ixgbe_ptp.c 28.0 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel 10 Gigabit PCI Express Linux driver
D
Don Skidmore 已提交
4
  Copyright(c) 1999 - 2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
23
  Linux NICS <linux.nics@intel.com>
24 25 26 27 28 29
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/
#include "ixgbe.h"
#include <linux/export.h>
30
#include <linux/ptp_classify.h>
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

/*
 * The 82599 and the X540 do not have true 64bit nanosecond scale
 * counter registers. Instead, SYSTIME is defined by a fixed point
 * system which allows the user to define the scale counter increment
 * value at every level change of the oscillator driving the SYSTIME
 * value. For both devices the TIMINCA:IV field defines this
 * increment. On the X540 device, 31 bits are provided. However on the
 * 82599 only provides 24 bits. The time unit is determined by the
 * clock frequency of the oscillator in combination with the TIMINCA
 * register. When these devices link at 10Gb the oscillator has a
 * period of 6.4ns. In order to convert the scale counter into
 * nanoseconds the cyclecounter and timecounter structures are
 * used. The SYSTIME registers need to be converted to ns values by use
 * of only a right shift (division by power of 2). The following math
 * determines the largest incvalue that will fit into the available
 * bits in the TIMINCA register.
 *
 * PeriodWidth: Number of bits to store the clock period
 * MaxWidth: The maximum width value of the TIMINCA register
 * Period: The clock period for the oscillator
 * round(): discard the fractional portion of the calculation
 *
 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
 *
 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
 *
 * The period also changes based on the link speed:
 * At 10Gb link or no link, the period remains the same.
 * At 1Gb link, the period is multiplied by 10. (64ns)
 * At 100Mb link, the period is multiplied by 100. (640ns)
 *
 * The calculated value allows us to right shift the SYSTIME register
 * value in order to quickly convert it into a nanosecond clock,
 * while allowing for the maximum possible adjustment value.
 *
 * These diagrams are only for the 10Gb link period
 *
 *           SYSTIMEH            SYSTIMEL
 *       +--------------+  +--------------+
 * X540  |      32      |  | 1 | 3 |  28  |
 *       *--------------+  +--------------+
 *        \________ 36 bits ______/  fract
 *
 *       +--------------+  +--------------+
 * 82599 |      32      |  | 8 | 3 |  21  |
 *       *--------------+  +--------------+
 *        \________ 43 bits ______/  fract
 *
 * The 36 bit X540 SYSTIME overflows every
 *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
 *
 * The 43 bit 82599 SYSTIME overflows every
 *   2^43 * 10^-9 / 3600 = 2.4 hours
 */
#define IXGBE_INCVAL_10GB 0x66666666
#define IXGBE_INCVAL_1GB  0x40000000
#define IXGBE_INCVAL_100  0x50000000

#define IXGBE_INCVAL_SHIFT_10GB  28
#define IXGBE_INCVAL_SHIFT_1GB   24
#define IXGBE_INCVAL_SHIFT_100   21

#define IXGBE_INCVAL_SHIFT_82599 7
#define IXGBE_INCPER_SHIFT_82599 24
#define IXGBE_MAX_TIMEADJ_VALUE  0x7FFFFFFFFFFFFFFFULL

#define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
100
#define IXGBE_PTP_TX_TIMEOUT     (HZ * 15)
101

102 103 104 105
#ifndef NSECS_PER_SEC
#define NSECS_PER_SEC 1000000000ULL
#endif

106
/**
J
Jacob Keller 已提交
107
 * ixgbe_ptp_setup_sdp
108 109
 * @hw: the hardware private structure
 *
J
Jacob Keller 已提交
110 111 112
 * this function enables or disables the clock out feature on SDP0 for
 * the X540 device. It will create a 1second periodic output that can
 * be used as the PPS (via an interrupt).
113 114 115 116 117
 *
 * It calculates when the systime will be on an exact second, and then
 * aligns the start of the PPS signal to that value. The shift is
 * necessary because it can change based on the link speed.
 */
J
Jacob Keller 已提交
118
static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
119 120 121 122 123 124
{
	struct ixgbe_hw *hw = &adapter->hw;
	int shift = adapter->cc.shift;
	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
	u64 ns = 0, clock_edge = 0;

J
Jacob Keller 已提交
125 126 127 128 129 130 131
	if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
	    (hw->mac.type == ixgbe_mac_X540)) {

		/* disable the pin first */
		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
		IXGBE_WRITE_FLUSH(hw);

132 133 134
		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);

		/*
J
Jacob Keller 已提交
135 136
		 * enable the SDP0 pin as output, and connected to the
		 * native function for Timesync (ClockOut)
137 138 139 140 141
		 */
		esdp |= (IXGBE_ESDP_SDP0_DIR |
			 IXGBE_ESDP_SDP0_NATIVE);

		/*
J
Jacob Keller 已提交
142 143
		 * enable the Clock Out feature on SDP0, and allow
		 * interrupts to occur when the pin changes
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
		 */
		tsauxc = (IXGBE_TSAUXC_EN_CLK |
			  IXGBE_TSAUXC_SYNCLK |
			  IXGBE_TSAUXC_SDP0_INT);

		/* clock period (or pulse length) */
		clktiml = (u32)(NSECS_PER_SEC << shift);
		clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);

		/*
		 * Account for the cyclecounter wrap-around value by
		 * using the converted ns value of the current time to
		 * check for when the next aligned second would occur.
		 */
		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
		ns = timecounter_cyc2time(&adapter->tc, clock_edge);

		div_u64_rem(ns, NSECS_PER_SEC, &rem);
		clock_edge += ((NSECS_PER_SEC - (u64)rem) << shift);

		/* specify the initial clock start time */
		trgttiml = (u32)clock_edge;
		trgttimh = (u32)(clock_edge >> 32);

		IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
		IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);

		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
J
Jacob Keller 已提交
176 177
	} else {
		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
178 179 180 181 182
	}

	IXGBE_WRITE_FLUSH(hw);
}

183 184
/**
 * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
185
 * @cc: the cyclecounter structure
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
 *
 * this function reads the cyclecounter registers and is called by the
 * cyclecounter structure used to construct a ns counter from the
 * arbitrary fixed point registers
 */
static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
{
	struct ixgbe_adapter *adapter =
		container_of(cc, struct ixgbe_adapter, cc);
	struct ixgbe_hw *hw = &adapter->hw;
	u64 stamp = 0;

	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;

	return stamp;
}

/**
 * ixgbe_ptp_adjfreq
206 207
 * @ptp: the ptp clock structure
 * @ppb: parts per billion adjustment from base
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
 *
 * adjust the frequency of the ptp cycle counter by the
 * indicated ppb from the base frequency.
 */
static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
	struct ixgbe_adapter *adapter =
		container_of(ptp, struct ixgbe_adapter, ptp_caps);
	struct ixgbe_hw *hw = &adapter->hw;
	u64 freq;
	u32 diff, incval;
	int neg_adj = 0;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}

	smp_mb();
	incval = ACCESS_ONCE(adapter->base_incval);

	freq = incval;
	freq *= ppb;
	diff = div_u64(freq, 1000000000ULL);

	incval = neg_adj ? (incval - diff) : (incval + diff);

	switch (hw->mac.type) {
	case ixgbe_mac_X540:
		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
		break;
	case ixgbe_mac_82599EB:
		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
				(1 << IXGBE_INCPER_SHIFT_82599) |
				incval);
		break;
	default:
		break;
	}

	return 0;
}

/**
 * ixgbe_ptp_adjtime
253 254
 * @ptp: the ptp clock structure
 * @delta: offset to adjust the cycle counter by
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
 *
 * adjust the timer by resetting the timecounter structure.
 */
static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	struct ixgbe_adapter *adapter =
		container_of(ptp, struct ixgbe_adapter, ptp_caps);
	unsigned long flags;
	u64 now;

	spin_lock_irqsave(&adapter->tmreg_lock, flags);

	now = timecounter_read(&adapter->tc);
	now += delta;

	/* reset the timecounter */
	timecounter_init(&adapter->tc,
			 &adapter->cc,
			 now);

	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
J
Jacob Keller 已提交
276 277

	ixgbe_ptp_setup_sdp(adapter);
278

279 280 281 282 283
	return 0;
}

/**
 * ixgbe_ptp_gettime
284 285
 * @ptp: the ptp clock structure
 * @ts: timespec structure to hold the current time value
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
 *
 * read the timecounter and return the correct value on ns,
 * after converting it into a struct timespec.
 */
static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
{
	struct ixgbe_adapter *adapter =
		container_of(ptp, struct ixgbe_adapter, ptp_caps);
	u64 ns;
	u32 remainder;
	unsigned long flags;

	spin_lock_irqsave(&adapter->tmreg_lock, flags);
	ns = timecounter_read(&adapter->tc);
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

	ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
	ts->tv_nsec = remainder;

	return 0;
}

/**
 * ixgbe_ptp_settime
310 311
 * @ptp: the ptp clock structure
 * @ts: the timespec containing the new time for the cycle counter
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
 *
 * reset the timecounter to use a new base value instead of the kernel
 * wall timer value.
 */
static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
			     const struct timespec *ts)
{
	struct ixgbe_adapter *adapter =
		container_of(ptp, struct ixgbe_adapter, ptp_caps);
	u64 ns;
	unsigned long flags;

	ns = ts->tv_sec * 1000000000ULL;
	ns += ts->tv_nsec;

	/* reset the timecounter */
	spin_lock_irqsave(&adapter->tmreg_lock, flags);
	timecounter_init(&adapter->tc, &adapter->cc, ns);
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

J
Jacob Keller 已提交
332
	ixgbe_ptp_setup_sdp(adapter);
333 334 335 336 337
	return 0;
}

/**
 * ixgbe_ptp_enable
338 339 340
 * @ptp: the ptp clock structure
 * @rq: the requested feature to change
 * @on: whether to enable or disable the feature
341 342
 *
 * enable (or disable) ancillary features of the phc subsystem.
343
 * our driver only supports the PPS feature on the X540
344 345 346 347
 */
static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
			    struct ptp_clock_request *rq, int on)
{
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	struct ixgbe_adapter *adapter =
		container_of(ptp, struct ixgbe_adapter, ptp_caps);

	/**
	 * When PPS is enabled, unmask the interrupt for the ClockOut
	 * feature, so that the interrupt handler can send the PPS
	 * event when the clock SDP triggers. Clear mask when PPS is
	 * disabled
	 */
	if (rq->type == PTP_CLK_REQ_PPS) {
		switch (adapter->hw.mac.type) {
		case ixgbe_mac_X540:
			if (on)
				adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
			else
J
Jacob Keller 已提交
363 364 365
				adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;

			ixgbe_ptp_setup_sdp(adapter);
366 367 368 369 370 371
			return 0;
		default:
			break;
		}
	}

372 373 374
	return -ENOTSUPP;
}

375 376
/**
 * ixgbe_ptp_check_pps_event
377 378
 * @adapter: the private adapter structure
 * @eicr: the interrupt cause register value
379 380 381 382 383 384 385 386 387
 *
 * This function is called by the interrupt routine when checking for
 * interrupts. It will check and handle a pps event.
 */
void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
{
	struct ixgbe_hw *hw = &adapter->hw;
	struct ptp_clock_event event;

388 389 390 391 392 393 394 395 396
	event.type = PTP_CLOCK_PPS;

	/* this check is necessary in case the interrupt was enabled via some
	 * alternative means (ex. debug_fs). Better to check here than
	 * everywhere that calls this function.
	 */
	if (!adapter->ptp_clock)
		return;

J
Jacob Keller 已提交
397 398 399 400 401 402
	switch (hw->mac.type) {
	case ixgbe_mac_X540:
		ptp_clock_event(adapter->ptp_clock, &event);
		break;
	default:
		break;
403 404 405
	}
}

406
/**
407 408
 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
 * @adapter: private adapter struct
409
 *
410
 * this watchdog task periodically reads the timecounter
411
 * in order to prevent missing when the system time registers wrap
412
 * around. This needs to be run approximately twice a minute.
413 414 415
 */
void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
{
416 417
	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
					     IXGBE_OVERFLOW_PERIOD);
418 419
	struct timespec ts;

420
	if (timeout) {
421 422 423 424 425
		ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
		adapter->last_overflow_check = jiffies;
	}
}

426
/**
427 428
 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
 * @adapter: private network adapter structure
429
 *
430 431 432 433
 * this watchdog task is scheduled to detect error case where hardware has
 * dropped an Rx packet that was timestamped when the ring is full. The
 * particular error is rare but leaves the device in a state unable to timestamp
 * any future packets.
434
 */
435
void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
436
{
437 438 439 440 441
	struct ixgbe_hw *hw = &adapter->hw;
	struct ixgbe_ring *rx_ring;
	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
	unsigned long rx_event;
	int n;
442

443 444 445 446 447 448
	/* if we don't have a valid timestamp in the registers, just update the
	 * timeout counter and exit
	 */
	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
		adapter->last_rx_ptp_check = jiffies;
		return;
449 450
	}

451 452 453 454 455 456 457
	/* determine the most recent watchdog or rx_timestamp event */
	rx_event = adapter->last_rx_ptp_check;
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		if (time_after(rx_ring->last_rx_timestamp, rx_event))
			rx_event = rx_ring->last_rx_timestamp;
	}
458

459 460 461 462
	/* only need to read the high RXSTMP register to clear the lock */
	if (time_is_before_jiffies(rx_event + 5*HZ)) {
		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
		adapter->last_rx_ptp_check = jiffies;
463

464
		e_warn(drv, "clearing RX Timestamp hang");
465 466 467
	}
}

468 469
/**
 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
470
 * @adapter: the private adapter struct
471 472 473 474 475
 *
 * if the timestamp is valid, we convert it into the timecounter ns
 * value, then store that result into the shhwtstamps structure which
 * is passed up the network stack
 */
476
static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
477
{
478
	struct ixgbe_hw *hw = &adapter->hw;
479 480 481 482 483 484 485 486 487 488 489 490 491
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval = 0, ns;
	unsigned long flags;

	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;

	spin_lock_irqsave(&adapter->tmreg_lock, flags);
	ns = timecounter_cyc2time(&adapter->tc, regval);
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
	shhwtstamps.hwtstamp = ns_to_ktime(ns);
492 493 494 495
	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);

	dev_kfree_skb_any(adapter->ptp_tx_skb);
	adapter->ptp_tx_skb = NULL;
496
	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
}

/**
 * ixgbe_ptp_tx_hwtstamp_work
 * @work: pointer to the work struct
 *
 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
 * timestamp has been taken for the current skb. It is necesary, because the
 * descriptor's "done" bit does not correlate with the timestamp event.
 */
static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
{
	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
						     ptp_tx_work);
	struct ixgbe_hw *hw = &adapter->hw;
	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
					      IXGBE_PTP_TX_TIMEOUT);
	u32 tsynctxctl;

	if (timeout) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
519
		clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
520 521 522 523 524 525 526 527 528 529
		e_warn(drv, "clearing Tx Timestamp hang");
		return;
	}

	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID)
		ixgbe_ptp_tx_hwtstamp(adapter);
	else
		/* reschedule to keep checking if it's not available yet */
		schedule_work(&adapter->ptp_tx_work);
530 531 532
}

/**
533
 * __ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
534 535 536 537 538 539 540
 * @q_vector: structure containing interrupt and ring information
 * @skb: particular skb to send timestamp with
 *
 * if the timestamp is valid, we convert it into the timecounter ns
 * value, then store that result into the shhwtstamps structure which
 * is passed up the network stack
 */
541 542
void __ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
			     struct sk_buff *skb)
543 544 545 546 547 548 549 550 551
{
	struct ixgbe_adapter *adapter;
	struct ixgbe_hw *hw;
	struct skb_shared_hwtstamps *shhwtstamps;
	u64 regval = 0, ns;
	u32 tsyncrxctl;
	unsigned long flags;

	/* we cannot process timestamps on a ring without a q_vector */
552
	if (!q_vector || !q_vector->adapter)
553 554
		return;

555
	adapter = q_vector->adapter;
556 557
	hw = &adapter->hw;

558 559 560 561
	/*
	 * Read the tsyncrxctl register afterwards in order to prevent taking an
	 * I/O hit on every packet.
	 */
562
	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
J
Jiri Benc 已提交
563
	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
564 565
		return;

566 567 568 569 570 571 572 573 574 575 576 577
	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;


	spin_lock_irqsave(&adapter->tmreg_lock, flags);
	ns = timecounter_cyc2time(&adapter->tc, regval);
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

	shhwtstamps = skb_hwtstamps(skb);
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
}

578 579 580 581 582 583 584 585
int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
{
	struct hwtstamp_config *config = &adapter->tstamp_config;

	return copy_to_user(ifr->ifr_data, config,
			    sizeof(*config)) ? -EFAULT : 0;
}

586
/**
587
 * ixgbe_ptp_set_ts_config - control hardware time stamping
588 589 590 591
 * @adapter: pointer to adapter struct
 * @ifreq: ioctl data
 *
 * Outgoing time stamping can be enabled and disabled. Play nice and
592
 * disable it when requested, although it shouldn't cause any overhead
593 594 595 596 597 598 599 600 601
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
602 603 604 605 606
 *
 * Since hardware always timestamps Path delay packets when timestamping V2
 * packets, regardless of the type specified in the register, only use V2
 * Event mode. This more accurately tells the user what the hardware is going
 * to do anyways.
607
 */
608
int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
609 610 611 612 613
{
	struct ixgbe_hw *hw = &adapter->hw;
	struct hwtstamp_config config;
	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
614
	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	bool is_l2 = false;
	u32 regval;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl = 0;
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl = 0;
637
		tsync_rx_mtrl = 0;
638 639 640
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
641
		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
642 643 644
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
645
		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
646
		break;
647 648 649
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
650 651 652 653 654 655 656 657
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
		is_l2 = true;
658
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
659 660 661 662 663
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_ALL:
	default:
		/*
664 665 666 667
		 * register RXMTRL must be set in order to do V1 packets,
		 * therefore it is not possible to time stamp both V1 Sync and
		 * Delay_Req messages and hardware does not support
		 * timestamping all packets => return error
668
		 */
669
		config.rx_filter = HWTSTAMP_FILTER_NONE;
670 671 672 673 674 675 676 677 678
		return -ERANGE;
	}

	if (hw->mac.type == ixgbe_mac_82598EB) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -ERANGE;
		return 0;
	}

679
	/* define ethertype filter for timestamping L2 packets */
680
	if (is_l2)
681
		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
682 683 684 685
				(IXGBE_ETQF_FILTER_EN | /* enable filter */
				 IXGBE_ETQF_1588 | /* enable timestamping */
				 ETH_P_1588));     /* 1588 eth protocol type */
	else
686
		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709


	/* enable/disable TX */
	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);

	/* enable/disable RX */
	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);

	/* define which PTP packets are time stamped */
	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);

	IXGBE_WRITE_FLUSH(hw);

	/* clear TX/RX time stamp registers, just to be sure */
	regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
	regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);

710 711 712 713
	/* save these settings for future reference */
	memcpy(&adapter->tstamp_config, &config,
	       sizeof(adapter->tstamp_config));

714 715 716 717 718 719
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
}

/**
 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
720
 * @adapter: pointer to the adapter structure
721
 *
722 723 724 725 726
 * This function should be called to set the proper values for the TIMINCA
 * register and tell the cyclecounter structure what the tick rate of SYSTIME
 * is. It does not directly modify SYSTIME registers or the timecounter
 * structure. It should be called whenever a new TIMINCA value is necessary,
 * such as during initialization or when the link speed changes.
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
 */
void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
{
	struct ixgbe_hw *hw = &adapter->hw;
	u32 incval = 0;
	u32 shift = 0;
	unsigned long flags;

	/**
	 * Scale the NIC cycle counter by a large factor so that
	 * relatively small corrections to the frequency can be added
	 * or subtracted. The drawbacks of a large factor include
	 * (a) the clock register overflows more quickly, (b) the cycle
	 * counter structure must be able to convert the systime value
	 * to nanoseconds using only a multiplier and a right-shift,
	 * and (c) the value must fit within the timinca register space
	 * => math based on internal DMA clock rate and available bits
744 745 746 747
	 *
	 * Note that when there is no link, internal DMA clock is same as when
	 * link speed is 10Gb. Set the registers correctly even when link is
	 * down to preserve the clock setting
748
	 */
749
	switch (adapter->link_speed) {
750 751 752 753 754 755 756 757 758
	case IXGBE_LINK_SPEED_100_FULL:
		incval = IXGBE_INCVAL_100;
		shift = IXGBE_INCVAL_SHIFT_100;
		break;
	case IXGBE_LINK_SPEED_1GB_FULL:
		incval = IXGBE_INCVAL_1GB;
		shift = IXGBE_INCVAL_SHIFT_1GB;
		break;
	case IXGBE_LINK_SPEED_10GB_FULL:
759
	default:
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
		incval = IXGBE_INCVAL_10GB;
		shift = IXGBE_INCVAL_SHIFT_10GB;
		break;
	}

	/**
	 * Modify the calculated values to fit within the correct
	 * number of bits specified by the hardware. The 82599 doesn't
	 * have the same space as the X540, so bitshift the calculated
	 * values to fit.
	 */
	switch (hw->mac.type) {
	case ixgbe_mac_X540:
		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
		break;
	case ixgbe_mac_82599EB:
		incval >>= IXGBE_INCVAL_SHIFT_82599;
		shift -= IXGBE_INCVAL_SHIFT_82599;
		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
				(1 << IXGBE_INCPER_SHIFT_82599) |
				incval);
		break;
	default:
		/* other devices aren't supported */
		return;
	}

787
	/* update the base incval used to calculate frequency adjustment */
788 789 790
	ACCESS_ONCE(adapter->base_incval) = incval;
	smp_mb();

791
	/* need lock to prevent incorrect read while modifying cyclecounter */
792 793 794 795 796 797 798 799
	spin_lock_irqsave(&adapter->tmreg_lock, flags);

	memset(&adapter->cc, 0, sizeof(adapter->cc));
	adapter->cc.read = ixgbe_ptp_read;
	adapter->cc.mask = CLOCKSOURCE_MASK(64);
	adapter->cc.shift = shift;
	adapter->cc.mult = 1;

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
}

/**
 * ixgbe_ptp_reset
 * @adapter: the ixgbe private board structure
 *
 * When the MAC resets, all timesync features are reset. This function should be
 * called to re-enable the PTP clock structure. It will re-init the timecounter
 * structure based on the kernel time as well as setup the cycle counter data.
 */
void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
{
	struct ixgbe_hw *hw = &adapter->hw;
	unsigned long flags;

	/* set SYSTIME registers to 0 just in case */
	IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
	IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
	IXGBE_WRITE_FLUSH(hw);

821 822 823
	/* Reset the saved tstamp_config */
	memset(&adapter->tstamp_config, 0, sizeof(adapter->tstamp_config));

824 825 826 827
	ixgbe_ptp_start_cyclecounter(adapter);

	spin_lock_irqsave(&adapter->tmreg_lock, flags);

828 829 830 831 832
	/* reset the ns time counter */
	timecounter_init(&adapter->tc, &adapter->cc,
			 ktime_to_ns(ktime_get_real()));

	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
833

J
Jacob Keller 已提交
834 835
	/*
	 * Now that the shift has been calculated and the systime
836 837
	 * registers reset, (re-)enable the Clock out feature
	 */
J
Jacob Keller 已提交
838
	ixgbe_ptp_setup_sdp(adapter);
839 840 841 842
}

/**
 * ixgbe_ptp_init
843
 * @adapter: the ixgbe private adapter structure
844 845 846 847 848 849 850 851 852 853 854
 *
 * This function performs the required steps for enabling ptp
 * support. If ptp support has already been loaded it simply calls the
 * cyclecounter init routine and exits.
 */
void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	switch (adapter->hw.mac.type) {
	case ixgbe_mac_X540:
855 856 857
		snprintf(adapter->ptp_caps.name,
			 sizeof(adapter->ptp_caps.name),
			 "%s", netdev->name);
858 859 860 861 862 863 864 865 866 867 868 869
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 250000000;
		adapter->ptp_caps.n_alarm = 0;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.n_per_out = 0;
		adapter->ptp_caps.pps = 1;
		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
		adapter->ptp_caps.settime = ixgbe_ptp_settime;
		adapter->ptp_caps.enable = ixgbe_ptp_enable;
		break;
870
	case ixgbe_mac_82599EB:
871 872 873
		snprintf(adapter->ptp_caps.name,
			 sizeof(adapter->ptp_caps.name),
			 "%s", netdev->name);
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 250000000;
		adapter->ptp_caps.n_alarm = 0;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.n_per_out = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
		adapter->ptp_caps.settime = ixgbe_ptp_settime;
		adapter->ptp_caps.enable = ixgbe_ptp_enable;
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

	spin_lock_init(&adapter->tmreg_lock);
892
	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
893

894 895
	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
						&adapter->pdev->dev);
896 897 898 899 900 901
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		e_dev_err("ptp_clock_register failed\n");
	} else
		e_dev_info("registered PHC device on %s\n", netdev->name);

902 903
	ixgbe_ptp_reset(adapter);

904 905
	/* enter the IXGBE_PTP_RUNNING state */
	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
906

907 908 909 910 911 912 913 914 915 916 917
	return;
}

/**
 * ixgbe_ptp_stop - disable ptp device and stop the overflow check
 * @adapter: pointer to adapter struct
 *
 * this function stops the ptp support, and cancels the delayed work.
 */
void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
{
918 919 920
	/* Leave the IXGBE_PTP_RUNNING state. */
	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
		return;
J
Jacob Keller 已提交
921

922 923
	/* stop the PPS signal */
	adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
J
Jacob Keller 已提交
924
	ixgbe_ptp_setup_sdp(adapter);
925

926 927 928 929
	cancel_work_sync(&adapter->ptp_tx_work);
	if (adapter->ptp_tx_skb) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
930
		clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
931 932
	}

933 934 935 936 937 938 939
	if (adapter->ptp_clock) {
		ptp_clock_unregister(adapter->ptp_clock);
		adapter->ptp_clock = NULL;
		e_dev_info("removed PHC on %s\n",
			   adapter->netdev->name);
	}
}