core-iso.c 8.5 KB
Newer Older
1
/*
2 3 4
 * Isochronous I/O functionality:
 *   - Isochronous DMA context management
 *   - Isochronous bus resource management (channels, bandwidth), client side
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *
 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/dma-mapping.h>
24
#include <linux/errno.h>
25
#include <linux/firewire.h>
26 27
#include <linux/firewire-constants.h>
#include <linux/kernel.h>
28
#include <linux/mm.h>
29 30
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
31

S
Stefan Richter 已提交
32 33
#include <asm/byteorder.h>

34
#include "core.h"
35 36 37 38

/*
 * Isochronous DMA context management
 */
39

40 41
int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
		       int page_count, enum dma_data_direction direction)
42
{
43
	int i, j;
44 45 46 47 48 49 50 51 52 53 54
	dma_addr_t address;

	buffer->page_count = page_count;
	buffer->direction = direction;

	buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
				GFP_KERNEL);
	if (buffer->pages == NULL)
		goto out;

	for (i = 0; i < buffer->page_count; i++) {
55
		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
56 57
		if (buffer->pages[i] == NULL)
			goto out_pages;
S
Stefan Richter 已提交
58

59 60
		address = dma_map_page(card->device, buffer->pages[i],
				       0, PAGE_SIZE, direction);
61
		if (dma_mapping_error(card->device, address)) {
62 63 64 65
			__free_page(buffer->pages[i]);
			goto out_pages;
		}
		set_page_private(buffer->pages[i], address);
66 67 68
	}

	return 0;
69

70 71 72 73
 out_pages:
	for (j = 0; j < i; j++) {
		address = page_private(buffer->pages[j]);
		dma_unmap_page(card->device, address,
74
			       PAGE_SIZE, DMA_TO_DEVICE);
75 76 77 78 79
		__free_page(buffer->pages[j]);
	}
	kfree(buffer->pages);
 out:
	buffer->pages = NULL;
80

81
	return -ENOMEM;
82 83 84 85 86
}

int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
{
	unsigned long uaddr;
87
	int i, err;
88 89 90

	uaddr = vma->vm_start;
	for (i = 0; i < buffer->page_count; i++) {
91 92 93 94
		err = vm_insert_page(vma, uaddr, buffer->pages[i]);
		if (err)
			return err;

95 96 97 98
		uaddr += PAGE_SIZE;
	}

	return 0;
99 100
}

101 102
void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
			   struct fw_card *card)
103 104
{
	int i;
105
	dma_addr_t address;
106

107 108 109
	for (i = 0; i < buffer->page_count; i++) {
		address = page_private(buffer->pages[i]);
		dma_unmap_page(card->device, address,
110
			       PAGE_SIZE, DMA_TO_DEVICE);
111 112
		__free_page(buffer->pages[i]);
	}
113

114 115
	kfree(buffer->pages);
	buffer->pages = NULL;
116 117
}

118 119 120
struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
		int type, int channel, int speed, size_t header_size,
		fw_iso_callback_t callback, void *callback_data)
121 122 123
{
	struct fw_iso_context *ctx;

124 125
	ctx = card->driver->allocate_iso_context(card,
						 type, channel, header_size);
126 127 128 129 130
	if (IS_ERR(ctx))
		return ctx;

	ctx->card = card;
	ctx->type = type;
131 132
	ctx->channel = channel;
	ctx->speed = speed;
133
	ctx->header_size = header_size;
134 135 136 137 138 139 140 141 142 143 144 145 146
	ctx->callback = callback;
	ctx->callback_data = callback_data;

	return ctx;
}

void fw_iso_context_destroy(struct fw_iso_context *ctx)
{
	struct fw_card *card = ctx->card;

	card->driver->free_iso_context(ctx);
}

147 148
int fw_iso_context_start(struct fw_iso_context *ctx,
			 int cycle, int sync, int tags)
149
{
150
	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
151 152
}

153 154 155 156
int fw_iso_context_queue(struct fw_iso_context *ctx,
			 struct fw_iso_packet *packet,
			 struct fw_iso_buffer *buffer,
			 unsigned long payload)
157 158 159
{
	struct fw_card *card = ctx->card;

160
	return card->driver->queue_iso(ctx, packet, buffer, payload);
161
}
162

163
int fw_iso_context_stop(struct fw_iso_context *ctx)
164 165 166
{
	return ctx->card->driver->stop_iso(ctx);
}
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

/*
 * Isochronous bus resource management (channels, bandwidth), client side
 */

static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
			    int bandwidth, bool allocate)
{
	__be32 data[2];
	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;

	/*
	 * On a 1394a IRM with low contention, try < 1 is enough.
	 * On a 1394-1995 IRM, we need at least try < 2.
	 * Let's just do try < 5.
	 */
	for (try = 0; try < 5; try++) {
		new = allocate ? old - bandwidth : old + bandwidth;
		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
			break;

		data[0] = cpu_to_be32(old);
		data[1] = cpu_to_be32(new);
		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
				irm_id, generation, SCODE_100,
				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
				data, sizeof(data))) {
		case RCODE_GENERATION:
			/* A generation change frees all bandwidth. */
			return allocate ? -EAGAIN : bandwidth;

		case RCODE_COMPLETE:
			if (be32_to_cpup(data) == old)
				return bandwidth;

			old = be32_to_cpup(data);
			/* Fall through. */
		}
	}

	return -EIO;
}

static int manage_channel(struct fw_card *card, int irm_id, int generation,
211
			  u32 channels_mask, u64 offset, bool allocate)
212
{
213
	__be32 data[2], c, all, old;
214 215
	int i, retry = 5;

216 217
	old = all = allocate ? cpu_to_be32(~0) : 0;

218
	for (i = 0; i < 32; i++) {
219
		if (!(channels_mask & 1 << i))
220 221
			continue;

222 223
		c = cpu_to_be32(1 << (31 - i));
		if ((old & c) != (all & c))
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
			continue;

		data[0] = old;
		data[1] = old ^ c;
		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
					   irm_id, generation, SCODE_100,
					   offset, data, sizeof(data))) {
		case RCODE_GENERATION:
			/* A generation change frees all channels. */
			return allocate ? -EAGAIN : i;

		case RCODE_COMPLETE:
			if (data[0] == old)
				return i;

			old = data[0];

			/* Is the IRM 1394a-2000 compliant? */
242
			if ((data[0] & c) == (data[1] & c))
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
				continue;

			/* 1394-1995 IRM, fall through to retry. */
		default:
			if (retry--)
				i--;
		}
	}

	return -EIO;
}

static void deallocate_channel(struct fw_card *card, int irm_id,
			       int generation, int channel)
{
258
	u32 mask;
259 260
	u64 offset;

261
	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
262 263 264 265 266 267 268 269 270 271 272 273
	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;

	manage_channel(card, irm_id, generation, mask, offset, false);
}

/**
 * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth
 *
 * In parameters: card, generation, channels_mask, bandwidth, allocate
 * Out parameters: channel, bandwidth
 * This function blocks (sleeps) during communication with the IRM.
274
 *
275
 * Allocates or deallocates at most one channel out of channels_mask.
276 277 278 279
 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
 * channel 0 and LSB for channel 63.)
 * Allocates or deallocates as many bandwidth allocation units as specified.
280 281 282 283 284 285 286
 *
 * Returns channel < 0 if no channel was allocated or deallocated.
 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
 *
 * If generation is stale, deallocations succeed but allocations fail with
 * channel = -EAGAIN.
 *
287
 * If channel allocation fails, no bandwidth will be allocated either.
288
 * If bandwidth allocation fails, no channel will be allocated either.
289 290
 * But deallocations of channel and bandwidth are tried independently
 * of each other's success.
291 292 293 294 295
 */
void fw_iso_resource_manage(struct fw_card *card, int generation,
			    u64 channels_mask, int *channel, int *bandwidth,
			    bool allocate)
{
296 297
	u32 channels_hi = channels_mask;	/* channels 31...0 */
	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	int irm_id, ret, c = -EINVAL;

	spin_lock_irq(&card->lock);
	irm_id = card->irm_node->node_id;
	spin_unlock_irq(&card->lock);

	if (channels_hi)
		c = manage_channel(card, irm_id, generation, channels_hi,
		    CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI, allocate);
	if (channels_lo && c < 0) {
		c = manage_channel(card, irm_id, generation, channels_lo,
		    CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO, allocate);
		if (c >= 0)
			c += 32;
	}
	*channel = c;

315
	if (allocate && channels_mask != 0 && c < 0)
316 317 318 319 320 321 322 323 324
		*bandwidth = 0;

	if (*bandwidth == 0)
		return;

	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
	if (ret < 0)
		*bandwidth = 0;

325
	if (allocate && ret < 0 && c >= 0) {
326 327 328 329
		deallocate_channel(card, irm_id, generation, c);
		*channel = ret;
	}
}