core.c 43.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
 *
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22
 */
23

24 25
#include <linux/filter.h>
#include <linux/skbuff.h>
26
#include <linux/vmalloc.h>
27 28
#include <linux/random.h>
#include <linux/moduleloader.h>
29
#include <linux/bpf.h>
30
#include <linux/frame.h>
31 32 33
#include <linux/rbtree_latch.h>
#include <linux/kallsyms.h>
#include <linux/rcupdate.h>
Y
Yonghong Song 已提交
34
#include <linux/perf_event.h>
35

D
Daniel Borkmann 已提交
36 37
#include <asm/unaligned.h>

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/* Registers */
#define BPF_R0	regs[BPF_REG_0]
#define BPF_R1	regs[BPF_REG_1]
#define BPF_R2	regs[BPF_REG_2]
#define BPF_R3	regs[BPF_REG_3]
#define BPF_R4	regs[BPF_REG_4]
#define BPF_R5	regs[BPF_REG_5]
#define BPF_R6	regs[BPF_REG_6]
#define BPF_R7	regs[BPF_REG_7]
#define BPF_R8	regs[BPF_REG_8]
#define BPF_R9	regs[BPF_REG_9]
#define BPF_R10	regs[BPF_REG_10]

/* Named registers */
#define DST	regs[insn->dst_reg]
#define SRC	regs[insn->src_reg]
#define FP	regs[BPF_REG_FP]
#define ARG1	regs[BPF_REG_ARG1]
#define CTX	regs[BPF_REG_CTX]
#define IMM	insn->imm

/* No hurry in this branch
 *
 * Exported for the bpf jit load helper.
 */
void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
{
	u8 *ptr = NULL;

	if (k >= SKF_NET_OFF)
		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
	else if (k >= SKF_LL_OFF)
		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
D
Daniel Borkmann 已提交
71

72 73 74 75 76 77
	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
		return ptr;

	return NULL;
}

78 79
struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
{
80
	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
81
	struct bpf_prog_aux *aux;
82 83 84 85 86 87 88
	struct bpf_prog *fp;

	size = round_up(size, PAGE_SIZE);
	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
	if (fp == NULL)
		return NULL;

89 90
	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
	if (aux == NULL) {
91 92 93 94 95
		vfree(fp);
		return NULL;
	}

	fp->pages = size / PAGE_SIZE;
96
	fp->aux = aux;
97
	fp->aux->prog = fp;
98
	fp->jit_requested = ebpf_jit_enabled();
99

100 101
	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);

102 103 104 105 106 107 108
	return fp;
}
EXPORT_SYMBOL_GPL(bpf_prog_alloc);

struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
				  gfp_t gfp_extra_flags)
{
109
	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
110
	struct bpf_prog *fp;
111 112
	u32 pages, delta;
	int ret;
113 114 115 116

	BUG_ON(fp_old == NULL);

	size = round_up(size, PAGE_SIZE);
117 118
	pages = size / PAGE_SIZE;
	if (pages <= fp_old->pages)
119 120
		return fp_old;

121 122 123 124 125
	delta = pages - fp_old->pages;
	ret = __bpf_prog_charge(fp_old->aux->user, delta);
	if (ret)
		return NULL;

126
	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
127 128 129
	if (fp == NULL) {
		__bpf_prog_uncharge(fp_old->aux->user, delta);
	} else {
130
		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
131
		fp->pages = pages;
132
		fp->aux->prog = fp;
133

134
		/* We keep fp->aux from fp_old around in the new
135 136
		 * reallocated structure.
		 */
137
		fp_old->aux = NULL;
138 139 140 141 142 143 144 145
		__bpf_prog_free(fp_old);
	}

	return fp;
}

void __bpf_prog_free(struct bpf_prog *fp)
{
146
	kfree(fp->aux);
147 148 149
	vfree(fp);
}

150
int bpf_prog_calc_tag(struct bpf_prog *fp)
151 152
{
	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
153 154
	u32 raw_size = bpf_prog_tag_scratch_size(fp);
	u32 digest[SHA_DIGEST_WORDS];
155
	u32 ws[SHA_WORKSPACE_WORDS];
156
	u32 i, bsize, psize, blocks;
157
	struct bpf_insn *dst;
158
	bool was_ld_map;
159
	u8 *raw, *todo;
160 161 162
	__be32 *result;
	__be64 *bits;

163 164 165 166
	raw = vmalloc(raw_size);
	if (!raw)
		return -ENOMEM;

167
	sha_init(digest);
168 169 170 171 172
	memset(ws, 0, sizeof(ws));

	/* We need to take out the map fd for the digest calculation
	 * since they are unstable from user space side.
	 */
173
	dst = (void *)raw;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	for (i = 0, was_ld_map = false; i < fp->len; i++) {
		dst[i] = fp->insnsi[i];
		if (!was_ld_map &&
		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
			was_ld_map = true;
			dst[i].imm = 0;
		} else if (was_ld_map &&
			   dst[i].code == 0 &&
			   dst[i].dst_reg == 0 &&
			   dst[i].src_reg == 0 &&
			   dst[i].off == 0) {
			was_ld_map = false;
			dst[i].imm = 0;
		} else {
			was_ld_map = false;
		}
	}

193 194
	psize = bpf_prog_insn_size(fp);
	memset(&raw[psize], 0, raw_size - psize);
195 196 197 198
	raw[psize++] = 0x80;

	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
	blocks = bsize / SHA_MESSAGE_BYTES;
199
	todo   = raw;
200 201 202 203 204 205 206 207 208
	if (bsize - psize >= sizeof(__be64)) {
		bits = (__be64 *)(todo + bsize - sizeof(__be64));
	} else {
		bits = (__be64 *)(todo + bsize + bits_offset);
		blocks++;
	}
	*bits = cpu_to_be64((psize - 1) << 3);

	while (blocks--) {
209
		sha_transform(digest, todo, ws);
210 211 212
		todo += SHA_MESSAGE_BYTES;
	}

213
	result = (__force __be32 *)digest;
214
	for (i = 0; i < SHA_DIGEST_WORDS; i++)
215 216
		result[i] = cpu_to_be32(digest[i]);
	memcpy(fp->tag, result, sizeof(fp->tag));
217 218 219

	vfree(raw);
	return 0;
220 221
}

222 223 224 225
static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
{
	struct bpf_insn *insn = prog->insnsi;
	u32 i, insn_cnt = prog->len;
226 227 228
	bool pseudo_call;
	u8 code;
	int off;
229 230

	for (i = 0; i < insn_cnt; i++, insn++) {
231 232
		code = insn->code;
		if (BPF_CLASS(code) != BPF_JMP)
233
			continue;
234 235 236 237 238 239 240 241 242 243 244
		if (BPF_OP(code) == BPF_EXIT)
			continue;
		if (BPF_OP(code) == BPF_CALL) {
			if (insn->src_reg == BPF_PSEUDO_CALL)
				pseudo_call = true;
			else
				continue;
		} else {
			pseudo_call = false;
		}
		off = pseudo_call ? insn->imm : insn->off;
245 246

		/* Adjust offset of jmps if we cross boundaries. */
247 248 249 250 251 252 253 254 255
		if (i < pos && i + off + 1 > pos)
			off += delta;
		else if (i > pos + delta && i + off + 1 <= pos + delta)
			off -= delta;

		if (pseudo_call)
			insn->imm = off;
		else
			insn->off = off;
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	}
}

struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
				       const struct bpf_insn *patch, u32 len)
{
	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
	struct bpf_prog *prog_adj;

	/* Since our patchlet doesn't expand the image, we're done. */
	if (insn_delta == 0) {
		memcpy(prog->insnsi + off, patch, sizeof(*patch));
		return prog;
	}

	insn_adj_cnt = prog->len + insn_delta;

	/* Several new instructions need to be inserted. Make room
	 * for them. Likely, there's no need for a new allocation as
	 * last page could have large enough tailroom.
	 */
	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
				    GFP_USER);
	if (!prog_adj)
		return NULL;

	prog_adj->len = insn_adj_cnt;

	/* Patching happens in 3 steps:
	 *
	 * 1) Move over tail of insnsi from next instruction onwards,
	 *    so we can patch the single target insn with one or more
	 *    new ones (patching is always from 1 to n insns, n > 0).
	 * 2) Inject new instructions at the target location.
	 * 3) Adjust branch offsets if necessary.
	 */
	insn_rest = insn_adj_cnt - off - len;

	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
		sizeof(*patch) * insn_rest);
	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);

	bpf_adj_branches(prog_adj, off, insn_delta);

	return prog_adj;
}

303
#ifdef CONFIG_BPF_JIT
304 305 306 307 308
/* All BPF JIT sysctl knobs here. */
int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
int bpf_jit_harden   __read_mostly;
int bpf_jit_kallsyms __read_mostly;

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static __always_inline void
bpf_get_prog_addr_region(const struct bpf_prog *prog,
			 unsigned long *symbol_start,
			 unsigned long *symbol_end)
{
	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
	unsigned long addr = (unsigned long)hdr;

	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));

	*symbol_start = addr;
	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
}

static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
{
325 326
	const char *end = sym + KSYM_NAME_LEN;

327
	BUILD_BUG_ON(sizeof("bpf_prog_") +
328 329 330 331 332 333 334 335 336
		     sizeof(prog->tag) * 2 +
		     /* name has been null terminated.
		      * We should need +1 for the '_' preceding
		      * the name.  However, the null character
		      * is double counted between the name and the
		      * sizeof("bpf_prog_") above, so we omit
		      * the +1 here.
		      */
		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
337 338 339

	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
340 341 342 343
	if (prog->aux->name[0])
		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
	else
		*sym = 0;
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

static __always_inline unsigned long
bpf_get_prog_addr_start(struct latch_tree_node *n)
{
	unsigned long symbol_start, symbol_end;
	const struct bpf_prog_aux *aux;

	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);

	return symbol_start;
}

static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
					  struct latch_tree_node *b)
{
	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
}

static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
{
	unsigned long val = (unsigned long)key;
	unsigned long symbol_start, symbol_end;
	const struct bpf_prog_aux *aux;

	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);

	if (val < symbol_start)
		return -1;
	if (val >= symbol_end)
		return  1;

	return 0;
}

static const struct latch_tree_ops bpf_tree_ops = {
	.less	= bpf_tree_less,
	.comp	= bpf_tree_comp,
};

static DEFINE_SPINLOCK(bpf_lock);
static LIST_HEAD(bpf_kallsyms);
static struct latch_tree_root bpf_tree __cacheline_aligned;

static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
{
	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
}

static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
{
	if (list_empty(&aux->ksym_lnode))
		return;

	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
	list_del_rcu(&aux->ksym_lnode);
}

static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
{
	return fp->jited && !bpf_prog_was_classic(fp);
}

static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
{
	return list_empty(&fp->aux->ksym_lnode) ||
	       fp->aux->ksym_lnode.prev == LIST_POISON2;
}

void bpf_prog_kallsyms_add(struct bpf_prog *fp)
{
	if (!bpf_prog_kallsyms_candidate(fp) ||
	    !capable(CAP_SYS_ADMIN))
		return;

423
	spin_lock_bh(&bpf_lock);
424
	bpf_prog_ksym_node_add(fp->aux);
425
	spin_unlock_bh(&bpf_lock);
426 427 428 429 430 431 432
}

void bpf_prog_kallsyms_del(struct bpf_prog *fp)
{
	if (!bpf_prog_kallsyms_candidate(fp))
		return;

433
	spin_lock_bh(&bpf_lock);
434
	bpf_prog_ksym_node_del(fp->aux);
435
	spin_unlock_bh(&bpf_lock);
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
{
	struct latch_tree_node *n;

	if (!bpf_jit_kallsyms_enabled())
		return NULL;

	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
	return n ?
	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
	       NULL;
}

const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
				 unsigned long *off, char *sym)
{
	unsigned long symbol_start, symbol_end;
	struct bpf_prog *prog;
	char *ret = NULL;

	rcu_read_lock();
	prog = bpf_prog_kallsyms_find(addr);
	if (prog) {
		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
		bpf_get_prog_name(prog, sym);

		ret = sym;
		if (size)
			*size = symbol_end - symbol_start;
		if (off)
			*off  = addr - symbol_start;
	}
	rcu_read_unlock();

	return ret;
}

bool is_bpf_text_address(unsigned long addr)
{
	bool ret;

	rcu_read_lock();
	ret = bpf_prog_kallsyms_find(addr) != NULL;
	rcu_read_unlock();

	return ret;
}

int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
		    char *sym)
{
	unsigned long symbol_start, symbol_end;
	struct bpf_prog_aux *aux;
	unsigned int it = 0;
	int ret = -ERANGE;

	if (!bpf_jit_kallsyms_enabled())
		return ret;

	rcu_read_lock();
	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
		if (it++ != symnum)
			continue;

		bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
		bpf_get_prog_name(aux->prog, sym);

		*value = symbol_start;
		*type  = BPF_SYM_ELF_TYPE;

		ret = 0;
		break;
	}
	rcu_read_unlock();

	return ret;
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
		     unsigned int alignment,
		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
{
	struct bpf_binary_header *hdr;
	unsigned int size, hole, start;

	/* Most of BPF filters are really small, but if some of them
	 * fill a page, allow at least 128 extra bytes to insert a
	 * random section of illegal instructions.
	 */
	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
	hdr = module_alloc(size);
	if (hdr == NULL)
		return NULL;

	/* Fill space with illegal/arch-dep instructions. */
	bpf_fill_ill_insns(hdr, size);

	hdr->pages = size / PAGE_SIZE;
	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
		     PAGE_SIZE - sizeof(*hdr));
539
	start = (get_random_int() % hole) & ~(alignment - 1);
540 541 542 543 544 545 546 547 548

	/* Leave a random number of instructions before BPF code. */
	*image_ptr = &hdr->image[start];

	return hdr;
}

void bpf_jit_binary_free(struct bpf_binary_header *hdr)
{
549
	module_memfree(hdr);
550
}
551

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
/* This symbol is only overridden by archs that have different
 * requirements than the usual eBPF JITs, f.e. when they only
 * implement cBPF JIT, do not set images read-only, etc.
 */
void __weak bpf_jit_free(struct bpf_prog *fp)
{
	if (fp->jited) {
		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);

		bpf_jit_binary_unlock_ro(hdr);
		bpf_jit_binary_free(hdr);

		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
	}

	bpf_prog_unlock_free(fp);
}

570 571 572 573 574
static int bpf_jit_blind_insn(const struct bpf_insn *from,
			      const struct bpf_insn *aux,
			      struct bpf_insn *to_buff)
{
	struct bpf_insn *to = to_buff;
575
	u32 imm_rnd = get_random_int();
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	s16 off;

	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);

	if (from->imm == 0 &&
	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
		goto out;
	}

	switch (from->code) {
	case BPF_ALU | BPF_ADD | BPF_K:
	case BPF_ALU | BPF_SUB | BPF_K:
	case BPF_ALU | BPF_AND | BPF_K:
	case BPF_ALU | BPF_OR  | BPF_K:
	case BPF_ALU | BPF_XOR | BPF_K:
	case BPF_ALU | BPF_MUL | BPF_K:
	case BPF_ALU | BPF_MOV | BPF_K:
	case BPF_ALU | BPF_DIV | BPF_K:
	case BPF_ALU | BPF_MOD | BPF_K:
		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
		break;

	case BPF_ALU64 | BPF_ADD | BPF_K:
	case BPF_ALU64 | BPF_SUB | BPF_K:
	case BPF_ALU64 | BPF_AND | BPF_K:
	case BPF_ALU64 | BPF_OR  | BPF_K:
	case BPF_ALU64 | BPF_XOR | BPF_K:
	case BPF_ALU64 | BPF_MUL | BPF_K:
	case BPF_ALU64 | BPF_MOV | BPF_K:
	case BPF_ALU64 | BPF_DIV | BPF_K:
	case BPF_ALU64 | BPF_MOD | BPF_K:
		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
		break;

	case BPF_JMP | BPF_JEQ  | BPF_K:
	case BPF_JMP | BPF_JNE  | BPF_K:
	case BPF_JMP | BPF_JGT  | BPF_K:
620
	case BPF_JMP | BPF_JLT  | BPF_K:
621
	case BPF_JMP | BPF_JGE  | BPF_K:
622
	case BPF_JMP | BPF_JLE  | BPF_K:
623
	case BPF_JMP | BPF_JSGT | BPF_K:
624
	case BPF_JMP | BPF_JSLT | BPF_K:
625
	case BPF_JMP | BPF_JSGE | BPF_K:
626
	case BPF_JMP | BPF_JSLE | BPF_K:
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	case BPF_JMP | BPF_JSET | BPF_K:
		/* Accommodate for extra offset in case of a backjump. */
		off = from->off;
		if (off < 0)
			off -= 2;
		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
		break;

	case BPF_LD | BPF_IMM | BPF_DW:
		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
		break;
	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
		break;

	case BPF_ST | BPF_MEM | BPF_DW:
	case BPF_ST | BPF_MEM | BPF_W:
	case BPF_ST | BPF_MEM | BPF_H:
	case BPF_ST | BPF_MEM | BPF_B:
		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
		break;
	}
out:
	return to - to_buff;
}

static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
					      gfp_t gfp_extra_flags)
{
665
	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	struct bpf_prog *fp;

	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
	if (fp != NULL) {
		/* aux->prog still points to the fp_other one, so
		 * when promoting the clone to the real program,
		 * this still needs to be adapted.
		 */
		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
	}

	return fp;
}

static void bpf_prog_clone_free(struct bpf_prog *fp)
{
	/* aux was stolen by the other clone, so we cannot free
	 * it from this path! It will be freed eventually by the
	 * other program on release.
	 *
	 * At this point, we don't need a deferred release since
	 * clone is guaranteed to not be locked.
	 */
	fp->aux = NULL;
	__bpf_prog_free(fp);
}

void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
{
	/* We have to repoint aux->prog to self, as we don't
	 * know whether fp here is the clone or the original.
	 */
	fp->aux->prog = fp;
	bpf_prog_clone_free(fp_other);
}

struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
{
	struct bpf_insn insn_buff[16], aux[2];
	struct bpf_prog *clone, *tmp;
	int insn_delta, insn_cnt;
	struct bpf_insn *insn;
	int i, rewritten;

710
	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
		return prog;

	clone = bpf_prog_clone_create(prog, GFP_USER);
	if (!clone)
		return ERR_PTR(-ENOMEM);

	insn_cnt = clone->len;
	insn = clone->insnsi;

	for (i = 0; i < insn_cnt; i++, insn++) {
		/* We temporarily need to hold the original ld64 insn
		 * so that we can still access the first part in the
		 * second blinding run.
		 */
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
		    insn[1].code == 0)
			memcpy(aux, insn, sizeof(aux));

		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
		if (!rewritten)
			continue;

		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
		if (!tmp) {
			/* Patching may have repointed aux->prog during
			 * realloc from the original one, so we need to
			 * fix it up here on error.
			 */
			bpf_jit_prog_release_other(prog, clone);
			return ERR_PTR(-ENOMEM);
		}

		clone = tmp;
		insn_delta = rewritten - 1;

		/* Walk new program and skip insns we just inserted. */
		insn = clone->insnsi + i + insn_delta;
		insn_cnt += insn_delta;
		i        += insn_delta;
	}

752
	clone->blinded = 1;
753 754
	return clone;
}
755
#endif /* CONFIG_BPF_JIT */
756

757 758
/* Base function for offset calculation. Needs to go into .text section,
 * therefore keeping it non-static as well; will also be used by JITs
759 760 761
 * anyway later on, so do not let the compiler omit it. This also needs
 * to go into kallsyms for correlation from e.g. bpftool, so naming
 * must not change.
762 763 764 765 766
 */
noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	return 0;
}
767
EXPORT_SYMBOL_GPL(__bpf_call_base);
768

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
/* All UAPI available opcodes. */
#define BPF_INSN_MAP(INSN_2, INSN_3)		\
	/* 32 bit ALU operations. */		\
	/*   Register based. */			\
	INSN_3(ALU, ADD, X),			\
	INSN_3(ALU, SUB, X),			\
	INSN_3(ALU, AND, X),			\
	INSN_3(ALU, OR,  X),			\
	INSN_3(ALU, LSH, X),			\
	INSN_3(ALU, RSH, X),			\
	INSN_3(ALU, XOR, X),			\
	INSN_3(ALU, MUL, X),			\
	INSN_3(ALU, MOV, X),			\
	INSN_3(ALU, DIV, X),			\
	INSN_3(ALU, MOD, X),			\
	INSN_2(ALU, NEG),			\
	INSN_3(ALU, END, TO_BE),		\
	INSN_3(ALU, END, TO_LE),		\
	/*   Immediate based. */		\
	INSN_3(ALU, ADD, K),			\
	INSN_3(ALU, SUB, K),			\
	INSN_3(ALU, AND, K),			\
	INSN_3(ALU, OR,  K),			\
	INSN_3(ALU, LSH, K),			\
	INSN_3(ALU, RSH, K),			\
	INSN_3(ALU, XOR, K),			\
	INSN_3(ALU, MUL, K),			\
	INSN_3(ALU, MOV, K),			\
	INSN_3(ALU, DIV, K),			\
	INSN_3(ALU, MOD, K),			\
	/* 64 bit ALU operations. */		\
	/*   Register based. */			\
	INSN_3(ALU64, ADD,  X),			\
	INSN_3(ALU64, SUB,  X),			\
	INSN_3(ALU64, AND,  X),			\
	INSN_3(ALU64, OR,   X),			\
	INSN_3(ALU64, LSH,  X),			\
	INSN_3(ALU64, RSH,  X),			\
	INSN_3(ALU64, XOR,  X),			\
	INSN_3(ALU64, MUL,  X),			\
	INSN_3(ALU64, MOV,  X),			\
	INSN_3(ALU64, ARSH, X),			\
	INSN_3(ALU64, DIV,  X),			\
	INSN_3(ALU64, MOD,  X),			\
	INSN_2(ALU64, NEG),			\
	/*   Immediate based. */		\
	INSN_3(ALU64, ADD,  K),			\
	INSN_3(ALU64, SUB,  K),			\
	INSN_3(ALU64, AND,  K),			\
	INSN_3(ALU64, OR,   K),			\
	INSN_3(ALU64, LSH,  K),			\
	INSN_3(ALU64, RSH,  K),			\
	INSN_3(ALU64, XOR,  K),			\
	INSN_3(ALU64, MUL,  K),			\
	INSN_3(ALU64, MOV,  K),			\
	INSN_3(ALU64, ARSH, K),			\
	INSN_3(ALU64, DIV,  K),			\
	INSN_3(ALU64, MOD,  K),			\
	/* Call instruction. */			\
	INSN_2(JMP, CALL),			\
	/* Exit instruction. */			\
	INSN_2(JMP, EXIT),			\
	/* Jump instructions. */		\
	/*   Register based. */			\
	INSN_3(JMP, JEQ,  X),			\
	INSN_3(JMP, JNE,  X),			\
	INSN_3(JMP, JGT,  X),			\
	INSN_3(JMP, JLT,  X),			\
	INSN_3(JMP, JGE,  X),			\
	INSN_3(JMP, JLE,  X),			\
	INSN_3(JMP, JSGT, X),			\
	INSN_3(JMP, JSLT, X),			\
	INSN_3(JMP, JSGE, X),			\
	INSN_3(JMP, JSLE, X),			\
	INSN_3(JMP, JSET, X),			\
	/*   Immediate based. */		\
	INSN_3(JMP, JEQ,  K),			\
	INSN_3(JMP, JNE,  K),			\
	INSN_3(JMP, JGT,  K),			\
	INSN_3(JMP, JLT,  K),			\
	INSN_3(JMP, JGE,  K),			\
	INSN_3(JMP, JLE,  K),			\
	INSN_3(JMP, JSGT, K),			\
	INSN_3(JMP, JSLT, K),			\
	INSN_3(JMP, JSGE, K),			\
	INSN_3(JMP, JSLE, K),			\
	INSN_3(JMP, JSET, K),			\
	INSN_2(JMP, JA),			\
	/* Store instructions. */		\
	/*   Register based. */			\
	INSN_3(STX, MEM,  B),			\
	INSN_3(STX, MEM,  H),			\
	INSN_3(STX, MEM,  W),			\
	INSN_3(STX, MEM,  DW),			\
	INSN_3(STX, XADD, W),			\
	INSN_3(STX, XADD, DW),			\
	/*   Immediate based. */		\
	INSN_3(ST, MEM, B),			\
	INSN_3(ST, MEM, H),			\
	INSN_3(ST, MEM, W),			\
	INSN_3(ST, MEM, DW),			\
	/* Load instructions. */		\
	/*   Register based. */			\
	INSN_3(LDX, MEM, B),			\
	INSN_3(LDX, MEM, H),			\
	INSN_3(LDX, MEM, W),			\
	INSN_3(LDX, MEM, DW),			\
	/*   Immediate based. */		\
877
	INSN_3(LD, IMM, DW)
878 879 880 881 882 883 884 885 886

bool bpf_opcode_in_insntable(u8 code)
{
#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
	static const bool public_insntable[256] = {
		[0 ... 255] = false,
		/* Now overwrite non-defaults ... */
		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
887 888 889 890 891 892 893
		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
		[BPF_LD | BPF_ABS | BPF_B] = true,
		[BPF_LD | BPF_ABS | BPF_H] = true,
		[BPF_LD | BPF_ABS | BPF_W] = true,
		[BPF_LD | BPF_IND | BPF_B] = true,
		[BPF_LD | BPF_IND | BPF_H] = true,
		[BPF_LD | BPF_IND | BPF_W] = true,
894 895 896 897 898 899
	};
#undef BPF_INSN_3_TBL
#undef BPF_INSN_2_TBL
	return public_insntable[code];
}

900
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
901
/**
902 903 904
 *	__bpf_prog_run - run eBPF program on a given context
 *	@ctx: is the data we are operating on
 *	@insn: is the array of eBPF instructions
905
 *
906
 * Decode and execute eBPF instructions.
907
 */
908
static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
909
{
910
	u64 tmp;
911 912
#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
913 914 915
	static const void *jumptable[256] = {
		[0 ... 255] = &&default_label,
		/* Now overwrite non-defaults ... */
916 917
		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
		/* Non-UAPI available opcodes. */
918
		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
919
		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
920
	};
921 922
#undef BPF_INSN_3_LBL
#undef BPF_INSN_2_LBL
923
	u32 tail_call_cnt = 0;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

#define CONT	 ({ insn++; goto select_insn; })
#define CONT_JMP ({ insn++; goto select_insn; })

select_insn:
	goto *jumptable[insn->code];

	/* ALU */
#define ALU(OPCODE, OP)			\
	ALU64_##OPCODE##_X:		\
		DST = DST OP SRC;	\
		CONT;			\
	ALU_##OPCODE##_X:		\
		DST = (u32) DST OP (u32) SRC;	\
		CONT;			\
	ALU64_##OPCODE##_K:		\
		DST = DST OP IMM;		\
		CONT;			\
	ALU_##OPCODE##_K:		\
		DST = (u32) DST OP (u32) IMM;	\
		CONT;

	ALU(ADD,  +)
	ALU(SUB,  -)
	ALU(AND,  &)
	ALU(OR,   |)
	ALU(LSH, <<)
	ALU(RSH, >>)
	ALU(XOR,  ^)
	ALU(MUL,  *)
#undef ALU
	ALU_NEG:
		DST = (u32) -DST;
		CONT;
	ALU64_NEG:
		DST = -DST;
		CONT;
	ALU_MOV_X:
		DST = (u32) SRC;
		CONT;
	ALU_MOV_K:
		DST = (u32) IMM;
		CONT;
	ALU64_MOV_X:
		DST = SRC;
		CONT;
	ALU64_MOV_K:
		DST = IMM;
		CONT;
973 974 975 976
	LD_IMM_DW:
		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
		insn++;
		CONT;
977 978 979 980 981 982 983
	ALU64_ARSH_X:
		(*(s64 *) &DST) >>= SRC;
		CONT;
	ALU64_ARSH_K:
		(*(s64 *) &DST) >>= IMM;
		CONT;
	ALU64_MOD_X:
A
Alexei Starovoitov 已提交
984 985
		div64_u64_rem(DST, SRC, &tmp);
		DST = tmp;
986 987 988 989 990 991
		CONT;
	ALU_MOD_X:
		tmp = (u32) DST;
		DST = do_div(tmp, (u32) SRC);
		CONT;
	ALU64_MOD_K:
A
Alexei Starovoitov 已提交
992 993
		div64_u64_rem(DST, IMM, &tmp);
		DST = tmp;
994 995 996 997 998 999
		CONT;
	ALU_MOD_K:
		tmp = (u32) DST;
		DST = do_div(tmp, (u32) IMM);
		CONT;
	ALU64_DIV_X:
A
Alexei Starovoitov 已提交
1000
		DST = div64_u64(DST, SRC);
1001 1002 1003 1004 1005 1006 1007
		CONT;
	ALU_DIV_X:
		tmp = (u32) DST;
		do_div(tmp, (u32) SRC);
		DST = (u32) tmp;
		CONT;
	ALU64_DIV_K:
A
Alexei Starovoitov 已提交
1008
		DST = div64_u64(DST, IMM);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		CONT;
	ALU_DIV_K:
		tmp = (u32) DST;
		do_div(tmp, (u32) IMM);
		DST = (u32) tmp;
		CONT;
	ALU_END_TO_BE:
		switch (IMM) {
		case 16:
			DST = (__force u16) cpu_to_be16(DST);
			break;
		case 32:
			DST = (__force u32) cpu_to_be32(DST);
			break;
		case 64:
			DST = (__force u64) cpu_to_be64(DST);
			break;
		}
		CONT;
	ALU_END_TO_LE:
		switch (IMM) {
		case 16:
			DST = (__force u16) cpu_to_le16(DST);
			break;
		case 32:
			DST = (__force u32) cpu_to_le32(DST);
			break;
		case 64:
			DST = (__force u64) cpu_to_le64(DST);
			break;
		}
		CONT;

	/* CALL */
	JMP_CALL:
		/* Function call scratches BPF_R1-BPF_R5 registers,
		 * preserves BPF_R6-BPF_R9, and stores return value
		 * into BPF_R0.
		 */
		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
						       BPF_R4, BPF_R5);
		CONT;

1052 1053 1054 1055 1056 1057 1058
	JMP_CALL_ARGS:
		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
							    BPF_R3, BPF_R4,
							    BPF_R5,
							    insn + insn->off + 1);
		CONT;

1059 1060 1061 1062
	JMP_TAIL_CALL: {
		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
		struct bpf_array *array = container_of(map, struct bpf_array, map);
		struct bpf_prog *prog;
1063
		u32 index = BPF_R3;
1064 1065 1066 1067 1068 1069 1070 1071

		if (unlikely(index >= array->map.max_entries))
			goto out;
		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
			goto out;

		tail_call_cnt++;

1072
		prog = READ_ONCE(array->ptrs[index]);
1073
		if (!prog)
1074 1075
			goto out;

1076 1077 1078 1079 1080
		/* ARG1 at this point is guaranteed to point to CTX from
		 * the verifier side due to the fact that the tail call is
		 * handeled like a helper, that is, bpf_tail_call_proto,
		 * where arg1_type is ARG_PTR_TO_CTX.
		 */
1081 1082 1083 1084 1085
		insn = prog->insnsi;
		goto select_insn;
out:
		CONT;
	}
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	/* JMP */
	JMP_JA:
		insn += insn->off;
		CONT;
	JMP_JEQ_X:
		if (DST == SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JEQ_K:
		if (DST == IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JNE_X:
		if (DST != SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JNE_K:
		if (DST != IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JGT_X:
		if (DST > SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JGT_K:
		if (DST > IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	JMP_JLT_X:
		if (DST < SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JLT_K:
		if (DST < IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	JMP_JGE_X:
		if (DST >= SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JGE_K:
		if (DST >= IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	JMP_JLE_X:
		if (DST <= SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JLE_K:
		if (DST <= IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	JMP_JSGT_X:
		if (((s64) DST) > ((s64) SRC)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSGT_K:
		if (((s64) DST) > ((s64) IMM)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	JMP_JSLT_X:
		if (((s64) DST) < ((s64) SRC)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSLT_K:
		if (((s64) DST) < ((s64) IMM)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	JMP_JSGE_X:
		if (((s64) DST) >= ((s64) SRC)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSGE_K:
		if (((s64) DST) >= ((s64) IMM)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	JMP_JSLE_X:
		if (((s64) DST) <= ((s64) SRC)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSLE_K:
		if (((s64) DST) <= ((s64) IMM)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	JMP_JSET_X:
		if (DST & SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSET_K:
		if (DST & IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_EXIT:
		return BPF_R0;

	/* STX and ST and LDX*/
#define LDST(SIZEOP, SIZE)						\
	STX_MEM_##SIZEOP:						\
		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
		CONT;							\
	ST_MEM_##SIZEOP:						\
		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
		CONT;							\
	LDX_MEM_##SIZEOP:						\
		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
		CONT;

	LDST(B,   u8)
	LDST(H,  u16)
	LDST(W,  u32)
	LDST(DW, u64)
#undef LDST
	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
			   (DST + insn->off));
		CONT;
	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
			     (DST + insn->off));
		CONT;

	default_label:
1252 1253 1254 1255 1256 1257 1258 1259
		/* If we ever reach this, we have a bug somewhere. Die hard here
		 * instead of just returning 0; we could be somewhere in a subprog,
		 * so execution could continue otherwise which we do /not/ want.
		 *
		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
		 */
		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
		BUG_ON(1);
1260 1261
		return 0;
}
1262 1263
STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
#define DEFINE_BPF_PROG_RUN(stack_size) \
static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
{ \
	u64 stack[stack_size / sizeof(u64)]; \
	u64 regs[MAX_BPF_REG]; \
\
	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
	ARG1 = (u64) (unsigned long) ctx; \
	return ___bpf_prog_run(regs, insn, stack); \
1274
}
1275

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
				      const struct bpf_insn *insn) \
{ \
	u64 stack[stack_size / sizeof(u64)]; \
	u64 regs[MAX_BPF_REG]; \
\
	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
	BPF_R1 = r1; \
	BPF_R2 = r2; \
	BPF_R3 = r3; \
	BPF_R4 = r4; \
	BPF_R5 = r5; \
	return ___bpf_prog_run(regs, insn, stack); \
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
#define EVAL1(FN, X) FN(X)
#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)

EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);

1304 1305 1306 1307
EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);

1308 1309 1310 1311 1312 1313 1314 1315
#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),

static unsigned int (*interpreters[])(const void *ctx,
				      const struct bpf_insn *insn) = {
EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
};
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
#undef PROG_NAME_LIST
#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
				  const struct bpf_insn *insn) = {
EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
};
#undef PROG_NAME_LIST

void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
{
	stack_depth = max_t(u32, stack_depth, 1);
	insn->off = (s16) insn->imm;
	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
		__bpf_call_base_args;
	insn->code = BPF_JMP | BPF_CALL_ARGS;
}
1334

1335
#else
1336 1337
static unsigned int __bpf_prog_ret0_warn(const void *ctx,
					 const struct bpf_insn *insn)
1338
{
1339 1340 1341 1342
	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
	 * is not working properly, so warn about it!
	 */
	WARN_ON_ONCE(1);
1343 1344 1345 1346
	return 0;
}
#endif

D
Daniel Borkmann 已提交
1347 1348
bool bpf_prog_array_compatible(struct bpf_array *array,
			       const struct bpf_prog *fp)
1349
{
1350 1351 1352
	if (fp->kprobe_override)
		return false;

D
Daniel Borkmann 已提交
1353 1354 1355 1356
	if (!array->owner_prog_type) {
		/* There's no owner yet where we could check for
		 * compatibility.
		 */
1357 1358
		array->owner_prog_type = fp->type;
		array->owner_jited = fp->jited;
D
Daniel Borkmann 已提交
1359 1360

		return true;
1361
	}
D
Daniel Borkmann 已提交
1362 1363 1364

	return array->owner_prog_type == fp->type &&
	       array->owner_jited == fp->jited;
1365 1366
}

D
Daniel Borkmann 已提交
1367
static int bpf_check_tail_call(const struct bpf_prog *fp)
1368 1369 1370 1371 1372
{
	struct bpf_prog_aux *aux = fp->aux;
	int i;

	for (i = 0; i < aux->used_map_cnt; i++) {
D
Daniel Borkmann 已提交
1373
		struct bpf_map *map = aux->used_maps[i];
1374 1375 1376 1377
		struct bpf_array *array;

		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			continue;
D
Daniel Borkmann 已提交
1378

1379 1380 1381 1382 1383 1384 1385 1386
		array = container_of(map, struct bpf_array, map);
		if (!bpf_prog_array_compatible(array, fp))
			return -EINVAL;
	}

	return 0;
}

1387
/**
D
Daniel Borkmann 已提交
1388
 *	bpf_prog_select_runtime - select exec runtime for BPF program
1389
 *	@fp: bpf_prog populated with internal BPF program
1390
 *	@err: pointer to error variable
1391
 *
D
Daniel Borkmann 已提交
1392 1393
 * Try to JIT eBPF program, if JIT is not available, use interpreter.
 * The BPF program will be executed via BPF_PROG_RUN() macro.
1394
 */
1395
struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1396
{
1397
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1398 1399 1400
	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);

	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1401
#else
1402
	fp->bpf_func = __bpf_prog_ret0_warn;
1403
#endif
1404

1405 1406 1407 1408 1409 1410
	/* eBPF JITs can rewrite the program in case constant
	 * blinding is active. However, in case of error during
	 * blinding, bpf_int_jit_compile() must always return a
	 * valid program, which in this case would simply not
	 * be JITed, but falls back to the interpreter.
	 */
1411 1412
	if (!bpf_prog_is_dev_bound(fp->aux)) {
		fp = bpf_int_jit_compile(fp);
1413 1414 1415 1416 1417 1418
#ifdef CONFIG_BPF_JIT_ALWAYS_ON
		if (!fp->jited) {
			*err = -ENOTSUPP;
			return fp;
		}
#endif
1419 1420 1421 1422 1423
	} else {
		*err = bpf_prog_offload_compile(fp);
		if (*err)
			return fp;
	}
1424
	bpf_prog_lock_ro(fp);
1425

D
Daniel Borkmann 已提交
1426 1427 1428 1429 1430
	/* The tail call compatibility check can only be done at
	 * this late stage as we need to determine, if we deal
	 * with JITed or non JITed program concatenations and not
	 * all eBPF JITs might immediately support all features.
	 */
1431 1432 1433
	*err = bpf_check_tail_call(fp);

	return fp;
1434
}
1435
EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1436

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
static unsigned int __bpf_prog_ret1(const void *ctx,
				    const struct bpf_insn *insn)
{
	return 1;
}

static struct bpf_prog_dummy {
	struct bpf_prog prog;
} dummy_bpf_prog = {
	.prog = {
		.bpf_func = __bpf_prog_ret1,
	},
};

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
/* to avoid allocating empty bpf_prog_array for cgroups that
 * don't have bpf program attached use one global 'empty_prog_array'
 * It will not be modified the caller of bpf_prog_array_alloc()
 * (since caller requested prog_cnt == 0)
 * that pointer should be 'freed' by bpf_prog_array_free()
 */
static struct {
	struct bpf_prog_array hdr;
	struct bpf_prog *null_prog;
} empty_prog_array = {
	.null_prog = NULL,
};

struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
{
	if (prog_cnt)
		return kzalloc(sizeof(struct bpf_prog_array) +
			       sizeof(struct bpf_prog *) * (prog_cnt + 1),
			       flags);

	return &empty_prog_array.hdr;
}

void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
{
	if (!progs ||
	    progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
		return;
	kfree_rcu(progs, rcu);
}

1482 1483 1484 1485 1486 1487 1488 1489
int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
{
	struct bpf_prog **prog;
	u32 cnt = 0;

	rcu_read_lock();
	prog = rcu_dereference(progs)->progs;
	for (; *prog; prog++)
1490 1491
		if (*prog != &dummy_bpf_prog.prog)
			cnt++;
1492 1493 1494 1495
	rcu_read_unlock();
	return cnt;
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static bool bpf_prog_array_copy_core(struct bpf_prog **prog,
				     u32 *prog_ids,
				     u32 request_cnt)
{
	int i = 0;

	for (; *prog; prog++) {
		if (*prog == &dummy_bpf_prog.prog)
			continue;
		prog_ids[i] = (*prog)->aux->id;
		if (++i == request_cnt) {
			prog++;
			break;
		}
	}

	return !!(*prog);
}

1515 1516 1517 1518
int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
				__u32 __user *prog_ids, u32 cnt)
{
	struct bpf_prog **prog;
1519 1520
	unsigned long err = 0;
	bool nospc;
1521
	u32 *ids;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

	/* users of this function are doing:
	 * cnt = bpf_prog_array_length();
	 * if (cnt > 0)
	 *     bpf_prog_array_copy_to_user(..., cnt);
	 * so below kcalloc doesn't need extra cnt > 0 check, but
	 * bpf_prog_array_length() releases rcu lock and
	 * prog array could have been swapped with empty or larger array,
	 * so always copy 'cnt' prog_ids to the user.
	 * In a rare race the user will see zero prog_ids
	 */
1533
	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1534 1535
	if (!ids)
		return -ENOMEM;
1536 1537
	rcu_read_lock();
	prog = rcu_dereference(progs)->progs;
1538
	nospc = bpf_prog_array_copy_core(prog, ids, cnt);
1539
	rcu_read_unlock();
1540 1541 1542 1543 1544
	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
	kfree(ids);
	if (err)
		return -EFAULT;
	if (nospc)
1545 1546 1547 1548
		return -ENOSPC;
	return 0;
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
				struct bpf_prog *old_prog)
{
	struct bpf_prog **prog = progs->progs;

	for (; *prog; prog++)
		if (*prog == old_prog) {
			WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
			break;
		}
}

int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
			struct bpf_prog *exclude_prog,
			struct bpf_prog *include_prog,
			struct bpf_prog_array **new_array)
{
	int new_prog_cnt, carry_prog_cnt = 0;
	struct bpf_prog **existing_prog;
	struct bpf_prog_array *array;
	int new_prog_idx = 0;

	/* Figure out how many existing progs we need to carry over to
	 * the new array.
	 */
	if (old_array) {
		existing_prog = old_array->progs;
		for (; *existing_prog; existing_prog++) {
			if (*existing_prog != exclude_prog &&
			    *existing_prog != &dummy_bpf_prog.prog)
				carry_prog_cnt++;
			if (*existing_prog == include_prog)
				return -EEXIST;
		}
	}

	/* How many progs (not NULL) will be in the new array? */
	new_prog_cnt = carry_prog_cnt;
	if (include_prog)
		new_prog_cnt += 1;

	/* Do we have any prog (not NULL) in the new array? */
	if (!new_prog_cnt) {
		*new_array = NULL;
		return 0;
	}

	/* +1 as the end of prog_array is marked with NULL */
	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
	if (!array)
		return -ENOMEM;

	/* Fill in the new prog array */
	if (carry_prog_cnt) {
		existing_prog = old_array->progs;
		for (; *existing_prog; existing_prog++)
			if (*existing_prog != exclude_prog &&
			    *existing_prog != &dummy_bpf_prog.prog)
				array->progs[new_prog_idx++] = *existing_prog;
	}
	if (include_prog)
		array->progs[new_prog_idx++] = include_prog;
	array->progs[new_prog_idx] = NULL;
	*new_array = array;
	return 0;
}

1616
int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1617 1618
			     u32 *prog_ids, u32 request_cnt,
			     u32 *prog_cnt)
1619
{
1620
	struct bpf_prog **prog;
1621 1622 1623 1624 1625
	u32 cnt = 0;

	if (array)
		cnt = bpf_prog_array_length(array);

1626
	*prog_cnt = cnt;
1627 1628 1629 1630 1631

	/* return early if user requested only program count or nothing to copy */
	if (!request_cnt || !cnt)
		return 0;

1632 1633 1634 1635
	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
	prog = rcu_dereference_check(array, 1)->progs;
	return bpf_prog_array_copy_core(prog, prog_ids, request_cnt) ? -ENOSPC
								     : 0;
1636 1637
}

1638 1639
static void bpf_prog_free_deferred(struct work_struct *work)
{
1640
	struct bpf_prog_aux *aux;
1641
	int i;
1642

1643
	aux = container_of(work, struct bpf_prog_aux, work);
1644 1645
	if (bpf_prog_is_dev_bound(aux))
		bpf_prog_offload_destroy(aux->prog);
Y
Yonghong Song 已提交
1646 1647 1648 1649
#ifdef CONFIG_PERF_EVENTS
	if (aux->prog->has_callchain_buf)
		put_callchain_buffers();
#endif
1650 1651 1652 1653 1654 1655 1656 1657
	for (i = 0; i < aux->func_cnt; i++)
		bpf_jit_free(aux->func[i]);
	if (aux->func_cnt) {
		kfree(aux->func);
		bpf_prog_unlock_free(aux->prog);
	} else {
		bpf_jit_free(aux->prog);
	}
1658 1659 1660
}

/* Free internal BPF program */
1661
void bpf_prog_free(struct bpf_prog *fp)
1662
{
1663
	struct bpf_prog_aux *aux = fp->aux;
1664

1665 1666
	INIT_WORK(&aux->work, bpf_prog_free_deferred);
	schedule_work(&aux->work);
1667
}
1668
EXPORT_SYMBOL_GPL(bpf_prog_free);
A
Alexei Starovoitov 已提交
1669

1670 1671 1672 1673 1674 1675 1676 1677
/* RNG for unpriviledged user space with separated state from prandom_u32(). */
static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);

void bpf_user_rnd_init_once(void)
{
	prandom_init_once(&bpf_user_rnd_state);
}

1678
BPF_CALL_0(bpf_user_rnd_u32)
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
{
	/* Should someone ever have the rather unwise idea to use some
	 * of the registers passed into this function, then note that
	 * this function is called from native eBPF and classic-to-eBPF
	 * transformations. Register assignments from both sides are
	 * different, f.e. classic always sets fn(ctx, A, X) here.
	 */
	struct rnd_state *state;
	u32 res;

	state = &get_cpu_var(bpf_user_rnd_state);
	res = prandom_u32_state(state);
S
Shaohua Li 已提交
1691
	put_cpu_var(bpf_user_rnd_state);
1692 1693 1694 1695

	return res;
}

1696 1697 1698 1699 1700
/* Weak definitions of helper functions in case we don't have bpf syscall. */
const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
const struct bpf_func_proto bpf_map_update_elem_proto __weak;
const struct bpf_func_proto bpf_map_delete_elem_proto __weak;

1701
const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1702
const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1703
const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1704
const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1705

1706 1707 1708
const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1709
const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1710

1711 1712 1713 1714
const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
{
	return NULL;
}
1715

1716 1717 1718
u64 __weak
bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1719
{
1720
	return -ENOTSUPP;
1721
}
J
Jakub Kicinski 已提交
1722
EXPORT_SYMBOL_GPL(bpf_event_output);
1723

D
Daniel Borkmann 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
/* Always built-in helper functions. */
const struct bpf_func_proto bpf_tail_call_proto = {
	.func		= NULL,
	.gpl_only	= false,
	.ret_type	= RET_VOID,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};

1734 1735 1736 1737
/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
 * It is encouraged to implement bpf_int_jit_compile() instead, so that
 * eBPF and implicitly also cBPF can get JITed!
 */
1738
struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
D
Daniel Borkmann 已提交
1739
{
1740
	return prog;
D
Daniel Borkmann 已提交
1741 1742
}

1743 1744 1745 1746 1747 1748 1749
/* Stub for JITs that support eBPF. All cBPF code gets transformed into
 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
 */
void __weak bpf_jit_compile(struct bpf_prog *prog)
{
}

1750
bool __weak bpf_helper_changes_pkt_data(void *func)
A
Alexei Starovoitov 已提交
1751 1752 1753 1754
{
	return false;
}

A
Alexei Starovoitov 已提交
1755 1756 1757 1758 1759 1760 1761 1762
/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
 */
int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
			 int len)
{
	return -EFAULT;
}
1763 1764 1765 1766 1767 1768

/* All definitions of tracepoints related to BPF. */
#define CREATE_TRACE_POINTS
#include <linux/bpf_trace.h>

EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);