081
	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
J
Jeremy Fitzhardinge 已提交
1082
		leave_mm(smp_processor_id());
1083 1084 1085

	/* If this cpu still has a stale cr3 reference, then make sure
	   it has been flushed. */
1086
	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1087
		load_cr3(swapper_pg_dir);
J
Jeremy Fitzhardinge 已提交
1088
}
J
Jeremy Fitzhardinge 已提交
1089

1090
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1091
{
1092
	cpumask_var_t mask;
1093 1094
	unsigned cpu;

J
Jeremy Fitzhardinge 已提交
1095 1096 1097 1098 1099
	if (current->active_mm == mm) {
		if (current->mm == mm)
			load_cr3(swapper_pg_dir);
		else
			leave_mm(smp_processor_id());
1100 1101 1102
	}

	/* Get the "official" set of cpus referring to our pagetable. */
1103 1104
	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
		for_each_online_cpu(cpu) {
1105
			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1106 1107 1108 1109 1110 1111
			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
				continue;
			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
		}
		return;
	}
1112
	cpumask_copy(mask, mm_cpumask(mm));
1113 1114 1115 1116 1117 1118 1119 1120

	/* It's possible that a vcpu may have a stale reference to our
	   cr3, because its in lazy mode, and it hasn't yet flushed
	   its set of pending hypercalls yet.  In this case, we can
	   look at its actual current cr3 value, and force it to flush
	   if needed. */
	for_each_online_cpu(cpu) {
		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1121
			cpumask_set_cpu(cpu, mask);
J
Jeremy Fitzhardinge 已提交
1122 1123
	}

1124 1125 1126
	if (!cpumask_empty(mask))
		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
	free_cpumask_var(mask);
J
Jeremy Fitzhardinge 已提交
1127 1128
}
#else
1129
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
{
	if (current->active_mm == mm)
		load_cr3(swapper_pg_dir);
}
#endif

/*
 * While a process runs, Xen pins its pagetables, which means that the
 * hypervisor forces it to be read-only, and it controls all updates
 * to it.  This means that all pagetable updates have to go via the
 * hypervisor, which is moderately expensive.
 *
 * Since we're pulling the pagetable down, we switch to use init_mm,
 * unpin old process pagetable and mark it all read-write, which
 * allows further operations on it to be simple memory accesses.
 *
 * The only subtle point is that another CPU may be still using the
 * pagetable because of lazy tlb flushing.  This means we need need to
 * switch all CPUs off this pagetable before we can unpin it.
 */
1150
static void xen_exit_mmap(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1151 1152
{
	get_cpu();		/* make sure we don't move around */
1153
	xen_drop_mm_ref(mm);
J
Jeremy Fitzhardinge 已提交
1154
	put_cpu();
J
Jeremy Fitzhardinge 已提交
1155

1156
	spin_lock(&mm->page_table_lock);
1157 1158

	/* pgd may not be pinned in the error exit path of execve */
1159
	if (xen_page_pinned(mm->pgd))
1160
		xen_pgd_unpin(mm);
1161

1162
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1163
}
J
Jeremy Fitzhardinge 已提交
1164

1165
static void __init xen_pagetable_setup_start(pgd_t *base)
1166 1167 1168
{
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
{
	/* reserve the range used */
	native_pagetable_reserve(start, end);

	/* set as RW the rest */
	printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
			PFN_PHYS(pgt_buf_top));
	while (end < PFN_PHYS(pgt_buf_top)) {
		make_lowmem_page_readwrite(__va(end));
		end += PAGE_SIZE;
	}
}

1183 1184
static void xen_post_allocator_init(void);

1185
static void __init xen_pagetable_setup_done(pgd_t *base)
1186 1187
{
	xen_setup_shared_info();
1188
	xen_post_allocator_init();
1189 1190 1191 1192
}

static void xen_write_cr2(unsigned long cr2)
{
1193
	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1194 1195 1196 1197
}

static unsigned long xen_read_cr2(void)
{
1198
	return this_cpu_read(xen_vcpu)->arch.cr2;
1199 1200 1201 1202
}

unsigned long xen_read_cr2_direct(void)
{
1203
	return this_cpu_read(xen_vcpu_info.arch.cr2);
1204 1205 1206 1207 1208 1209 1210
}

static void xen_flush_tlb(void)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

1211 1212
	trace_xen_mmu_flush_tlb(0);

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_single(unsigned long addr)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

1231 1232
	trace_xen_mmu_flush_tlb_single(addr);

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_others(const struct cpumask *cpus,
1247 1248
				 struct mm_struct *mm, unsigned long start,
				 unsigned long end)
1249 1250 1251
{
	struct {
		struct mmuext_op op;
1252
#ifdef CONFIG_SMP
A
Andrew Jones 已提交
1253
		DECLARE_BITMAP(mask, num_processors);
1254 1255 1256
#else
		DECLARE_BITMAP(mask, NR_CPUS);
#endif
1257 1258 1259
	} *args;
	struct multicall_space mcs;

1260
	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1261

1262 1263
	if (cpumask_empty(cpus))
		return;		/* nothing to do */
1264 1265 1266 1267 1268 1269 1270 1271 1272

	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->op.arg2.vcpumask = to_cpumask(args->mask);

	/* Remove us, and any offline CPUS. */
	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));

1273 1274
	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
	if (start != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1275
		args->op.cmd = MMUEXT_INVLPG_MULTI;
1276
		args->op.arg1.linear_addr = start;
1277 1278 1279 1280 1281 1282 1283 1284 1285
	}

	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}

static unsigned long xen_read_cr3(void)
{
1286
	return this_cpu_read(xen_cr3);
1287 1288 1289 1290
}

static void set_current_cr3(void *v)
{
1291
	this_cpu_write(xen_current_cr3, (unsigned long)v);
1292 1293 1294 1295
}

static void __xen_write_cr3(bool kernel, unsigned long cr3)
{
1296
	struct mmuext_op op;
1297 1298
	unsigned long mfn;

1299 1300
	trace_xen_mmu_write_cr3(kernel, cr3);

1301 1302 1303 1304 1305 1306 1307
	if (cr3)
		mfn = pfn_to_mfn(PFN_DOWN(cr3));
	else
		mfn = 0;

	WARN_ON(mfn == 0 && kernel);

1308 1309
	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
	op.arg1.mfn = mfn;
1310

1311
	xen_extend_mmuext_op(&op);
1312 1313

	if (kernel) {
1314
		this_cpu_write(xen_cr3, cr3);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

		/* Update xen_current_cr3 once the batch has actually
		   been submitted. */
		xen_mc_callback(set_current_cr3, (void *)cr3);
	}
}

static void xen_write_cr3(unsigned long cr3)
{
	BUG_ON(preemptible());

	xen_mc_batch();  /* disables interrupts */

	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
1330
	this_cpu_write(xen_cr3, cr3);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

	__xen_write_cr3(true, cr3);

#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
		if (user_pgd)
			__xen_write_cr3(false, __pa(user_pgd));
		else
			__xen_write_cr3(false, 0);
	}
#endif

	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
}

static int xen_pgd_alloc(struct mm_struct *mm)
{
	pgd_t *pgd = mm->pgd;
	int ret = 0;

	BUG_ON(PagePinned(virt_to_page(pgd)));

#ifdef CONFIG_X86_64
	{
		struct page *page = virt_to_page(pgd);
		pgd_t *user_pgd;

		BUG_ON(page->private != 0);

		ret = -ENOMEM;

		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		page->private = (unsigned long)user_pgd;

		if (user_pgd != NULL) {
			user_pgd[pgd_index(VSYSCALL_START)] =
				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
			ret = 0;
		}

		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
	}
#endif

	return ret;
}

static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
#ifdef CONFIG_X86_64
	pgd_t *user_pgd = xen_get_user_pgd(pgd);

	if (user_pgd)
		free_page((unsigned long)user_pgd);
#endif
}

1389
#ifdef CONFIG_X86_32
1390
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1391 1392 1393 1394 1395
{
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));
1396 1397 1398 1399

	return pte;
}
#else /* CONFIG_X86_64 */
1400
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1401 1402
{
	unsigned long pfn = pte_pfn(pte);
1403 1404 1405 1406

	/*
	 * If the new pfn is within the range of the newly allocated
	 * kernel pagetable, and it isn't being mapped into an
1407 1408
	 * early_ioremap fixmap slot as a freshly allocated page, make sure
	 * it is RO.
1409
	 */
1410
	if (((!is_early_ioremap_ptep(ptep) &&
1411
			pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1412
			(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1413
		pte = pte_wrprotect(pte);
1414 1415 1416

	return pte;
}
1417
#endif /* CONFIG_X86_64 */
1418 1419 1420

/* Init-time set_pte while constructing initial pagetables, which
   doesn't allow RO pagetable pages to be remapped RW */
1421
static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1422 1423 1424 1425 1426
{
	pte = mask_rw_pte(ptep, pte);

	xen_set_pte(ptep, pte);
}
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436
static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
{
	struct mmuext_op op;
	op.cmd = cmd;
	op.arg1.mfn = pfn_to_mfn(pfn);
	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
		BUG();
}

1437 1438
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
1439
static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1440
{
1441 1442 1443 1444 1445 1446 1447 1448
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
}

/* Used for pmd and pud */
1449
static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1450
{
1451 1452 1453 1454 1455 1456 1457 1458
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

/* Early release_pte assumes that all pts are pinned, since there's
   only init_mm and anything attached to that is pinned. */
1459
static void __init xen_release_pte_init(unsigned long pfn)
1460
{
1461
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1462 1463 1464
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
}

1465
static void __init xen_release_pmd_init(unsigned long pfn)
1466
{
1467
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1468 1469
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
{
	struct multicall_space mcs;
	struct mmuext_op *op;

	mcs = __xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = cmd;
	op->arg1.mfn = pfn_to_mfn(pfn);

	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
}

static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
{
	struct multicall_space mcs;
	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);

	mcs = __xen_mc_entry(0);
	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
				pfn_pte(pfn, prot), 0);
}

1493 1494
/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
1495 1496
static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
				    unsigned level)
1497
{
1498 1499
	bool pinned = PagePinned(virt_to_page(mm->pgd));

1500
	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1501

1502
	if (pinned) {
1503
		struct page *page = pfn_to_page(pfn);
1504 1505 1506 1507

		SetPagePinned(page);

		if (!PageHighMem(page)) {
1508 1509 1510 1511
			xen_mc_batch();

			__set_pfn_prot(pfn, PAGE_KERNEL_RO);

1512
			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1513 1514 1515
				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);

			xen_mc_issue(PARAVIRT_LAZY_MMU);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		} else {
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
		}
	}
}

static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PTE);
}

static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PMD);
}

/* This should never happen until we're OK to use struct page */
1535
static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1536 1537
{
	struct page *page = pfn_to_page(pfn);
1538
	bool pinned = PagePinned(page);
1539

1540
	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1541

1542
	if (pinned) {
1543
		if (!PageHighMem(page)) {
1544 1545
			xen_mc_batch();

1546
			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1547 1548 1549 1550 1551
				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);

			__set_pfn_prot(pfn, PAGE_KERNEL);

			xen_mc_issue(PARAVIRT_LAZY_MMU);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		}
		ClearPagePinned(page);
	}
}

static void xen_release_pte(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PTE);
}

static void xen_release_pmd(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PMD);
}

#if PAGETABLE_LEVELS == 4
static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PUD);
}

static void xen_release_pud(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PUD);
}
#endif

void __init xen_reserve_top(void)
{
#ifdef CONFIG_X86_32
	unsigned long top = HYPERVISOR_VIRT_START;
	struct xen_platform_parameters pp;

	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
		top = pp.virt_start;

	reserve_top_address(-top);
#endif	/* CONFIG_X86_32 */
}

/*
 * Like __va(), but returns address in the kernel mapping (which is
 * all we have until the physical memory mapping has been set up.
 */
static void *__ka(phys_addr_t paddr)
{
#ifdef CONFIG_X86_64
	return (void *)(paddr + __START_KERNEL_map);
#else
	return __va(paddr);
#endif
}

/* Convert a machine address to physical address */
static unsigned long m2p(phys_addr_t maddr)
{
	phys_addr_t paddr;

	maddr &= PTE_PFN_MASK;
	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;

	return paddr;
}

/* Convert a machine address to kernel virtual */
static void *m2v(phys_addr_t maddr)
{
	return __ka(m2p(maddr));
}

1622
/* Set the page permissions on an identity-mapped pages */
1623 1624 1625 1626 1627 1628 1629 1630 1631
static void set_page_prot(void *addr, pgprot_t prot)
{
	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
	pte_t pte = pfn_pte(pfn, prot);

	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
		BUG();
}

1632
static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1633 1634 1635 1636 1637
{
	unsigned pmdidx, pteidx;
	unsigned ident_pte;
	unsigned long pfn;

1638 1639 1640
	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
				      PAGE_SIZE);

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	ident_pte = 0;
	pfn = 0;
	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
		pte_t *pte_page;

		/* Reuse or allocate a page of ptes */
		if (pmd_present(pmd[pmdidx]))
			pte_page = m2v(pmd[pmdidx].pmd);
		else {
			/* Check for free pte pages */
1651
			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
				break;

			pte_page = &level1_ident_pgt[ident_pte];
			ident_pte += PTRS_PER_PTE;

			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
		}

		/* Install mappings */
		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
			pte_t pte;

1664 1665 1666 1667 1668
#ifdef CONFIG_X86_32
			if (pfn > max_pfn_mapped)
				max_pfn_mapped = pfn;
#endif

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
			if (!pte_none(pte_page[pteidx]))
				continue;

			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
			pte_page[pteidx] = pte;
		}
	}

	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);

	set_page_prot(pmd, PAGE_KERNEL_RO);
}

1683 1684 1685 1686 1687 1688
void __init xen_setup_machphys_mapping(void)
{
	struct xen_machphys_mapping mapping;

	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1689
		machine_to_phys_nr = mapping.max_mfn + 1;
1690
	} else {
1691
		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1692
	}
1693
#ifdef CONFIG_X86_32
1694 1695
	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
		< machine_to_phys_mapping);
1696
#endif
1697 1698
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
#ifdef CONFIG_X86_64
static void convert_pfn_mfn(void *v)
{
	pte_t *pte = v;
	int i;

	/* All levels are converted the same way, so just treat them
	   as ptes. */
	for (i = 0; i < PTRS_PER_PTE; i++)
		pte[i] = xen_make_pte(pte[i].pte);
}

/*
L
Lucas De Marchi 已提交
1712
 * Set up the initial kernel pagetable.
1713 1714 1715 1716 1717 1718 1719 1720 1721
 *
 * We can construct this by grafting the Xen provided pagetable into
 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
 * means that only the kernel has a physical mapping to start with -
 * but that's enough to get __va working.  We need to fill in the rest
 * of the physical mapping once some sort of allocator has been set
 * up.
 */
1722
pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1723 1724 1725 1726 1727
					 unsigned long max_pfn)
{
	pud_t *l3;
	pmd_t *l2;

1728 1729 1730 1731 1732 1733
	/* max_pfn_mapped is the last pfn mapped in the initial memory
	 * mappings. Considering that on Xen after the kernel mappings we
	 * have the mappings of some pages that don't exist in pfn space, we
	 * set max_pfn_mapped to the last real pfn mapped. */
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	/* Zap identity mapping */
	init_level4_pgt[0] = __pgd(0);

	/* Pre-constructed entries are in pfn, so convert to mfn */
	convert_pfn_mfn(init_level4_pgt);
	convert_pfn_mfn(level3_ident_pgt);
	convert_pfn_mfn(level3_kernel_pgt);

	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);

	memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
	memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);

	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
	memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);

	/* Set up identity map */
	xen_map_identity_early(level2_ident_pgt, max_pfn);

	/* Make pagetable pieces RO */
	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);

	/* Pin down new L4 */
	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
			  PFN_DOWN(__pa_symbol(init_level4_pgt)));

	/* Unpin Xen-provided one */
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));

	/* Switch over */
	pgd = init_level4_pgt;

	/*
	 * At this stage there can be no user pgd, and no page
	 * structure to attach it to, so make sure we just set kernel
	 * pgd.
	 */
	xen_mc_batch();
	__xen_write_cr3(true, __pa(pgd));
	xen_mc_issue(PARAVIRT_LAZY_CPU);

1782 1783
	memblock_reserve(__pa(xen_start_info->pt_base),
			 xen_start_info->nr_pt_frames * PAGE_SIZE);
1784 1785 1786 1787

	return pgd;
}
#else	/* !CONFIG_X86_64 */
1788 1789 1790
static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);

1791
static void __init xen_write_cr3_init(unsigned long cr3)
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
{
	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));

	BUG_ON(read_cr3() != __pa(initial_page_table));
	BUG_ON(cr3 != __pa(swapper_pg_dir));

	/*
	 * We are switching to swapper_pg_dir for the first time (from
	 * initial_page_table) and therefore need to mark that page
	 * read-only and then pin it.
	 *
	 * Xen disallows sharing of kernel PMDs for PAE
	 * guests. Therefore we must copy the kernel PMD from
	 * initial_page_table into a new kernel PMD to be used in
	 * swapper_pg_dir.
	 */
	swapper_kernel_pmd =
		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
	memcpy(swapper_kernel_pmd, initial_kernel_pmd,
	       sizeof(pmd_t) * PTRS_PER_PMD);
	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);

	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
	xen_write_cr3(cr3);
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
			  PFN_DOWN(__pa(initial_page_table)));
	set_page_prot(initial_page_table, PAGE_KERNEL);
	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);

	pv_mmu_ops.write_cr3 = &xen_write_cr3;
}
1827

1828
pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1829 1830 1831 1832
					 unsigned long max_pfn)
{
	pmd_t *kernel_pmd;

1833 1834
	initial_kernel_pmd =
		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1835

1836 1837 1838
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
				  xen_start_info->nr_pt_frames * PAGE_SIZE +
				  512*1024);
1839 1840

	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1841
	memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1842

1843
	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1844

1845 1846 1847
	memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
	initial_page_table[KERNEL_PGD_BOUNDARY] =
		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1848

1849 1850
	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1851 1852 1853 1854
	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));

1855 1856 1857
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
			  PFN_DOWN(__pa(initial_page_table)));
	xen_write_cr3(__pa(initial_page_table));
1858

1859
	memblock_reserve(__pa(xen_start_info->pt_base),
1860
			 xen_start_info->nr_pt_frames * PAGE_SIZE);
1861

1862
	return initial_page_table;
1863 1864 1865
}
#endif	/* CONFIG_X86_64 */

1866 1867
static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;

1868
static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
{
	pte_t pte;

	phys >>= PAGE_SHIFT;

	switch (idx) {
	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
#ifdef CONFIG_X86_F00F_BUG
	case FIX_F00F_IDT:
#endif
#ifdef CONFIG_X86_32
	case FIX_WP_TEST:
	case FIX_VDSO:
# ifdef CONFIG_HIGHMEM
	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
# endif
#else
	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1887
	case VVAR_PAGE:
1888
#endif
1889 1890 1891
	case FIX_TEXT_POKE0:
	case FIX_TEXT_POKE1:
		/* All local page mappings */
1892 1893 1894
		pte = pfn_pte(phys, prot);
		break;

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
#ifdef CONFIG_X86_LOCAL_APIC
	case FIX_APIC_BASE:	/* maps dummy local APIC */
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
		break;
#endif

#ifdef CONFIG_X86_IO_APIC
	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
		/*
		 * We just don't map the IO APIC - all access is via
		 * hypercalls.  Keep the address in the pte for reference.
		 */
1907
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1908 1909 1910
		break;
#endif

1911 1912 1913
	case FIX_PARAVIRT_BOOTMAP:
		/* This is an MFN, but it isn't an IO mapping from the
		   IO domain */
1914 1915
		pte = mfn_pte(phys, prot);
		break;
1916 1917 1918 1919 1920

	default:
		/* By default, set_fixmap is used for hardware mappings */
		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
		break;
1921 1922 1923 1924 1925 1926 1927
	}

	__native_set_fixmap(idx, pte);

#ifdef CONFIG_X86_64
	/* Replicate changes to map the vsyscall page into the user
	   pagetable vsyscall mapping. */
1928 1929
	if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
	    idx == VVAR_PAGE) {
1930 1931 1932 1933 1934 1935
		unsigned long vaddr = __fix_to_virt(idx);
		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
	}
#endif
}

1936
static void __init xen_post_allocator_init(void)
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
{
	pv_mmu_ops.set_pte = xen_set_pte;
	pv_mmu_ops.set_pmd = xen_set_pmd;
	pv_mmu_ops.set_pud = xen_set_pud;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.set_pgd = xen_set_pgd;
#endif

	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
	pv_mmu_ops.alloc_pte = xen_alloc_pte;
	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
	pv_mmu_ops.release_pte = xen_release_pte;
	pv_mmu_ops.release_pmd = xen_release_pmd;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.alloc_pud = xen_alloc_pud;
	pv_mmu_ops.release_pud = xen_release_pud;
#endif

#ifdef CONFIG_X86_64
	SetPagePinned(virt_to_page(level3_user_vsyscall));
#endif
	xen_mark_init_mm_pinned();
}

1962 1963
static void xen_leave_lazy_mmu(void)
{
1964
	preempt_disable();
1965 1966
	xen_mc_flush();
	paravirt_leave_lazy_mmu();
1967
	preempt_enable();
1968
}
1969

1970
static const struct pv_mmu_ops xen_mmu_ops __initconst = {
1971 1972 1973 1974
	.read_cr2 = xen_read_cr2,
	.write_cr2 = xen_write_cr2,

	.read_cr3 = xen_read_cr3,
1975 1976 1977
#ifdef CONFIG_X86_32
	.write_cr3 = xen_write_cr3_init,
#else
1978
	.write_cr3 = xen_write_cr3,
1979
#endif
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
	.flush_tlb_others = xen_flush_tlb_others,

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

	.pgd_alloc = xen_pgd_alloc,
	.pgd_free = xen_pgd_free,

	.alloc_pte = xen_alloc_pte_init,
	.release_pte = xen_release_pte_init,
1994 1995
	.alloc_pmd = xen_alloc_pmd_init,
	.release_pmd = xen_release_pmd_init,
1996 1997 1998 1999 2000 2001 2002 2003

	.set_pte = xen_set_pte_init,
	.set_pte_at = xen_set_pte_at,
	.set_pmd = xen_set_pmd_hyper,

	.ptep_modify_prot_start = __ptep_modify_prot_start,
	.ptep_modify_prot_commit = __ptep_modify_prot_commit,

2004 2005
	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2006

2007 2008
	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2009 2010 2011 2012 2013 2014 2015 2016

#ifdef CONFIG_X86_PAE
	.set_pte_atomic = xen_set_pte_atomic,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,
#endif	/* CONFIG_X86_PAE */
	.set_pud = xen_set_pud_hyper,

2017 2018
	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2019 2020

#if PAGETABLE_LEVELS == 4
2021 2022
	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2023 2024
	.set_pgd = xen_set_pgd_hyper,

2025 2026
	.alloc_pud = xen_alloc_pmd_init,
	.release_pud = xen_release_pmd_init,
2027 2028 2029 2030 2031 2032 2033 2034
#endif	/* PAGETABLE_LEVELS == 4 */

	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

	.lazy_mode = {
		.enter = paravirt_enter_lazy_mmu,
2035
		.leave = xen_leave_lazy_mmu,
2036 2037 2038 2039 2040
	},

	.set_fixmap = xen_set_fixmap,
};

2041 2042
void __init xen_init_mmu_ops(void)
{
2043
	x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2044 2045 2046
	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
	pv_mmu_ops = xen_mmu_ops;
2047

2048
	memset(dummy_mapping, 0xff, PAGE_SIZE);
2049
}
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
/* Protected by xen_reservation_lock. */
#define MAX_CONTIG_ORDER 9 /* 2MB */
static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];

#define VOID_PTE (mfn_pte(0, __pgprot(0)))
static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
				unsigned long *in_frames,
				unsigned long *out_frames)
{
	int i;
	struct multicall_space mcs;

	xen_mc_batch();
	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
		mcs = __xen_mc_entry(0);

		if (in_frames)
			in_frames[i] = virt_to_mfn(vaddr);

		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2071
		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

		if (out_frames)
			out_frames[i] = virt_to_pfn(vaddr);
	}
	xen_mc_issue(0);
}

/*
 * Update the pfn-to-mfn mappings for a virtual address range, either to
 * point to an array of mfns, or contiguously from a single starting
 * mfn.
 */
static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
				     unsigned long *mfns,
				     unsigned long first_mfn)
{
	unsigned i, limit;
	unsigned long mfn;

	xen_mc_batch();

	limit = 1u << order;
	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
		struct multicall_space mcs;
		unsigned flags;

		mcs = __xen_mc_entry(0);
		if (mfns)
			mfn = mfns[i];
		else
			mfn = first_mfn + i;

		if (i < (limit - 1))
			flags = 0;
		else {
			if (order == 0)
				flags = UVMF_INVLPG | UVMF_ALL;
			else
				flags = UVMF_TLB_FLUSH | UVMF_ALL;
		}

		MULTI_update_va_mapping(mcs.mc, vaddr,
				mfn_pte(mfn, PAGE_KERNEL), flags);

		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
	}

	xen_mc_issue(0);
}

/*
 * Perform the hypercall to exchange a region of our pfns to point to
 * memory with the required contiguous alignment.  Takes the pfns as
 * input, and populates mfns as output.
 *
 * Returns a success code indicating whether the hypervisor was able to
 * satisfy the request or not.
 */
static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
			       unsigned long *pfns_in,
			       unsigned long extents_out,
			       unsigned int order_out,
			       unsigned long *mfns_out,
			       unsigned int address_bits)
{
	long rc;
	int success;

	struct xen_memory_exchange exchange = {
		.in = {
			.nr_extents   = extents_in,
			.extent_order = order_in,
			.extent_start = pfns_in,
			.domid        = DOMID_SELF
		},
		.out = {
			.nr_extents   = extents_out,
			.extent_order = order_out,
			.extent_start = mfns_out,
			.address_bits = address_bits,
			.domid        = DOMID_SELF
		}
	};

	BUG_ON(extents_in << order_in != extents_out << order_out);

	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
	success = (exchange.nr_exchanged == extents_in);

	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
	BUG_ON(success && (rc != 0));

	return success;
}

int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
				 unsigned int address_bits)
{
	unsigned long *in_frames = discontig_frames, out_frame;
	unsigned long  flags;
	int            success;

	/*
	 * Currently an auto-translated guest will not perform I/O, nor will
	 * it require PAE page directories below 4GB. Therefore any calls to
	 * this function are redundant and can be ignored.
	 */

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return 0;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return -ENOMEM;

	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Zap current PTEs, remembering MFNs. */
	xen_zap_pfn_range(vstart, order, in_frames, NULL);

	/* 2. Get a new contiguous memory extent. */
	out_frame = virt_to_pfn(vstart);
	success = xen_exchange_memory(1UL << order, 0, in_frames,
				      1, order, &out_frame,
				      address_bits);

	/* 3. Map the new extent in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
	else
		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);

	return success ? 0 : -ENOMEM;
}
EXPORT_SYMBOL_GPL(xen_create_contiguous_region);

void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
{
	unsigned long *out_frames = discontig_frames, in_frame;
	unsigned long  flags;
	int success;

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return;

	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Find start MFN of contiguous extent. */
	in_frame = virt_to_mfn(vstart);

	/* 2. Zap current PTEs. */
	xen_zap_pfn_range(vstart, order, NULL, out_frames);

	/* 3. Do the exchange for non-contiguous MFNs. */
	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
					0, out_frames, 0);

	/* 4. Map new pages in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
	else
		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2244
}
2245
EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2246

2247
#ifdef CONFIG_XEN_PVHVM
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
static void xen_hvm_exit_mmap(struct mm_struct *mm)
{
	struct xen_hvm_pagetable_dying a;
	int rc;

	a.domid = DOMID_SELF;
	a.gpa = __pa(mm->pgd);
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	WARN_ON_ONCE(rc < 0);
}

static int is_pagetable_dying_supported(void)
{
	struct xen_hvm_pagetable_dying a;
	int rc = 0;

	a.domid = DOMID_SELF;
	a.gpa = 0x00;
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	if (rc < 0) {
		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
		return 0;
	}
	return 1;
}

void __init xen_hvm_init_mmu_ops(void)
{
	if (is_pagetable_dying_supported())
		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
}
2279
#endif
2280

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
#define REMAP_BATCH_SIZE 16

struct remap_data {
	unsigned long mfn;
	pgprot_t prot;
	struct mmu_update *mmu_update;
};

static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
				 unsigned long addr, void *data)
{
	struct remap_data *rmd = data;
	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));

2295
	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	rmd->mmu_update->val = pte_val_ma(pte);
	rmd->mmu_update++;

	return 0;
}

int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
			       unsigned long addr,
			       unsigned long mfn, int nr,
			       pgprot_t prot, unsigned domid)
{
	struct remap_data rmd;
	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
	int batch;
	unsigned long range;
	int err = 0;

	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);

2315 2316
	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
				(VM_PFNMAP | VM_RESERVED | VM_IO)));
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

	rmd.mfn = mfn;
	rmd.prot = prot;

	while (nr) {
		batch = min(REMAP_BATCH_SIZE, nr);
		range = (unsigned long)batch << PAGE_SHIFT;

		rmd.mmu_update = mmu_update;
		err = apply_to_page_range(vma->vm_mm, addr, range,
					  remap_area_mfn_pte_fn, &rmd);
		if (err)
			goto out;

		err = -EFAULT;
		if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
			goto out;

		nr -= batch;
		addr += range;
	}

	err = 0;
out:

	flush_tlb_all();

	return err;
}
EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);