chcr_algo.c 43.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/*
 * This file is part of the Chelsio T6 Crypto driver for Linux.
 *
 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Written and Maintained by:
 *	Manoj Malviya (manojmalviya@chelsio.com)
 *	Atul Gupta (atul.gupta@chelsio.com)
 *	Jitendra Lulla (jlulla@chelsio.com)
 *	Yeshaswi M R Gowda (yeshaswi@chelsio.com)
 *	Harsh Jain (harsh@chelsio.com)
 */

#define pr_fmt(fmt) "chcr:" fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/crypto.h>
#include <linux/cryptohash.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/highmem.h>
#include <linux/scatterlist.h>

#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <crypto/internal/hash.h>

#include "t4fw_api.h"
#include "t4_msg.h"
#include "chcr_core.h"
#include "chcr_algo.h"
#include "chcr_crypto.h"

static inline struct ablk_ctx *ABLK_CTX(struct chcr_context *ctx)
{
	return ctx->crypto_ctx->ablkctx;
}

static inline struct hmac_ctx *HMAC_CTX(struct chcr_context *ctx)
{
	return ctx->crypto_ctx->hmacctx;
}

static inline struct uld_ctx *ULD_CTX(struct chcr_context *ctx)
{
	return ctx->dev->u_ctx;
}

static inline int is_ofld_imm(const struct sk_buff *skb)
{
	return (skb->len <= CRYPTO_MAX_IMM_TX_PKT_LEN);
}

/*
 *	sgl_len - calculates the size of an SGL of the given capacity
 *	@n: the number of SGL entries
 *	Calculates the number of flits needed for a scatter/gather list that
 *	can hold the given number of entries.
 */
static inline unsigned int sgl_len(unsigned int n)
{
	n--;
	return (3 * n) / 2 + (n & 1) + 2;
}

/*
 *	chcr_handle_resp - Unmap the DMA buffers associated with the request
 *	@req: crypto request
 */
int chcr_handle_resp(struct crypto_async_request *req, unsigned char *input,
		     int error_status)
{
	struct crypto_tfm *tfm = req->tfm;
	struct chcr_context *ctx = crypto_tfm_ctx(tfm);
	struct uld_ctx *u_ctx = ULD_CTX(ctx);
	struct chcr_req_ctx ctx_req;
	struct cpl_fw6_pld *fw6_pld;
	unsigned int digestsize, updated_digestsize;

	switch (tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
	case CRYPTO_ALG_TYPE_BLKCIPHER:
		ctx_req.req.ablk_req = (struct ablkcipher_request *)req;
		ctx_req.ctx.ablk_ctx =
			ablkcipher_request_ctx(ctx_req.req.ablk_req);
		if (!error_status) {
			fw6_pld = (struct cpl_fw6_pld *)input;
			memcpy(ctx_req.req.ablk_req->info, &fw6_pld->data[2],
			       AES_BLOCK_SIZE);
		}
		dma_unmap_sg(&u_ctx->lldi.pdev->dev, ctx_req.req.ablk_req->dst,
			     ABLK_CTX(ctx)->dst_nents, DMA_FROM_DEVICE);
		if (ctx_req.ctx.ablk_ctx->skb) {
			kfree_skb(ctx_req.ctx.ablk_ctx->skb);
			ctx_req.ctx.ablk_ctx->skb = NULL;
		}
		break;

	case CRYPTO_ALG_TYPE_AHASH:
		ctx_req.req.ahash_req = (struct ahash_request *)req;
		ctx_req.ctx.ahash_ctx =
			ahash_request_ctx(ctx_req.req.ahash_req);
		digestsize =
			crypto_ahash_digestsize(crypto_ahash_reqtfm(
							ctx_req.req.ahash_req));
		updated_digestsize = digestsize;
		if (digestsize == SHA224_DIGEST_SIZE)
			updated_digestsize = SHA256_DIGEST_SIZE;
		else if (digestsize == SHA384_DIGEST_SIZE)
			updated_digestsize = SHA512_DIGEST_SIZE;
		if (ctx_req.ctx.ahash_ctx->skb)
			ctx_req.ctx.ahash_ctx->skb = NULL;
		if (ctx_req.ctx.ahash_ctx->result == 1) {
			ctx_req.ctx.ahash_ctx->result = 0;
			memcpy(ctx_req.req.ahash_req->result, input +
			       sizeof(struct cpl_fw6_pld),
			       digestsize);
		} else {
			memcpy(ctx_req.ctx.ahash_ctx->partial_hash, input +
			       sizeof(struct cpl_fw6_pld),
			       updated_digestsize);
		}
		break;
	}
	return 0;
}

/*
 *	calc_tx_flits_ofld - calculate # of flits for an offload packet
 *	@skb: the packet
 *	Returns the number of flits needed for the given offload packet.
 *	These packets are already fully constructed and no additional headers
 *	will be added.
 */
static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
{
	unsigned int flits, cnt;

	if (is_ofld_imm(skb))
		return DIV_ROUND_UP(skb->len, 8);

	flits = skb_transport_offset(skb) / 8;   /* headers */
	cnt = skb_shinfo(skb)->nr_frags;
	if (skb_tail_pointer(skb) != skb_transport_header(skb))
		cnt++;
	return flits + sgl_len(cnt);
}

H
Harsh Jain 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
static inline void get_aes_decrypt_key(unsigned char *dec_key,
				       const unsigned char *key,
				       unsigned int keylength)
{
	u32 temp;
	u32 w_ring[MAX_NK];
	int i, j, k;
	u8  nr, nk;

	switch (keylength) {
	case AES_KEYLENGTH_128BIT:
		nk = KEYLENGTH_4BYTES;
		nr = NUMBER_OF_ROUNDS_10;
		break;
	case AES_KEYLENGTH_192BIT:
		nk = KEYLENGTH_6BYTES;
		nr = NUMBER_OF_ROUNDS_12;
		break;
	case AES_KEYLENGTH_256BIT:
		nk = KEYLENGTH_8BYTES;
		nr = NUMBER_OF_ROUNDS_14;
		break;
	default:
		return;
	}
	for (i = 0; i < nk; i++)
		w_ring[i] = be32_to_cpu(*(u32 *)&key[4 * i]);

	i = 0;
	temp = w_ring[nk - 1];
	while (i + nk < (nr + 1) * 4) {
		if (!(i % nk)) {
			/* RotWord(temp) */
			temp = (temp << 8) | (temp >> 24);
			temp = aes_ks_subword(temp);
			temp ^= round_constant[i / nk];
		} else if (nk == 8 && (i % 4 == 0)) {
			temp = aes_ks_subword(temp);
		}
		w_ring[i % nk] ^= temp;
		temp = w_ring[i % nk];
		i++;
	}
	i--;
	for (k = 0, j = i % nk; k < nk; k++) {
		*((u32 *)dec_key + k) = htonl(w_ring[j]);
		j--;
		if (j < 0)
			j += nk;
	}
}

231
static struct crypto_shash *chcr_alloc_shash(unsigned int ds)
232 233 234 235 236
{
	struct crypto_shash *base_hash = NULL;

	switch (ds) {
	case SHA1_DIGEST_SIZE:
237
		base_hash = crypto_alloc_shash("sha1", 0, 0);
238 239
		break;
	case SHA224_DIGEST_SIZE:
240
		base_hash = crypto_alloc_shash("sha224", 0, 0);
241 242
		break;
	case SHA256_DIGEST_SIZE:
243
		base_hash = crypto_alloc_shash("sha256", 0, 0);
244 245
		break;
	case SHA384_DIGEST_SIZE:
246
		base_hash = crypto_alloc_shash("sha384", 0, 0);
247 248
		break;
	case SHA512_DIGEST_SIZE:
249
		base_hash = crypto_alloc_shash("sha512", 0, 0);
250 251 252
		break;
	}

253
	return base_hash;
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
}

static int chcr_compute_partial_hash(struct shash_desc *desc,
				     char *iopad, char *result_hash,
				     int digest_size)
{
	struct sha1_state sha1_st;
	struct sha256_state sha256_st;
	struct sha512_state sha512_st;
	int error;

	if (digest_size == SHA1_DIGEST_SIZE) {
		error = crypto_shash_init(desc) ?:
			crypto_shash_update(desc, iopad, SHA1_BLOCK_SIZE) ?:
			crypto_shash_export(desc, (void *)&sha1_st);
		memcpy(result_hash, sha1_st.state, SHA1_DIGEST_SIZE);
	} else if (digest_size == SHA224_DIGEST_SIZE) {
		error = crypto_shash_init(desc) ?:
			crypto_shash_update(desc, iopad, SHA256_BLOCK_SIZE) ?:
			crypto_shash_export(desc, (void *)&sha256_st);
		memcpy(result_hash, sha256_st.state, SHA256_DIGEST_SIZE);

	} else if (digest_size == SHA256_DIGEST_SIZE) {
		error = crypto_shash_init(desc) ?:
			crypto_shash_update(desc, iopad, SHA256_BLOCK_SIZE) ?:
			crypto_shash_export(desc, (void *)&sha256_st);
		memcpy(result_hash, sha256_st.state, SHA256_DIGEST_SIZE);

	} else if (digest_size == SHA384_DIGEST_SIZE) {
		error = crypto_shash_init(desc) ?:
			crypto_shash_update(desc, iopad, SHA512_BLOCK_SIZE) ?:
			crypto_shash_export(desc, (void *)&sha512_st);
		memcpy(result_hash, sha512_st.state, SHA512_DIGEST_SIZE);

	} else if (digest_size == SHA512_DIGEST_SIZE) {
		error = crypto_shash_init(desc) ?:
			crypto_shash_update(desc, iopad, SHA512_BLOCK_SIZE) ?:
			crypto_shash_export(desc, (void *)&sha512_st);
		memcpy(result_hash, sha512_st.state, SHA512_DIGEST_SIZE);
	} else {
		error = -EINVAL;
		pr_err("Unknown digest size %d\n", digest_size);
	}
	return error;
}

static void chcr_change_order(char *buf, int ds)
{
	int i;

	if (ds == SHA512_DIGEST_SIZE) {
		for (i = 0; i < (ds / sizeof(u64)); i++)
			*((__be64 *)buf + i) =
				cpu_to_be64(*((u64 *)buf + i));
	} else {
		for (i = 0; i < (ds / sizeof(u32)); i++)
			*((__be32 *)buf + i) =
				cpu_to_be32(*((u32 *)buf + i));
	}
}

static inline int is_hmac(struct crypto_tfm *tfm)
{
	struct crypto_alg *alg = tfm->__crt_alg;
	struct chcr_alg_template *chcr_crypto_alg =
		container_of(__crypto_ahash_alg(alg), struct chcr_alg_template,
			     alg.hash);
	if ((chcr_crypto_alg->type & CRYPTO_ALG_SUB_TYPE_MASK) ==
	    CRYPTO_ALG_SUB_TYPE_HASH_HMAC)
		return 1;
	return 0;
}

static void write_phys_cpl(struct cpl_rx_phys_dsgl *phys_cpl,
			   struct scatterlist *sg,
			   struct phys_sge_parm *sg_param)
{
	struct phys_sge_pairs *to;
332 333
	int out_buf_size = sg_param->obsize;
	unsigned int nents = sg_param->nents, i, j = 0;
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

	phys_cpl->op_to_tid = htonl(CPL_RX_PHYS_DSGL_OPCODE_V(CPL_RX_PHYS_DSGL)
				    | CPL_RX_PHYS_DSGL_ISRDMA_V(0));
	phys_cpl->pcirlxorder_to_noofsgentr =
		htonl(CPL_RX_PHYS_DSGL_PCIRLXORDER_V(0) |
		      CPL_RX_PHYS_DSGL_PCINOSNOOP_V(0) |
		      CPL_RX_PHYS_DSGL_PCITPHNTENB_V(0) |
		      CPL_RX_PHYS_DSGL_PCITPHNT_V(0) |
		      CPL_RX_PHYS_DSGL_DCAID_V(0) |
		      CPL_RX_PHYS_DSGL_NOOFSGENTR_V(nents));
	phys_cpl->rss_hdr_int.opcode = CPL_RX_PHYS_ADDR;
	phys_cpl->rss_hdr_int.qid = htons(sg_param->qid);
	phys_cpl->rss_hdr_int.hash_val = 0;
	to = (struct phys_sge_pairs *)((unsigned char *)phys_cpl +
				       sizeof(struct cpl_rx_phys_dsgl));

	for (i = 0; nents; to++) {
351 352 353
		for (j = 0; j < 8 && nents; j++, nents--) {
			out_buf_size -= sg_dma_len(sg);
			to->len[j] = htons(sg_dma_len(sg));
354 355 356 357
			to->addr[j] = cpu_to_be64(sg_dma_address(sg));
			sg = sg_next(sg);
		}
	}
358 359 360 361 362
	if (out_buf_size) {
		j--;
		to--;
		to->len[j] = htons(ntohs(to->len[j]) + (out_buf_size));
	}
363 364
}

365 366 367 368
static inline int map_writesg_phys_cpl(struct device *dev,
					struct cpl_rx_phys_dsgl *phys_cpl,
					struct scatterlist *sg,
					struct phys_sge_parm *sg_param)
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
{
	if (!sg || !sg_param->nents)
		return 0;

	sg_param->nents = dma_map_sg(dev, sg, sg_param->nents, DMA_FROM_DEVICE);
	if (sg_param->nents == 0) {
		pr_err("CHCR : DMA mapping failed\n");
		return -EINVAL;
	}
	write_phys_cpl(phys_cpl, sg, sg_param);
	return 0;
}

static inline int get_cryptoalg_subtype(struct crypto_tfm *tfm)
{
	struct crypto_alg *alg = tfm->__crt_alg;
	struct chcr_alg_template *chcr_crypto_alg =
		container_of(alg, struct chcr_alg_template, alg.crypto);

	return chcr_crypto_alg->type & CRYPTO_ALG_SUB_TYPE_MASK;
}

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static inline void write_buffer_to_skb(struct sk_buff *skb,
					unsigned int *frags,
					char *bfr,
					u8 bfr_len)
{
	skb->len += bfr_len;
	skb->data_len += bfr_len;
	skb->truesize += bfr_len;
	get_page(virt_to_page(bfr));
	skb_fill_page_desc(skb, *frags, virt_to_page(bfr),
			   offset_in_page(bfr), bfr_len);
	(*frags)++;
}


406
static inline void
407
write_sg_to_skb(struct sk_buff *skb, unsigned int *frags,
408 409 410 411 412 413 414 415
			struct scatterlist *sg, unsigned int count)
{
	struct page *spage;
	unsigned int page_len;

	skb->len += count;
	skb->data_len += count;
	skb->truesize += count;
416

417
	while (count > 0) {
418
		if (!sg || (!(sg->length)))
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
			break;
		spage = sg_page(sg);
		get_page(spage);
		page_len = min(sg->length, count);
		skb_fill_page_desc(skb, *frags, spage, sg->offset, page_len);
		(*frags)++;
		count -= page_len;
		sg = sg_next(sg);
	}
}

static int generate_copy_rrkey(struct ablk_ctx *ablkctx,
			       struct _key_ctx *key_ctx)
{
	if (ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC) {
434
		memcpy(key_ctx->key, ablkctx->rrkey, ablkctx->enckey_len);
435 436 437 438
	} else {
		memcpy(key_ctx->key,
		       ablkctx->key + (ablkctx->enckey_len >> 1),
		       ablkctx->enckey_len >> 1);
439 440
		memcpy(key_ctx->key + (ablkctx->enckey_len >> 1),
		       ablkctx->rrkey, ablkctx->enckey_len >> 1);
441 442 443 444 445
	}
	return 0;
}

static inline void create_wreq(struct chcr_context *ctx,
446
			       struct chcr_wr *chcr_req,
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
			       void *req, struct sk_buff *skb,
			       int kctx_len, int hash_sz,
			       unsigned int phys_dsgl)
{
	struct uld_ctx *u_ctx = ULD_CTX(ctx);
	int iv_loc = IV_DSGL;
	int qid = u_ctx->lldi.rxq_ids[ctx->tx_channel_id];
	unsigned int immdatalen = 0, nr_frags = 0;

	if (is_ofld_imm(skb)) {
		immdatalen = skb->data_len;
		iv_loc = IV_IMMEDIATE;
	} else {
		nr_frags = skb_shinfo(skb)->nr_frags;
	}

463 464 465
	chcr_req->wreq.op_to_cctx_size = FILL_WR_OP_CCTX_SIZE(immdatalen,
				((sizeof(chcr_req->key_ctx) + kctx_len) >> 4));
	chcr_req->wreq.pld_size_hash_size =
466 467
		htonl(FW_CRYPTO_LOOKASIDE_WR_PLD_SIZE_V(sgl_lengths[nr_frags]) |
		      FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE_V(hash_sz));
468 469
	chcr_req->wreq.len16_pkd =
		htonl(FW_CRYPTO_LOOKASIDE_WR_LEN16_V(DIV_ROUND_UP(
470
				    (calc_tx_flits_ofld(skb) * 8), 16)));
471 472
	chcr_req->wreq.cookie = cpu_to_be64((uintptr_t)req);
	chcr_req->wreq.rx_chid_to_rx_q_id =
473 474 475
		FILL_WR_RX_Q_ID(ctx->dev->tx_channel_id, qid,
				(hash_sz) ? IV_NOP : iv_loc);

476 477 478
	chcr_req->ulptx.cmd_dest = FILL_ULPTX_CMD_DEST(ctx->dev->tx_channel_id);
	chcr_req->ulptx.len = htonl((DIV_ROUND_UP((calc_tx_flits_ofld(skb) * 8),
					16) - ((sizeof(chcr_req->wreq)) >> 4)));
479

480 481 482 483
	chcr_req->sc_imm.cmd_more = FILL_CMD_MORE(immdatalen);
	chcr_req->sc_imm.len = cpu_to_be32(sizeof(struct cpl_tx_sec_pdu) +
				   sizeof(chcr_req->key_ctx) +
				   kctx_len +
484 485 486 487 488 489 490 491 492 493 494 495 496
				  ((hash_sz) ? DUMMY_BYTES :
				  (sizeof(struct cpl_rx_phys_dsgl) +
				   phys_dsgl)) + immdatalen);
}

/**
 *	create_cipher_wr - form the WR for cipher operations
 *	@req: cipher req.
 *	@ctx: crypto driver context of the request.
 *	@qid: ingress qid where response of this WR should be received.
 *	@op_type:	encryption or decryption
 */
static struct sk_buff
497 498
*create_cipher_wr(struct ablkcipher_request *req,
		  unsigned short qid,
499 500 501
		  unsigned short op_type)
{
	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
502
	struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
503 504 505
	struct uld_ctx *u_ctx = ULD_CTX(ctx);
	struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
	struct sk_buff *skb = NULL;
506
	struct chcr_wr *chcr_req;
507 508 509
	struct cpl_rx_phys_dsgl *phys_cpl;
	struct chcr_blkcipher_req_ctx *req_ctx = ablkcipher_request_ctx(req);
	struct phys_sge_parm sg_param;
510
	unsigned int frags = 0, transhdr_len, phys_dsgl;
511
	unsigned int ivsize = crypto_ablkcipher_ivsize(tfm), kctx_len;
512 513
	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
			GFP_ATOMIC;
514 515 516

	if (!req->info)
		return ERR_PTR(-EINVAL);
517 518 519 520 521
	ablkctx->dst_nents = sg_nents_for_len(req->dst, req->nbytes);
	if (ablkctx->dst_nents <= 0) {
		pr_err("AES:Invalid Destination sg lists\n");
		return ERR_PTR(-EINVAL);
	}
522 523
	ablkctx->enc = op_type;
	if ((ablkctx->enckey_len == 0) || (ivsize > AES_BLOCK_SIZE) ||
524 525 526
	    (req->nbytes <= 0) || (req->nbytes % AES_BLOCK_SIZE)) {
		pr_err("AES: Invalid value of Key Len %d nbytes %d IV Len %d\n",
		       ablkctx->enckey_len, req->nbytes, ivsize);
527
		return ERR_PTR(-EINVAL);
528
	}
529 530 531

	phys_dsgl = get_space_for_phys_dsgl(ablkctx->dst_nents);

532
	kctx_len = (DIV_ROUND_UP(ablkctx->enckey_len, 16) * 16);
533
	transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, phys_dsgl);
534
	skb = alloc_skb((transhdr_len + sizeof(struct sge_opaque_hdr)), flags);
535 536 537
	if (!skb)
		return ERR_PTR(-ENOMEM);
	skb_reserve(skb, sizeof(struct sge_opaque_hdr));
538 539 540 541 542 543 544 545 546 547 548 549
	chcr_req = (struct chcr_wr *)__skb_put(skb, transhdr_len);
	memset(chcr_req, 0, transhdr_len);
	chcr_req->sec_cpl.op_ivinsrtofst =
		FILL_SEC_CPL_OP_IVINSR(ctx->dev->tx_channel_id, 2, 1);

	chcr_req->sec_cpl.pldlen = htonl(ivsize + req->nbytes);
	chcr_req->sec_cpl.aadstart_cipherstop_hi =
			FILL_SEC_CPL_CIPHERSTOP_HI(0, 0, ivsize + 1, 0);

	chcr_req->sec_cpl.cipherstop_lo_authinsert =
			FILL_SEC_CPL_AUTHINSERT(0, 0, 0, 0);
	chcr_req->sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(op_type, 0,
550
							 ablkctx->ciph_mode,
551 552
							 0, 0, ivsize >> 1);
	chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 0,
553 554
							  0, 1, phys_dsgl);

555
	chcr_req->key_ctx.ctx_hdr = ablkctx->key_ctx_hdr;
556
	if (op_type == CHCR_DECRYPT_OP) {
557
		generate_copy_rrkey(ablkctx, &chcr_req->key_ctx);
558 559
	} else {
		if (ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC) {
560 561
			memcpy(chcr_req->key_ctx.key, ablkctx->key,
			       ablkctx->enckey_len);
562
		} else {
563
			memcpy(chcr_req->key_ctx.key, ablkctx->key +
564 565
			       (ablkctx->enckey_len >> 1),
			       ablkctx->enckey_len >> 1);
566
			memcpy(chcr_req->key_ctx.key +
567 568 569 570 571
			       (ablkctx->enckey_len >> 1),
			       ablkctx->key,
			       ablkctx->enckey_len >> 1);
		}
	}
572
	phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len);
573
	sg_param.nents = ablkctx->dst_nents;
574
	sg_param.obsize = req->nbytes;
575 576 577 578 579 580 581
	sg_param.qid = qid;
	sg_param.align = 1;
	if (map_writesg_phys_cpl(&u_ctx->lldi.pdev->dev, phys_cpl, req->dst,
				 &sg_param))
		goto map_fail1;

	skb_set_transport_header(skb, transhdr_len);
582 583 584 585
	memcpy(ablkctx->iv, req->info, ivsize);
	write_buffer_to_skb(skb, &frags, ablkctx->iv, ivsize);
	write_sg_to_skb(skb, &frags, req->src, req->nbytes);
	create_wreq(ctx, chcr_req, req, skb, kctx_len, 0, phys_dsgl);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	req_ctx->skb = skb;
	skb_get(skb);
	return skb;
map_fail1:
	kfree_skb(skb);
	return ERR_PTR(-ENOMEM);
}

static int chcr_aes_cbc_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
			       unsigned int keylen)
{
	struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
	struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
	unsigned int ck_size, context_size;
	u16 alignment = 0;

	if (keylen == AES_KEYSIZE_128) {
		ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
	} else if (keylen == AES_KEYSIZE_192) {
		alignment = 8;
		ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
	} else if (keylen == AES_KEYSIZE_256) {
		ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
	} else {
		goto badkey_err;
	}
612 613 614
	memcpy(ablkctx->key, key, keylen);
	ablkctx->enckey_len = keylen;
	get_aes_decrypt_key(ablkctx->rrkey, ablkctx->key, keylen << 3);
615 616 617 618 619 620 621 622 623 624 625 626 627
	context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD +
			keylen + alignment) >> 4;

	ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY,
						0, 0, context_size);
	ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_CBC;
	return 0;
badkey_err:
	crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
	ablkctx->enckey_len = 0;
	return -EINVAL;
}

628
static int cxgb4_is_crypto_q_full(struct net_device *dev, unsigned int idx)
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
{
	int ret = 0;
	struct sge_ofld_txq *q;
	struct adapter *adap = netdev2adap(dev);

	local_bh_disable();
	q = &adap->sge.ofldtxq[idx];
	spin_lock(&q->sendq.lock);
	if (q->full)
		ret = -1;
	spin_unlock(&q->sendq.lock);
	local_bh_enable();
	return ret;
}

static int chcr_aes_encrypt(struct ablkcipher_request *req)
{
	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
	struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
	struct uld_ctx *u_ctx = ULD_CTX(ctx);
	struct sk_buff *skb;

	if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
					    ctx->tx_channel_id))) {
		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
			return -EBUSY;
	}

657
	skb = create_cipher_wr(req, u_ctx->lldi.rxq_ids[ctx->tx_channel_id],
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
			       CHCR_ENCRYPT_OP);
	if (IS_ERR(skb)) {
		pr_err("chcr : %s : Failed to form WR. No memory\n", __func__);
		return  PTR_ERR(skb);
	}
	skb->dev = u_ctx->lldi.ports[0];
	set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id);
	chcr_send_wr(skb);
	return -EINPROGRESS;
}

static int chcr_aes_decrypt(struct ablkcipher_request *req)
{
	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
	struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
	struct uld_ctx *u_ctx = ULD_CTX(ctx);
	struct sk_buff *skb;

	if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
					    ctx->tx_channel_id))) {
		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
			return -EBUSY;
	}

682
	skb = create_cipher_wr(req, u_ctx->lldi.rxq_ids[0],
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
			       CHCR_DECRYPT_OP);
	if (IS_ERR(skb)) {
		pr_err("chcr : %s : Failed to form WR. No memory\n", __func__);
		return PTR_ERR(skb);
	}
	skb->dev = u_ctx->lldi.ports[0];
	set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id);
	chcr_send_wr(skb);
	return -EINPROGRESS;
}

static int chcr_device_init(struct chcr_context *ctx)
{
	struct uld_ctx *u_ctx;
	unsigned int id;
	int err = 0, rxq_perchan, rxq_idx;

	id = smp_processor_id();
	if (!ctx->dev) {
		err = assign_chcr_device(&ctx->dev);
		if (err) {
			pr_err("chcr device assignment fails\n");
			goto out;
		}
		u_ctx = ULD_CTX(ctx);
		rxq_perchan = u_ctx->lldi.nrxq / u_ctx->lldi.nchan;
		ctx->dev->tx_channel_id = 0;
		rxq_idx = ctx->dev->tx_channel_id * rxq_perchan;
		rxq_idx += id % rxq_perchan;
		spin_lock(&ctx->dev->lock_chcr_dev);
		ctx->tx_channel_id = rxq_idx;
		spin_unlock(&ctx->dev->lock_chcr_dev);
	}
out:
	return err;
}

static int chcr_cra_init(struct crypto_tfm *tfm)
{
	tfm->crt_ablkcipher.reqsize =  sizeof(struct chcr_blkcipher_req_ctx);
	return chcr_device_init(crypto_tfm_ctx(tfm));
}

static int get_alg_config(struct algo_param *params,
			  unsigned int auth_size)
{
	switch (auth_size) {
	case SHA1_DIGEST_SIZE:
		params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_160;
		params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA1;
		params->result_size = SHA1_DIGEST_SIZE;
		break;
	case SHA224_DIGEST_SIZE:
		params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
		params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA224;
		params->result_size = SHA256_DIGEST_SIZE;
		break;
	case SHA256_DIGEST_SIZE:
		params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
		params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA256;
		params->result_size = SHA256_DIGEST_SIZE;
		break;
	case SHA384_DIGEST_SIZE:
		params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
		params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_384;
		params->result_size = SHA512_DIGEST_SIZE;
		break;
	case SHA512_DIGEST_SIZE:
		params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
		params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_512;
		params->result_size = SHA512_DIGEST_SIZE;
		break;
	default:
		pr_err("chcr : ERROR, unsupported digest size\n");
		return -EINVAL;
	}
	return 0;
}

762 763 764 765 766
static inline void chcr_free_shash(struct crypto_shash *base_hash)
{
		crypto_free_shash(base_hash);
}

767
/**
768
 *	create_hash_wr - Create hash work request
769 770
 *	@req - Cipher req base
 */
771
static struct sk_buff *create_hash_wr(struct ahash_request *req,
772 773 774 775 776 777 778
					    struct hash_wr_param *param)
{
	struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
	struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
	struct sk_buff *skb = NULL;
779
	struct chcr_wr *chcr_req;
780 781
	unsigned int frags = 0, transhdr_len, iopad_alignment = 0;
	unsigned int digestsize = crypto_ahash_digestsize(tfm);
782
	unsigned int kctx_len = 0;
783
	u8 hash_size_in_response = 0;
784 785
	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
		GFP_ATOMIC;
786 787

	iopad_alignment = KEYCTX_ALIGN_PAD(digestsize);
788
	kctx_len = param->alg_prm.result_size + iopad_alignment;
789 790 791 792 793 794 795 796
	if (param->opad_needed)
		kctx_len += param->alg_prm.result_size + iopad_alignment;

	if (req_ctx->result)
		hash_size_in_response = digestsize;
	else
		hash_size_in_response = param->alg_prm.result_size;
	transhdr_len = HASH_TRANSHDR_SIZE(kctx_len);
797
	skb = alloc_skb((transhdr_len + sizeof(struct sge_opaque_hdr)), flags);
798 799 800 801
	if (!skb)
		return skb;

	skb_reserve(skb, sizeof(struct sge_opaque_hdr));
802 803
	chcr_req = (struct chcr_wr *)__skb_put(skb, transhdr_len);
	memset(chcr_req, 0, transhdr_len);
804

805 806 807
	chcr_req->sec_cpl.op_ivinsrtofst =
		FILL_SEC_CPL_OP_IVINSR(ctx->dev->tx_channel_id, 2, 0);
	chcr_req->sec_cpl.pldlen = htonl(param->bfr_len + param->sg_len);
808

809
	chcr_req->sec_cpl.aadstart_cipherstop_hi =
810
		FILL_SEC_CPL_CIPHERSTOP_HI(0, 0, 0, 0);
811
	chcr_req->sec_cpl.cipherstop_lo_authinsert =
812
		FILL_SEC_CPL_AUTHINSERT(0, 1, 0, 0);
813
	chcr_req->sec_cpl.seqno_numivs =
814
		FILL_SEC_CPL_SCMD0_SEQNO(0, 0, 0, param->alg_prm.auth_mode,
815
					 param->opad_needed, 0);
816

817
	chcr_req->sec_cpl.ivgen_hdrlen =
818 819
		FILL_SEC_CPL_IVGEN_HDRLEN(param->last, param->more, 0, 1, 0, 0);

820 821
	memcpy(chcr_req->key_ctx.key, req_ctx->partial_hash,
	       param->alg_prm.result_size);
822 823

	if (param->opad_needed)
824 825 826
		memcpy(chcr_req->key_ctx.key +
		       ((param->alg_prm.result_size <= 32) ? 32 :
			CHCR_HASH_MAX_DIGEST_SIZE),
827 828
		       hmacctx->opad, param->alg_prm.result_size);

829
	chcr_req->key_ctx.ctx_hdr = FILL_KEY_CTX_HDR(CHCR_KEYCTX_NO_KEY,
830 831
					    param->alg_prm.mk_size, 0,
					    param->opad_needed,
832 833 834
					    ((kctx_len +
					     sizeof(chcr_req->key_ctx)) >> 4));
	chcr_req->sec_cpl.scmd1 = cpu_to_be64((u64)param->scmd1);
835 836 837

	skb_set_transport_header(skb, transhdr_len);
	if (param->bfr_len != 0)
838 839
		write_buffer_to_skb(skb, &frags, req_ctx->reqbfr,
				    param->bfr_len);
840
	if (param->sg_len != 0)
841
		write_sg_to_skb(skb, &frags, req->src, param->sg_len);
842

843
	create_wreq(ctx, chcr_req, req, skb, kctx_len, hash_size_in_response,
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
		    0);
	req_ctx->skb = skb;
	skb_get(skb);
	return skb;
}

static int chcr_ahash_update(struct ahash_request *req)
{
	struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
	struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
	struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
	struct uld_ctx *u_ctx = NULL;
	struct sk_buff *skb;
	u8 remainder = 0, bs;
	unsigned int nbytes = req->nbytes;
	struct hash_wr_param params;

	bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));

	u_ctx = ULD_CTX(ctx);
	if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
					    ctx->tx_channel_id))) {
		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
			return -EBUSY;
	}

870 871 872
	if (nbytes + req_ctx->reqlen >= bs) {
		remainder = (nbytes + req_ctx->reqlen) % bs;
		nbytes = nbytes + req_ctx->reqlen - remainder;
873
	} else {
874 875 876
		sg_pcopy_to_buffer(req->src, sg_nents(req->src), req_ctx->reqbfr
				   + req_ctx->reqlen, nbytes, 0);
		req_ctx->reqlen += nbytes;
877 878 879 880 881 882
		return 0;
	}

	params.opad_needed = 0;
	params.more = 1;
	params.last = 0;
883 884
	params.sg_len = nbytes - req_ctx->reqlen;
	params.bfr_len = req_ctx->reqlen;
885 886 887 888
	params.scmd1 = 0;
	get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
	req_ctx->result = 0;
	req_ctx->data_len += params.sg_len + params.bfr_len;
889
	skb = create_hash_wr(req, &params);
890

891 892 893 894 895 896 897 898 899
	if (IS_ERR(skb))
		return PTR_ERR(skb);

	if (remainder) {
		u8 *temp;
		/* Swap buffers */
		temp = req_ctx->reqbfr;
		req_ctx->reqbfr = req_ctx->skbfr;
		req_ctx->skbfr = temp;
900
		sg_pcopy_to_buffer(req->src, sg_nents(req->src),
901
				   req_ctx->reqbfr, remainder, req->nbytes -
902
				   remainder);
903 904
	}
	req_ctx->reqlen = remainder;
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	skb->dev = u_ctx->lldi.ports[0];
	set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id);
	chcr_send_wr(skb);

	return -EINPROGRESS;
}

static void create_last_hash_block(char *bfr_ptr, unsigned int bs, u64 scmd1)
{
	memset(bfr_ptr, 0, bs);
	*bfr_ptr = 0x80;
	if (bs == 64)
		*(__be64 *)(bfr_ptr + 56) = cpu_to_be64(scmd1  << 3);
	else
		*(__be64 *)(bfr_ptr + 120) =  cpu_to_be64(scmd1  << 3);
}

static int chcr_ahash_final(struct ahash_request *req)
{
	struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
	struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
	struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
	struct hash_wr_param params;
	struct sk_buff *skb;
	struct uld_ctx *u_ctx = NULL;
	u8 bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));

	u_ctx = ULD_CTX(ctx);
	if (is_hmac(crypto_ahash_tfm(rtfm)))
		params.opad_needed = 1;
	else
		params.opad_needed = 0;
	params.sg_len = 0;
	get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
	req_ctx->result = 1;
940
	params.bfr_len = req_ctx->reqlen;
941
	req_ctx->data_len += params.bfr_len + params.sg_len;
942 943
	if (req_ctx->reqlen == 0) {
		create_last_hash_block(req_ctx->reqbfr, bs, req_ctx->data_len);
944 945 946 947 948 949 950 951 952 953
		params.last = 0;
		params.more = 1;
		params.scmd1 = 0;
		params.bfr_len = bs;

	} else {
		params.scmd1 = req_ctx->data_len;
		params.last = 1;
		params.more = 0;
	}
954 955 956 957
	skb = create_hash_wr(req, &params);
	if (IS_ERR(skb))
		return PTR_ERR(skb);

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	skb->dev = u_ctx->lldi.ports[0];
	set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id);
	chcr_send_wr(skb);
	return -EINPROGRESS;
}

static int chcr_ahash_finup(struct ahash_request *req)
{
	struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
	struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
	struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
	struct uld_ctx *u_ctx = NULL;
	struct sk_buff *skb;
	struct hash_wr_param params;
	u8  bs;

	bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
	u_ctx = ULD_CTX(ctx);

	if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
					    ctx->tx_channel_id))) {
		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
			return -EBUSY;
	}

	if (is_hmac(crypto_ahash_tfm(rtfm)))
		params.opad_needed = 1;
	else
		params.opad_needed = 0;

	params.sg_len = req->nbytes;
989
	params.bfr_len = req_ctx->reqlen;
990 991 992
	get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
	req_ctx->data_len += params.bfr_len + params.sg_len;
	req_ctx->result = 1;
993 994
	if ((req_ctx->reqlen + req->nbytes) == 0) {
		create_last_hash_block(req_ctx->reqbfr, bs, req_ctx->data_len);
995 996 997 998 999 1000 1001 1002 1003 1004
		params.last = 0;
		params.more = 1;
		params.scmd1 = 0;
		params.bfr_len = bs;
	} else {
		params.scmd1 = req_ctx->data_len;
		params.last = 1;
		params.more = 0;
	}

1005 1006 1007 1008
	skb = create_hash_wr(req, &params);
	if (IS_ERR(skb))
		return PTR_ERR(skb);

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	skb->dev = u_ctx->lldi.ports[0];
	set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id);
	chcr_send_wr(skb);

	return -EINPROGRESS;
}

static int chcr_ahash_digest(struct ahash_request *req)
{
	struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
	struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
	struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
	struct uld_ctx *u_ctx = NULL;
	struct sk_buff *skb;
	struct hash_wr_param params;
	u8  bs;

	rtfm->init(req);
	bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));

	u_ctx = ULD_CTX(ctx);
	if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
					    ctx->tx_channel_id))) {
		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
			return -EBUSY;
	}

	if (is_hmac(crypto_ahash_tfm(rtfm)))
		params.opad_needed = 1;
	else
		params.opad_needed = 0;

	params.last = 0;
	params.more = 0;
	params.sg_len = req->nbytes;
	params.bfr_len = 0;
	params.scmd1 = 0;
	get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
	req_ctx->result = 1;
	req_ctx->data_len += params.bfr_len + params.sg_len;

1050 1051
	if (req->nbytes == 0) {
		create_last_hash_block(req_ctx->reqbfr, bs, 0);
1052 1053 1054 1055
		params.more = 1;
		params.bfr_len = bs;
	}

1056 1057 1058
	skb = create_hash_wr(req, &params);
	if (IS_ERR(skb))
		return PTR_ERR(skb);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

	skb->dev = u_ctx->lldi.ports[0];
	set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id);
	chcr_send_wr(skb);
	return -EINPROGRESS;
}

static int chcr_ahash_export(struct ahash_request *areq, void *out)
{
	struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
	struct chcr_ahash_req_ctx *state = out;

1071
	state->reqlen = req_ctx->reqlen;
1072
	state->data_len = req_ctx->data_len;
1073
	memcpy(state->bfr1, req_ctx->reqbfr, req_ctx->reqlen);
1074 1075
	memcpy(state->partial_hash, req_ctx->partial_hash,
	       CHCR_HASH_MAX_DIGEST_SIZE);
1076
		return 0;
1077 1078 1079 1080 1081 1082 1083
}

static int chcr_ahash_import(struct ahash_request *areq, const void *in)
{
	struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
	struct chcr_ahash_req_ctx *state = (struct chcr_ahash_req_ctx *)in;

1084
	req_ctx->reqlen = state->reqlen;
1085
	req_ctx->data_len = state->data_len;
1086 1087 1088
	req_ctx->reqbfr = req_ctx->bfr1;
	req_ctx->skbfr = req_ctx->bfr2;
	memcpy(req_ctx->bfr1, state->bfr1, CHCR_HASH_MAX_BLOCK_SIZE_128);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	memcpy(req_ctx->partial_hash, state->partial_hash,
	       CHCR_HASH_MAX_DIGEST_SIZE);
	return 0;
}

static int chcr_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
			     unsigned int keylen)
{
	struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
	struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
	unsigned int digestsize = crypto_ahash_digestsize(tfm);
	unsigned int bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
	unsigned int i, err = 0, updated_digestsize;

1103 1104 1105
	SHASH_DESC_ON_STACK(shash, hmacctx->base_hash);

	/* use the key to calculate the ipad and opad. ipad will sent with the
1106 1107 1108
	 * first request's data. opad will be sent with the final hash result
	 * ipad in hmacctx->ipad and opad in hmacctx->opad location
	 */
1109 1110
	shash->tfm = hmacctx->base_hash;
	shash->flags = crypto_shash_get_flags(hmacctx->base_hash);
1111
	if (keylen > bs) {
1112
		err = crypto_shash_digest(shash, key, keylen,
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
					  hmacctx->ipad);
		if (err)
			goto out;
		keylen = digestsize;
	} else {
		memcpy(hmacctx->ipad, key, keylen);
	}
	memset(hmacctx->ipad + keylen, 0, bs - keylen);
	memcpy(hmacctx->opad, hmacctx->ipad, bs);

	for (i = 0; i < bs / sizeof(int); i++) {
		*((unsigned int *)(&hmacctx->ipad) + i) ^= IPAD_DATA;
		*((unsigned int *)(&hmacctx->opad) + i) ^= OPAD_DATA;
	}

	updated_digestsize = digestsize;
	if (digestsize == SHA224_DIGEST_SIZE)
		updated_digestsize = SHA256_DIGEST_SIZE;
	else if (digestsize == SHA384_DIGEST_SIZE)
		updated_digestsize = SHA512_DIGEST_SIZE;
1133
	err = chcr_compute_partial_hash(shash, hmacctx->ipad,
1134 1135 1136 1137 1138
					hmacctx->ipad, digestsize);
	if (err)
		goto out;
	chcr_change_order(hmacctx->ipad, updated_digestsize);

1139
	err = chcr_compute_partial_hash(shash, hmacctx->opad,
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
					hmacctx->opad, digestsize);
	if (err)
		goto out;
	chcr_change_order(hmacctx->opad, updated_digestsize);
out:
	return err;
}

static int chcr_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
			       unsigned int key_len)
{
	struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
	struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
	unsigned short context_size = 0;

1155 1156
	if ((key_len != (AES_KEYSIZE_128 << 1)) &&
	    (key_len != (AES_KEYSIZE_256 << 1))) {
1157 1158 1159
		crypto_tfm_set_flags((struct crypto_tfm *)tfm,
				     CRYPTO_TFM_RES_BAD_KEY_LEN);
		ablkctx->enckey_len = 0;
1160 1161
		return -EINVAL;

1162
	}
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

	memcpy(ablkctx->key, key, key_len);
	ablkctx->enckey_len = key_len;
	get_aes_decrypt_key(ablkctx->rrkey, ablkctx->key, key_len << 2);
	context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD + key_len) >> 4;
	ablkctx->key_ctx_hdr =
		FILL_KEY_CTX_HDR((key_len == AES_KEYSIZE_256) ?
				 CHCR_KEYCTX_CIPHER_KEY_SIZE_128 :
				 CHCR_KEYCTX_CIPHER_KEY_SIZE_256,
				 CHCR_KEYCTX_NO_KEY, 1,
				 0, context_size);
	ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_XTS;
	return 0;
1176 1177 1178 1179 1180 1181 1182 1183 1184
}

static int chcr_sha_init(struct ahash_request *areq)
{
	struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
	int digestsize =  crypto_ahash_digestsize(tfm);

	req_ctx->data_len = 0;
1185 1186 1187
	req_ctx->reqlen = 0;
	req_ctx->reqbfr = req_ctx->bfr1;
	req_ctx->skbfr = req_ctx->bfr2;
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	req_ctx->skb = NULL;
	req_ctx->result = 0;
	copy_hash_init_values(req_ctx->partial_hash, digestsize);
	return 0;
}

static int chcr_sha_cra_init(struct crypto_tfm *tfm)
{
	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct chcr_ahash_req_ctx));
	return chcr_device_init(crypto_tfm_ctx(tfm));
}

static int chcr_hmac_init(struct ahash_request *areq)
{
	struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
	struct crypto_ahash *rtfm = crypto_ahash_reqtfm(areq);
	struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
	struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
	unsigned int digestsize = crypto_ahash_digestsize(rtfm);
	unsigned int bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));

	chcr_sha_init(areq);
	req_ctx->data_len = bs;
	if (is_hmac(crypto_ahash_tfm(rtfm))) {
		if (digestsize == SHA224_DIGEST_SIZE)
			memcpy(req_ctx->partial_hash, hmacctx->ipad,
			       SHA256_DIGEST_SIZE);
		else if (digestsize == SHA384_DIGEST_SIZE)
			memcpy(req_ctx->partial_hash, hmacctx->ipad,
			       SHA512_DIGEST_SIZE);
		else
			memcpy(req_ctx->partial_hash, hmacctx->ipad,
			       digestsize);
	}
	return 0;
}

static int chcr_hmac_cra_init(struct crypto_tfm *tfm)
{
	struct chcr_context *ctx = crypto_tfm_ctx(tfm);
	struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
	unsigned int digestsize =
		crypto_ahash_digestsize(__crypto_ahash_cast(tfm));

	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct chcr_ahash_req_ctx));
1235 1236 1237
	hmacctx->base_hash = chcr_alloc_shash(digestsize);
	if (IS_ERR(hmacctx->base_hash))
		return PTR_ERR(hmacctx->base_hash);
1238 1239 1240 1241 1242 1243 1244 1245
	return chcr_device_init(crypto_tfm_ctx(tfm));
}

static void chcr_hmac_cra_exit(struct crypto_tfm *tfm)
{
	struct chcr_context *ctx = crypto_tfm_ctx(tfm);
	struct hmac_ctx *hmacctx = HMAC_CTX(ctx);

1246 1247 1248
	if (hmacctx->base_hash) {
		chcr_free_shash(hmacctx->base_hash);
		hmacctx->base_hash = NULL;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	}
}

static struct chcr_alg_template driver_algs[] = {
	/* AES-CBC */
	{
		.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
		.is_registered = 0,
		.alg.crypto = {
			.cra_name		= "cbc(aes)",
			.cra_driver_name	= "cbc(aes-chcr)",
			.cra_priority		= CHCR_CRA_PRIORITY,
			.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
				CRYPTO_ALG_ASYNC,
			.cra_blocksize		= AES_BLOCK_SIZE,
			.cra_ctxsize		= sizeof(struct chcr_context)
				+ sizeof(struct ablk_ctx),
			.cra_alignmask		= 0,
			.cra_type		= &crypto_ablkcipher_type,
			.cra_module		= THIS_MODULE,
			.cra_init		= chcr_cra_init,
			.cra_exit		= NULL,
			.cra_u.ablkcipher	= {
				.min_keysize	= AES_MIN_KEY_SIZE,
				.max_keysize	= AES_MAX_KEY_SIZE,
				.ivsize		= AES_BLOCK_SIZE,
				.setkey			= chcr_aes_cbc_setkey,
				.encrypt		= chcr_aes_encrypt,
				.decrypt		= chcr_aes_decrypt,
			}
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
		.is_registered = 0,
		.alg.crypto =   {
			.cra_name		= "xts(aes)",
			.cra_driver_name	= "xts(aes-chcr)",
			.cra_priority		= CHCR_CRA_PRIORITY,
			.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
				CRYPTO_ALG_ASYNC,
			.cra_blocksize		= AES_BLOCK_SIZE,
			.cra_ctxsize		= sizeof(struct chcr_context) +
				sizeof(struct ablk_ctx),
			.cra_alignmask		= 0,
			.cra_type		= &crypto_ablkcipher_type,
			.cra_module		= THIS_MODULE,
			.cra_init		= chcr_cra_init,
			.cra_exit		= NULL,
			.cra_u = {
				.ablkcipher = {
					.min_keysize	= 2 * AES_MIN_KEY_SIZE,
					.max_keysize	= 2 * AES_MAX_KEY_SIZE,
					.ivsize		= AES_BLOCK_SIZE,
					.setkey		= chcr_aes_xts_setkey,
					.encrypt	= chcr_aes_encrypt,
					.decrypt	= chcr_aes_decrypt,
				}
			}
		}
	},
	/* SHA */
	{
		.type = CRYPTO_ALG_TYPE_AHASH,
		.is_registered = 0,
		.alg.hash = {
			.halg.digestsize = SHA1_DIGEST_SIZE,
			.halg.base = {
				.cra_name = "sha1",
				.cra_driver_name = "sha1-chcr",
				.cra_blocksize = SHA1_BLOCK_SIZE,
			}
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_AHASH,
		.is_registered = 0,
		.alg.hash = {
			.halg.digestsize = SHA256_DIGEST_SIZE,
			.halg.base = {
				.cra_name = "sha256",
				.cra_driver_name = "sha256-chcr",
				.cra_blocksize = SHA256_BLOCK_SIZE,
			}
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_AHASH,
		.is_registered = 0,
		.alg.hash = {
			.halg.digestsize = SHA224_DIGEST_SIZE,
			.halg.base = {
				.cra_name = "sha224",
				.cra_driver_name = "sha224-chcr",
				.cra_blocksize = SHA224_BLOCK_SIZE,
			}
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_AHASH,
		.is_registered = 0,
		.alg.hash = {
			.halg.digestsize = SHA384_DIGEST_SIZE,
			.halg.base = {
				.cra_name = "sha384",
				.cra_driver_name = "sha384-chcr",
				.cra_blocksize = SHA384_BLOCK_SIZE,
			}
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_AHASH,
		.is_registered = 0,
		.alg.hash = {
			.halg.digestsize = SHA512_DIGEST_SIZE,
			.halg.base = {
				.cra_name = "sha512",
				.cra_driver_name = "sha512-chcr",
				.cra_blocksize = SHA512_BLOCK_SIZE,
			}
		}
	},
	/* HMAC */
	{
		.type = CRYPTO_ALG_TYPE_HMAC,
		.is_registered = 0,
		.alg.hash = {
			.halg.digestsize = SHA1_DIGEST_SIZE,
			.halg.base = {
				.cra_name = "hmac(sha1)",
				.cra_driver_name = "hmac(sha1-chcr)",
				.cra_blocksize = SHA1_BLOCK_SIZE,
			}
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_HMAC,
		.is_registered = 0,
		.alg.hash = {
			.halg.digestsize = SHA224_DIGEST_SIZE,
			.halg.base = {
				.cra_name = "hmac(sha224)",
				.cra_driver_name = "hmac(sha224-chcr)",
				.cra_blocksize = SHA224_BLOCK_SIZE,
			}
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_HMAC,
		.is_registered = 0,
		.alg.hash = {
			.halg.digestsize = SHA256_DIGEST_SIZE,
			.halg.base = {
				.cra_name = "hmac(sha256)",
				.cra_driver_name = "hmac(sha256-chcr)",
				.cra_blocksize = SHA256_BLOCK_SIZE,
			}
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_HMAC,
		.is_registered = 0,
		.alg.hash = {
			.halg.digestsize = SHA384_DIGEST_SIZE,
			.halg.base = {
				.cra_name = "hmac(sha384)",
				.cra_driver_name = "hmac(sha384-chcr)",
				.cra_blocksize = SHA384_BLOCK_SIZE,
			}
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_HMAC,
		.is_registered = 0,
		.alg.hash = {
			.halg.digestsize = SHA512_DIGEST_SIZE,
			.halg.base = {
				.cra_name = "hmac(sha512)",
				.cra_driver_name = "hmac(sha512-chcr)",
				.cra_blocksize = SHA512_BLOCK_SIZE,
			}
		}
	},
};

/*
 *	chcr_unregister_alg - Deregister crypto algorithms with
 *	kernel framework.
 */
static int chcr_unregister_alg(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
		switch (driver_algs[i].type & CRYPTO_ALG_TYPE_MASK) {
		case CRYPTO_ALG_TYPE_ABLKCIPHER:
			if (driver_algs[i].is_registered)
				crypto_unregister_alg(
						&driver_algs[i].alg.crypto);
			break;
		case CRYPTO_ALG_TYPE_AHASH:
			if (driver_algs[i].is_registered)
				crypto_unregister_ahash(
						&driver_algs[i].alg.hash);
			break;
		}
		driver_algs[i].is_registered = 0;
	}
	return 0;
}

#define SZ_AHASH_CTX sizeof(struct chcr_context)
#define SZ_AHASH_H_CTX (sizeof(struct chcr_context) + sizeof(struct hmac_ctx))
#define SZ_AHASH_REQ_CTX sizeof(struct chcr_ahash_req_ctx)
#define AHASH_CRA_FLAGS (CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC)

/*
 *	chcr_register_alg - Register crypto algorithms with kernel framework.
 */
static int chcr_register_alg(void)
{
	struct crypto_alg ai;
	struct ahash_alg *a_hash;
	int err = 0, i;
	char *name = NULL;

	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
		if (driver_algs[i].is_registered)
			continue;
		switch (driver_algs[i].type & CRYPTO_ALG_TYPE_MASK) {
		case CRYPTO_ALG_TYPE_ABLKCIPHER:
			err = crypto_register_alg(&driver_algs[i].alg.crypto);
			name = driver_algs[i].alg.crypto.cra_driver_name;
			break;
		case CRYPTO_ALG_TYPE_AHASH:
			a_hash = &driver_algs[i].alg.hash;
			a_hash->update = chcr_ahash_update;
			a_hash->final = chcr_ahash_final;
			a_hash->finup = chcr_ahash_finup;
			a_hash->digest = chcr_ahash_digest;
			a_hash->export = chcr_ahash_export;
			a_hash->import = chcr_ahash_import;
			a_hash->halg.statesize = SZ_AHASH_REQ_CTX;
			a_hash->halg.base.cra_priority = CHCR_CRA_PRIORITY;
			a_hash->halg.base.cra_module = THIS_MODULE;
			a_hash->halg.base.cra_flags = AHASH_CRA_FLAGS;
			a_hash->halg.base.cra_alignmask = 0;
			a_hash->halg.base.cra_exit = NULL;
			a_hash->halg.base.cra_type = &crypto_ahash_type;

			if (driver_algs[i].type == CRYPTO_ALG_TYPE_HMAC) {
				a_hash->halg.base.cra_init = chcr_hmac_cra_init;
				a_hash->halg.base.cra_exit = chcr_hmac_cra_exit;
				a_hash->init = chcr_hmac_init;
				a_hash->setkey = chcr_ahash_setkey;
				a_hash->halg.base.cra_ctxsize = SZ_AHASH_H_CTX;
			} else {
				a_hash->init = chcr_sha_init;
				a_hash->halg.base.cra_ctxsize = SZ_AHASH_CTX;
				a_hash->halg.base.cra_init = chcr_sha_cra_init;
			}
			err = crypto_register_ahash(&driver_algs[i].alg.hash);
			ai = driver_algs[i].alg.hash.halg.base;
			name = ai.cra_driver_name;
			break;
		}
		if (err) {
			pr_err("chcr : %s : Algorithm registration failed\n",
			       name);
			goto register_err;
		} else {
			driver_algs[i].is_registered = 1;
		}
	}
	return 0;

register_err:
	chcr_unregister_alg();
	return err;
}

/*
 *	start_crypto - Register the crypto algorithms.
 *	This should called once when the first device comesup. After this
 *	kernel will start calling driver APIs for crypto operations.
 */
int start_crypto(void)
{
	return chcr_register_alg();
}

/*
 *	stop_crypto - Deregister all the crypto algorithms with kernel.
 *	This should be called once when the last device goes down. After this
 *	kernel will not call the driver API for crypto operations.
 */
int stop_crypto(void)
{
	chcr_unregister_alg();
	return 0;
}