writing-an-alsa-driver.tmpl 199.6 KB
Newer Older
T
Takashi Iwai 已提交
1 2 3
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
L
Linus Torvalds 已提交
4 5 6 7

<!-- ****************************************************** -->
<!-- Header  -->
<!-- ****************************************************** -->
T
Takashi Iwai 已提交
8
<book id="Writing-an-ALSA-Driver">
L
Linus Torvalds 已提交
9 10 11 12 13 14 15 16 17 18 19 20
  <bookinfo>
    <title>Writing an ALSA Driver</title>
    <author>
      <firstname>Takashi</firstname>
      <surname>Iwai</surname>
      <affiliation>
        <address>
          <email>tiwai@suse.de</email>
        </address>
      </affiliation>
     </author>

21
     <date>Oct 15, 2007</date>
C
Clemens Ladisch 已提交
22
     <edition>0.3.7</edition>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32

    <abstract>
      <para>
        This document describes how to write an ALSA (Advanced Linux
        Sound Architecture) driver.
      </para>
    </abstract>

    <legalnotice>
    <para>
33
    Copyright (c) 2002-2005  Takashi Iwai <email>tiwai@suse.de</email>
L
Linus Torvalds 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    </para>

    <para>
    This document is free; you can redistribute it and/or modify it
    under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version. 
    </para>

    <para>
    This document is distributed in the hope that it will be useful,
    but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
    implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
    PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
    for more details.
    </para>

    <para>
    You should have received a copy of the GNU General Public
    License along with this program; if not, write to the Free
    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
    MA 02111-1307 USA
    </para>
    </legalnotice>

  </bookinfo>

<!-- ****************************************************** -->
<!-- Preface  -->
<!-- ****************************************************** -->
  <preface id="preface">
    <title>Preface</title>
    <para>
      This document describes how to write an
      <ulink url="http://www.alsa-project.org/"><citetitle>
      ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
70
      driver. The document focuses mainly on PCI soundcards.
L
Linus Torvalds 已提交
71 72 73 74 75 76 77
      In the case of other device types, the API might
      be different, too. However, at least the ALSA kernel API is
      consistent, and therefore it would be still a bit help for
      writing them.
    </para>

    <para>
78 79 80 81 82
    This document targets people who already have enough
    C language skills and have basic linux kernel programming
    knowledge.  This document doesn't explain the general
    topic of linux kernel coding and doesn't cover low-level
    driver implementation details. It only describes
L
Linus Torvalds 已提交
83 84 85 86
    the standard way to write a PCI sound driver on ALSA.
    </para>

    <para>
87 88 89
      If you are already familiar with the older ALSA ver.0.5.x API, you
    can check the drivers such as <filename>sound/pci/es1938.c</filename> or
    <filename>sound/pci/maestro3.c</filename> which have also almost the same
L
Linus Torvalds 已提交
90 91 92 93
    code-base in the ALSA 0.5.x tree, so you can compare the differences.
    </para>

    <para>
94
      This document is still a draft version. Any feedback and
L
Linus Torvalds 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108
    corrections, please!!
    </para>
  </preface>


<!-- ****************************************************** -->
<!-- File Tree Structure  -->
<!-- ****************************************************** -->
  <chapter id="file-tree">
    <title>File Tree Structure</title>

    <section id="file-tree-general">
      <title>General</title>
      <para>
109
        The ALSA drivers are provided in two ways.
L
Linus Torvalds 已提交
110 111 112 113 114 115 116
      </para>

      <para>
        One is the trees provided as a tarball or via cvs from the
      ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
      tree. To synchronize both, the ALSA driver tree is split into
      two different trees: alsa-kernel and alsa-driver. The former
117
      contains purely the source code for the Linux 2.6 (or later)
L
Linus Torvalds 已提交
118 119
      tree. This tree is designed only for compilation on 2.6 or
      later environment. The latter, alsa-driver, contains many subtle
120 121
      files for compiling ALSA drivers outside of the Linux kernel tree,
      wrapper functions for older 2.2 and 2.4 kernels, to adapt the latest kernel API,
L
Linus Torvalds 已提交
122 123
      and additional drivers which are still in development or in
      tests.  The drivers in alsa-driver tree will be moved to
124
      alsa-kernel (and eventually to the 2.6 kernel tree) when they are
L
Linus Torvalds 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
      finished and confirmed to work fine.
      </para>

      <para>
        The file tree structure of ALSA driver is depicted below. Both
        alsa-kernel and alsa-driver have almost the same file
        structure, except for <quote>core</quote> directory. It's
        named as <quote>acore</quote> in alsa-driver tree. 

        <example>
          <title>ALSA File Tree Structure</title>
          <literallayout>
        sound
                /core
                        /oss
                        /seq
                                /oss
                                /instr
                /ioctl32
                /include
                /drivers
                        /mpu401
                        /opl3
                /i2c
                        /l3
                /synth
                        /emux
                /pci
                        /(cards)
                /isa
                        /(cards)
                /arm
                /ppc
                /sparc
                /usb
                /pcmcia /(cards)
                /oss
          </literallayout>
        </example>
      </para>
    </section>

    <section id="file-tree-core-directory">
      <title>core directory</title>
      <para>
170
        This directory contains the middle layer which is the heart
L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180 181 182
      of ALSA drivers. In this directory, the native ALSA modules are
      stored. The sub-directories contain different modules and are
      dependent upon the kernel config. 
      </para>

      <section id="file-tree-core-directory-oss">
        <title>core/oss</title>

        <para>
          The codes for PCM and mixer OSS emulation modules are stored
        in this directory. The rawmidi OSS emulation is included in
        the ALSA rawmidi code since it's quite small. The sequencer
183
        code is stored in <filename>core/seq/oss</filename> directory (see
L
Linus Torvalds 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        <link linkend="file-tree-core-directory-seq-oss"><citetitle>
        below</citetitle></link>).
        </para>
      </section>

      <section id="file-tree-core-directory-ioctl32">
        <title>core/ioctl32</title>

        <para>
          This directory contains the 32bit-ioctl wrappers for 64bit
        architectures such like x86-64, ppc64 and sparc64. For 32bit
        and alpha architectures, these are not compiled. 
        </para>
      </section>

      <section id="file-tree-core-directory-seq">
        <title>core/seq</title>
        <para>
202
          This directory and its sub-directories are for the ALSA
L
Linus Torvalds 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        sequencer. This directory contains the sequencer core and
        primary sequencer modules such like snd-seq-midi,
        snd-seq-virmidi, etc. They are compiled only when
        <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
        config. 
        </para>
      </section>

      <section id="file-tree-core-directory-seq-oss">
        <title>core/seq/oss</title>
        <para>
          This contains the OSS sequencer emulation codes.
        </para>
      </section>

      <section id="file-tree-core-directory-deq-instr">
        <title>core/seq/instr</title>
        <para>
          This directory contains the modules for the sequencer
        instrument layer. 
        </para>
      </section>
    </section>

    <section id="file-tree-include-directory">
      <title>include directory</title>
      <para>
        This is the place for the public header files of ALSA drivers,
231
      which are to be exported to user-space, or included by
L
Linus Torvalds 已提交
232 233
      several files at different directories. Basically, the private
      header files should not be placed in this directory, but you may
234
      still find files there, due to historical reasons :) 
L
Linus Torvalds 已提交
235 236 237 238 239 240
      </para>
    </section>

    <section id="file-tree-drivers-directory">
      <title>drivers directory</title>
      <para>
241 242
        This directory contains code shared among different drivers
      on different architectures.  They are hence supposed not to be
L
Linus Torvalds 已提交
243 244 245
      architecture-specific.
      For example, the dummy pcm driver and the serial MIDI
      driver are found in this directory. In the sub-directories,
246
      there is code for components which are independent from
L
Linus Torvalds 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
      bus and cpu architectures. 
      </para>

      <section id="file-tree-drivers-directory-mpu401">
        <title>drivers/mpu401</title>
        <para>
          The MPU401 and MPU401-UART modules are stored here.
        </para>
      </section>

      <section id="file-tree-drivers-directory-opl3">
        <title>drivers/opl3 and opl4</title>
        <para>
          The OPL3 and OPL4 FM-synth stuff is found here.
        </para>
      </section>
    </section>

    <section id="file-tree-i2c-directory">
      <title>i2c directory</title>
      <para>
        This contains the ALSA i2c components.
      </para>

      <para>
        Although there is a standard i2c layer on Linux, ALSA has its
273
      own i2c code for some cards, because the soundcard needs only a
L
Linus Torvalds 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
      simple operation and the standard i2c API is too complicated for
      such a purpose. 
      </para>

      <section id="file-tree-i2c-directory-l3">
        <title>i2c/l3</title>
        <para>
          This is a sub-directory for ARM L3 i2c.
        </para>
      </section>
    </section>

    <section id="file-tree-synth-directory">
        <title>synth directory</title>
        <para>
          This contains the synth middle-level modules.
        </para>

        <para>
          So far, there is only Emu8000/Emu10k1 synth driver under
294
        the <filename>synth/emux</filename> sub-directory. 
L
Linus Torvalds 已提交
295 296 297 298 299 300
        </para>
    </section>

    <section id="file-tree-pci-directory">
      <title>pci directory</title>
      <para>
301 302
        This directory and its sub-directories hold the top-level card modules
      for PCI soundcards and the code specific to the PCI BUS.
L
Linus Torvalds 已提交
303 304 305
      </para>

      <para>
306 307 308
        The drivers compiled from a single file are stored directly
      in the pci directory, while the drivers with several source files are
      stored on their own sub-directory (e.g. emu10k1, ice1712). 
L
Linus Torvalds 已提交
309 310 311 312 313 314
      </para>
    </section>

    <section id="file-tree-isa-directory">
      <title>isa directory</title>
      <para>
315
        This directory and its sub-directories hold the top-level card modules
L
Linus Torvalds 已提交
316 317 318 319 320 321 322
      for ISA soundcards. 
      </para>
    </section>

    <section id="file-tree-arm-ppc-sparc-directories">
      <title>arm, ppc, and sparc directories</title>
      <para>
323 324
        They are used for top-level card modules which are
      specific to one of these architectures. 
L
Linus Torvalds 已提交
325 326 327 328 329 330
      </para>
    </section>

    <section id="file-tree-usb-directory">
      <title>usb directory</title>
      <para>
331 332
        This directory contains the USB-audio driver. In the latest version, the
      USB MIDI driver is integrated in the usb-audio driver. 
L
Linus Torvalds 已提交
333 334 335 336 337 338 339
      </para>
    </section>

    <section id="file-tree-pcmcia-directory">
      <title>pcmcia directory</title>
      <para>
        The PCMCIA, especially PCCard drivers will go here. CardBus
340 341
      drivers will be in the pci directory, because their API is identical
      to that of standard PCI cards. 
L
Linus Torvalds 已提交
342 343 344 345 346 347
      </para>
    </section>

    <section id="file-tree-oss-directory">
      <title>oss directory</title>
      <para>
348 349 350
        The OSS/Lite source files are stored here in Linux 2.6 (or
      later) tree. In the ALSA driver tarball, this directory is empty,
      of course :) 
L
Linus Torvalds 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364
      </para>
    </section>
  </chapter>


<!-- ****************************************************** -->
<!-- Basic Flow for PCI Drivers  -->
<!-- ****************************************************** -->
  <chapter id="basic-flow">
    <title>Basic Flow for PCI Drivers</title>

    <section id="basic-flow-outline">
      <title>Outline</title>
      <para>
365
        The minimum flow for PCI soundcards is as follows:
L
Linus Torvalds 已提交
366 367 368 369 370 371 372

        <itemizedlist>
          <listitem><para>define the PCI ID table (see the section
          <link linkend="pci-resource-entries"><citetitle>PCI Entries
          </citetitle></link>).</para></listitem> 
          <listitem><para>create <function>probe()</function> callback.</para></listitem>
          <listitem><para>create <function>remove()</function> callback.</para></listitem>
373 374 375 376 377 378 379
          <listitem><para>create a <structname>pci_driver</structname> structure
	  containing the three pointers above.</para></listitem>
          <listitem><para>create an <function>init()</function> function just calling
	  the <function>pci_register_driver()</function> to register the pci_driver table
	  defined above.</para></listitem>
          <listitem><para>create an <function>exit()</function> function to call
	  the <function>pci_unregister_driver()</function> function.</para></listitem>
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387 388
        </itemizedlist>
      </para>
    </section>

    <section id="basic-flow-example">
      <title>Full Code Example</title>
      <para>
        The code example is shown below. Some parts are kept
      unimplemented at this moment but will be filled in the
389 390 391
      next sections. The numbers in the comment lines of the
      <function>snd_mychip_probe()</function> function
      refer to details explained in the following section. 
L
Linus Torvalds 已提交
392 393

        <example>
394
          <title>Basic Flow for PCI Drivers - Example</title>
L
Linus Torvalds 已提交
395 396 397 398 399 400 401 402 403
          <programlisting>
<![CDATA[
  #include <linux/init.h>
  #include <linux/pci.h>
  #include <linux/slab.h>
  #include <sound/core.h>
  #include <sound/initval.h>

  /* module parameters (see "Module Parameters") */
404
  /* SNDRV_CARDS: maximum number of cards supported by this module */
L
Linus Torvalds 已提交
405 406
  static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
  static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
407
  static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
L
Linus Torvalds 已提交
408 409

  /* definition of the chip-specific record */
410 411
  struct mychip {
          struct snd_card *card;
412 413
          /* the rest of the implementation will be in section
           * "PCI Resource Management"
414
           */
L
Linus Torvalds 已提交
415 416 417
  };

  /* chip-specific destructor
418
   * (see "PCI Resource Management")
L
Linus Torvalds 已提交
419
   */
420
  static int snd_mychip_free(struct mychip *chip)
L
Linus Torvalds 已提交
421
  {
422
          .... /* will be implemented later... */
L
Linus Torvalds 已提交
423 424 425 426 427
  }

  /* component-destructor
   * (see "Management of Cards and Components")
   */
428
  static int snd_mychip_dev_free(struct snd_device *device)
L
Linus Torvalds 已提交
429
  {
430
          return snd_mychip_free(device->device_data);
L
Linus Torvalds 已提交
431 432 433 434 435
  }

  /* chip-specific constructor
   * (see "Management of Cards and Components")
   */
436 437 438
  static int snd_mychip_create(struct snd_card *card,
                               struct pci_dev *pci,
                               struct mychip **rchip)
L
Linus Torvalds 已提交
439
  {
440
          struct mychip *chip;
L
Linus Torvalds 已提交
441
          int err;
442
          static struct snd_device_ops ops = {
L
Linus Torvalds 已提交
443 444 445 446 447
                 .dev_free = snd_mychip_dev_free,
          };

          *rchip = NULL;

448
          /* check PCI availability here
449
           * (see "PCI Resource Management")
450
           */
L
Linus Torvalds 已提交
451 452 453
          ....

          /* allocate a chip-specific data with zero filled */
454
          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
L
Linus Torvalds 已提交
455 456 457 458 459
          if (chip == NULL)
                  return -ENOMEM;

          chip->card = card;

460
          /* rest of initialization here; will be implemented
461
           * later, see "PCI Resource Management"
462
           */
L
Linus Torvalds 已提交
463 464
          ....

465 466
          err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
          if (err < 0) {
L
Linus Torvalds 已提交
467 468 469 470 471 472 473 474 475
                  snd_mychip_free(chip);
                  return err;
          }

          *rchip = chip;
          return 0;
  }

  /* constructor -- see "Constructor" sub-section */
476 477
  static int snd_mychip_probe(struct pci_dev *pci,
                              const struct pci_device_id *pci_id)
L
Linus Torvalds 已提交
478 479
  {
          static int dev;
480 481
          struct snd_card *card;
          struct mychip *chip;
L
Linus Torvalds 已提交
482 483 484 485 486 487 488 489 490 491 492
          int err;

          /* (1) */
          if (dev >= SNDRV_CARDS)
                  return -ENODEV;
          if (!enable[dev]) {
                  dev++;
                  return -ENOENT;
          }

          /* (2) */
493 494
          err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
                             0, &card);
495 496
          if (err < 0)
                  return err;
L
Linus Torvalds 已提交
497 498

          /* (3) */
499 500
          err = snd_mychip_create(card, pci, &chip);
          if (err < 0) {
L
Linus Torvalds 已提交
501 502 503 504 505 506 507 508 509 510 511
                  snd_card_free(card);
                  return err;
          }

          /* (4) */
          strcpy(card->driver, "My Chip");
          strcpy(card->shortname, "My Own Chip 123");
          sprintf(card->longname, "%s at 0x%lx irq %i",
                  card->shortname, chip->ioport, chip->irq);

          /* (5) */
512
          .... /* implemented later */
L
Linus Torvalds 已提交
513 514

          /* (6) */
515 516
          err = snd_card_register(card);
          if (err < 0) {
L
Linus Torvalds 已提交
517 518 519 520 521 522 523 524 525 526
                  snd_card_free(card);
                  return err;
          }

          /* (7) */
          pci_set_drvdata(pci, card);
          dev++;
          return 0;
  }

527
  /* destructor -- see the "Destructor" sub-section */
528
  static void snd_mychip_remove(struct pci_dev *pci)
L
Linus Torvalds 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541
  {
          snd_card_free(pci_get_drvdata(pci));
          pci_set_drvdata(pci, NULL);
  }
]]>
          </programlisting>
        </example>
      </para>
    </section>

    <section id="basic-flow-constructor">
      <title>Constructor</title>
      <para>
542 543
        The real constructor of PCI drivers is the <function>probe</function> callback.
      The <function>probe</function> callback and other component-constructors which are called
544 545
      from the <function>probe</function> callback cannot be used with
      the <parameter>__init</parameter> prefix
L
Linus Torvalds 已提交
546 547 548 549
      because any PCI device could be a hotplug device. 
      </para>

      <para>
550
        In the <function>probe</function> callback, the following scheme is often used.
L
Linus Torvalds 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
      </para>

      <section id="basic-flow-constructor-device-index">
        <title>1) Check and increment the device index.</title>
        <para>
          <informalexample>
            <programlisting>
<![CDATA[
  static int dev;
  ....
  if (dev >= SNDRV_CARDS)
          return -ENODEV;
  if (!enable[dev]) {
          dev++;
          return -ENOENT;
  }
]]>
            </programlisting>
          </informalexample>

        where enable[dev] is the module option.
        </para>

        <para>
575
          Each time the <function>probe</function> callback is called, check the
L
Linus Torvalds 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589
        availability of the device. If not available, simply increment
        the device index and returns. dev will be incremented also
        later (<link
        linkend="basic-flow-constructor-set-pci"><citetitle>step
        7</citetitle></link>). 
        </para>
      </section>

      <section id="basic-flow-constructor-create-card">
        <title>2) Create a card instance</title>
        <para>
          <informalexample>
            <programlisting>
<![CDATA[
590
  struct snd_card *card;
591
  int err;
L
Linus Torvalds 已提交
592
  ....
593 594
  err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
                     0, &card);
L
Linus Torvalds 已提交
595 596 597 598 599 600
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
601
          The details will be explained in the section
L
Linus Torvalds 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614
          <link linkend="card-management-card-instance"><citetitle>
          Management of Cards and Components</citetitle></link>.
        </para>
      </section>

      <section id="basic-flow-constructor-create-main">
        <title>3) Create a main component</title>
        <para>
          In this part, the PCI resources are allocated.

          <informalexample>
            <programlisting>
<![CDATA[
615
  struct mychip *chip;
L
Linus Torvalds 已提交
616
  ....
617 618
  err = snd_mychip_create(card, pci, &chip);
  if (err < 0) {
L
Linus Torvalds 已提交
619 620 621 622 623 624 625
          snd_card_free(card);
          return err;
  }
]]>
            </programlisting>
          </informalexample>

626
          The details will be explained in the section <link
L
Linus Torvalds 已提交
627
        linkend="pci-resource"><citetitle>PCI Resource
628
        Management</citetitle></link>.
L
Linus Torvalds 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
        </para>
      </section>

      <section id="basic-flow-constructor-main-component">
        <title>4) Set the driver ID and name strings.</title>
        <para>
          <informalexample>
            <programlisting>
<![CDATA[
  strcpy(card->driver, "My Chip");
  strcpy(card->shortname, "My Own Chip 123");
  sprintf(card->longname, "%s at 0x%lx irq %i",
          card->shortname, chip->ioport, chip->irq);
]]>
            </programlisting>
          </informalexample>

          The driver field holds the minimal ID string of the
647
        chip. This is used by alsa-lib's configurator, so keep it
L
Linus Torvalds 已提交
648 649 650 651 652 653 654
        simple but unique. 
          Even the same driver can have different driver IDs to
        distinguish the functionality of each chip type. 
        </para>

        <para>
          The shortname field is a string shown as more verbose
655
        name. The longname field contains the information
L
Linus Torvalds 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
        shown in <filename>/proc/asound/cards</filename>. 
        </para>
      </section>

      <section id="basic-flow-constructor-create-other">
        <title>5) Create other components, such as mixer, MIDI, etc.</title>
        <para>
          Here you define the basic components such as
          <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
          mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
          MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
          and other interfaces.
          Also, if you want a <link linkend="proc-interface"><citetitle>proc
        file</citetitle></link>, define it here, too.
        </para>
      </section>

      <section id="basic-flow-constructor-register-card">
        <title>6) Register the card instance.</title>
        <para>
          <informalexample>
            <programlisting>
<![CDATA[
679 680
  err = snd_card_register(card);
  if (err < 0) {
L
Linus Torvalds 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
          snd_card_free(card);
          return err;
  }
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
          Will be explained in the section <link
        linkend="card-management-registration"><citetitle>Management
        of Cards and Components</citetitle></link>, too. 
        </para>
      </section>

      <section id="basic-flow-constructor-set-pci">
        <title>7) Set the PCI driver data and return zero.</title>
        <para>
          <informalexample>
            <programlisting>
<![CDATA[
        pci_set_drvdata(pci, card);
        dev++;
        return 0;
]]>
            </programlisting>
          </informalexample>

          In the above, the card record is stored. This pointer is
710
        used in the remove callback and power-management
L
Linus Torvalds 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
        callbacks, too. 
        </para>
      </section>
    </section>

    <section id="basic-flow-destructor">
      <title>Destructor</title>
      <para>
        The destructor, remove callback, simply releases the card
      instance. Then the ALSA middle layer will release all the
      attached components automatically. 
      </para>

      <para>
        It would be typically like the following:

        <informalexample>
          <programlisting>
<![CDATA[
730
  static void snd_mychip_remove(struct pci_dev *pci)
L
Linus Torvalds 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
  {
          snd_card_free(pci_get_drvdata(pci));
          pci_set_drvdata(pci, NULL);
  }
]]>
          </programlisting>
        </informalexample>

        The above code assumes that the card pointer is set to the PCI
	driver data.
      </para>
    </section>

    <section id="basic-flow-header-files">
      <title>Header Files</title>
      <para>
        For the above example, at least the following include files
      are necessary. 

        <informalexample>
          <programlisting>
<![CDATA[
  #include <linux/init.h>
  #include <linux/pci.h>
  #include <linux/slab.h>
  #include <sound/core.h>
  #include <sound/initval.h>
]]>
          </programlisting>
        </informalexample>

	where the last one is necessary only when module options are
763 764
      defined in the source file.  If the code is split into several
      files, the files without module options don't need them.
L
Linus Torvalds 已提交
765 766 767
      </para>

      <para>
768 769 770 771
        In addition to these headers, you'll need
      <filename>&lt;linux/interrupt.h&gt;</filename> for interrupt
      handling, and <filename>&lt;asm/io.h&gt;</filename> for I/O
      access. If you use the <function>mdelay()</function> or
L
Linus Torvalds 已提交
772
      <function>udelay()</function> functions, you'll need to include
773
      <filename>&lt;linux/delay.h&gt;</filename> too. 
L
Linus Torvalds 已提交
774 775 776
      </para>

      <para>
777 778
      The ALSA interfaces like the PCM and control APIs are defined in other
      <filename>&lt;sound/xxx.h&gt;</filename> header files.
L
Linus Torvalds 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
      They have to be included after
      <filename>&lt;sound/core.h&gt;</filename>.
      </para>

    </section>
  </chapter>


<!-- ****************************************************** -->
<!-- Management of Cards and Components  -->
<!-- ****************************************************** -->
  <chapter id="card-management">
    <title>Management of Cards and Components</title>

    <section id="card-management-card-instance">
      <title>Card Instance</title>
      <para>
      For each soundcard, a <quote>card</quote> record must be allocated.
      </para>

      <para>
      A card record is the headquarters of the soundcard.  It manages
801
      the whole list of devices (components) on the soundcard, such as
L
Linus Torvalds 已提交
802 803 804 805
      PCM, mixers, MIDI, synthesizer, and so on.  Also, the card
      record holds the ID and the name strings of the card, manages
      the root of proc files, and controls the power-management states
      and hotplug disconnections.  The component list on the card
806
      record is used to manage the correct release of resources at
L
Linus Torvalds 已提交
807 808 809 810 811
      destruction. 
      </para>

      <para>
        As mentioned above, to create a card instance, call
812
      <function>snd_card_new()</function>.
L
Linus Torvalds 已提交
813 814 815 816

        <informalexample>
          <programlisting>
<![CDATA[
817
  struct snd_card *card;
818
  int err;
819
  err = snd_card_new(&pci->dev, index, id, module, extra_size, &card);
L
Linus Torvalds 已提交
820 821 822 823 824 825
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
826 827
        The function takes six arguments: the parent device pointer,
        the card-index number, the id string, the module pointer (usually
L
Linus Torvalds 已提交
828
        <constant>THIS_MODULE</constant>),
829 830
        the size of extra-data space, and the pointer to return the
        card instance.  The extra_size argument is used to
L
Linus Torvalds 已提交
831
        allocate card-&gt;private_data for the
832
        chip-specific data.  Note that these data
833 834 835 836 837 838 839
        are allocated by <function>snd_card_new()</function>.
      </para>

      <para>
	The first argument, the pointer of struct
	<structname>device</structname>, specifies the parent device.
	For PCI devices, typically &amp;pci-&gt; is passed there.
L
Linus Torvalds 已提交
840 841 842 843 844 845 846
      </para>
    </section>

    <section id="card-management-component">
      <title>Components</title>
      <para>
        After the card is created, you can attach the components
847
      (devices) to the card instance. In an ALSA driver, a component is
848
      represented as a struct <structname>snd_device</structname> object.
L
Linus Torvalds 已提交
849
      A component can be a PCM instance, a control interface, a raw
850
      MIDI interface, etc.  Each such instance has one component
L
Linus Torvalds 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
      entry.
      </para>

      <para>
        A component can be created via
        <function>snd_device_new()</function> function. 

        <informalexample>
          <programlisting>
<![CDATA[
  snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        This takes the card pointer, the device-level
      (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
      callback pointers (<parameter>&amp;ops</parameter>). The
      device-level defines the type of components and the order of
872
      registration and de-registration.  For most components, the
L
Linus Torvalds 已提交
873 874 875 876 877 878 879
      device-level is already defined.  For a user-defined component,
      you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
      </para>

      <para>
      This function itself doesn't allocate the data space. The data
      must be allocated manually beforehand, and its pointer is passed
880 881
      as the argument. This pointer (<parameter>chip</parameter> in the
      above example) is used as the identifier for the instance.
L
Linus Torvalds 已提交
882 883 884
      </para>

      <para>
885
        Each pre-defined ALSA component such as ac97 and pcm calls
L
Linus Torvalds 已提交
886 887 888 889 890 891 892
      <function>snd_device_new()</function> inside its
      constructor. The destructor for each component is defined in the
      callback pointers.  Hence, you don't need to take care of
      calling a destructor for such a component.
      </para>

      <para>
893 894 895 896 897 898
        If you wish to create your own component, you need to
      set the destructor function to the dev_free callback in
      the <parameter>ops</parameter>, so that it can be released
      automatically via <function>snd_card_free()</function>.
      The next example will show an implementation of chip-specific
      data.
L
Linus Torvalds 已提交
899 900 901 902 903 904
      </para>
    </section>

    <section id="card-management-chip-specific">
      <title>Chip-Specific Data</title>
      <para>
905
      Chip-specific information, e.g. the I/O port address, its
L
Linus Torvalds 已提交
906 907 908 909 910 911
      resource pointer, or the irq number, is stored in the
      chip-specific record.

        <informalexample>
          <programlisting>
<![CDATA[
912
  struct mychip {
L
Linus Torvalds 已提交
913 914 915 916 917 918 919 920
          ....
  };
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
921
        In general, there are two ways of allocating the chip record.
L
Linus Torvalds 已提交
922 923 924
      </para>

      <section id="card-management-chip-specific-snd-card-new">
925
        <title>1. Allocating via <function>snd_card_new()</function>.</title>
L
Linus Torvalds 已提交
926
        <para>
927
          As mentioned above, you can pass the extra-data-length
928
	  to the 5th argument of <function>snd_card_new()</function>, i.e.
L
Linus Torvalds 已提交
929 930 931 932

          <informalexample>
            <programlisting>
<![CDATA[
933 934
  err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
                     sizeof(struct mychip), &card);
L
Linus Torvalds 已提交
935 936 937 938
]]>
            </programlisting>
          </informalexample>

939
          struct <structname>mychip</structname> is the type of the chip record.
L
Linus Torvalds 已提交
940 941 942 943 944 945 946 947
        </para>

        <para>
          In return, the allocated record can be accessed as

          <informalexample>
            <programlisting>
<![CDATA[
948
  struct mychip *chip = card->private_data;
L
Linus Torvalds 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962
]]>
            </programlisting>
          </informalexample>

          With this method, you don't have to allocate twice.
          The record is released together with the card instance.
        </para>
      </section>

      <section id="card-management-chip-specific-allocate-extra">
        <title>2. Allocating an extra device.</title>

        <para>
          After allocating a card instance via
963
          <function>snd_card_new()</function> (with
964
          <constant>0</constant> on the 4th arg), call
965
          <function>kzalloc()</function>. 
L
Linus Torvalds 已提交
966 967 968 969

          <informalexample>
            <programlisting>
<![CDATA[
970 971
  struct snd_card *card;
  struct mychip *chip;
972 973
  err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
                     0, &card);
L
Linus Torvalds 已提交
974
  .....
975
  chip = kzalloc(sizeof(*chip), GFP_KERNEL);
L
Linus Torvalds 已提交
976 977 978 979 980 981 982 983 984 985 986 987
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
          The chip record should have the field to hold the card
          pointer at least, 

          <informalexample>
            <programlisting>
<![CDATA[
988 989
  struct mychip {
          struct snd_card *card;
L
Linus Torvalds 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
          ....
  };
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
          Then, set the card pointer in the returned chip instance.

          <informalexample>
            <programlisting>
<![CDATA[
  chip->card = card;
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
          Next, initialize the fields, and register this chip
          record as a low-level device with a specified
          <parameter>ops</parameter>, 

          <informalexample>
            <programlisting>
<![CDATA[
1017
  static struct snd_device_ops ops = {
L
Linus Torvalds 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
          .dev_free =        snd_mychip_dev_free,
  };
  ....
  snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
]]>
            </programlisting>
          </informalexample>

          <function>snd_mychip_dev_free()</function> is the
        device-destructor function, which will call the real
        destructor. 
        </para>

        <para>
          <informalexample>
            <programlisting>
<![CDATA[
1035
  static int snd_mychip_dev_free(struct snd_device *device)
L
Linus Torvalds 已提交
1036
  {
1037
          return snd_mychip_free(device->device_data);
L
Linus Torvalds 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
  }
]]>
            </programlisting>
          </informalexample>

          where <function>snd_mychip_free()</function> is the real destructor.
        </para>
      </section>
    </section>

    <section id="card-management-registration">
      <title>Registration and Release</title>
      <para>
        After all components are assigned, register the card instance
1052 1053
      by calling <function>snd_card_register()</function>. Access
      to the device files is enabled at this point. That is, before
L
Linus Torvalds 已提交
1054 1055 1056 1057 1058 1059 1060 1061
      <function>snd_card_register()</function> is called, the
      components are safely inaccessible from external side. If this
      call fails, exit the probe function after releasing the card via
      <function>snd_card_free()</function>. 
      </para>

      <para>
        For releasing the card instance, you can call simply
1062
      <function>snd_card_free()</function>. As mentioned earlier, all
L
Linus Torvalds 已提交
1063 1064 1065 1066 1067
      components are released automatically by this call. 
      </para>

      <para>
      For a device which allows hotplugging, you can use
1068 1069
      <function>snd_card_free_when_closed</function>.  This one will
      postpone the destruction until all devices are closed.
L
Linus Torvalds 已提交
1070 1071 1072 1073 1074 1075 1076 1077
      </para>

    </section>

  </chapter>


<!-- ****************************************************** -->
1078
<!-- PCI Resource Management  -->
L
Linus Torvalds 已提交
1079 1080
<!-- ****************************************************** -->
  <chapter id="pci-resource">
1081
    <title>PCI Resource Management</title>
L
Linus Torvalds 已提交
1082 1083 1084 1085

    <section id="pci-resource-example">
      <title>Full Code Example</title>
      <para>
1086 1087
        In this section, we'll complete the chip-specific constructor,
      destructor and PCI entries. Example code is shown first,
L
Linus Torvalds 已提交
1088 1089 1090
      below. 

        <example>
1091
          <title>PCI Resource Management Example</title>
L
Linus Torvalds 已提交
1092 1093
          <programlisting>
<![CDATA[
1094 1095
  struct mychip {
          struct snd_card *card;
L
Linus Torvalds 已提交
1096 1097 1098 1099 1100 1101
          struct pci_dev *pci;

          unsigned long port;
          int irq;
  };

1102
  static int snd_mychip_free(struct mychip *chip)
L
Linus Torvalds 已提交
1103 1104
  {
          /* disable hardware here if any */
1105
          .... /* (not implemented in this document) */
L
Linus Torvalds 已提交
1106 1107 1108

          /* release the irq */
          if (chip->irq >= 0)
1109
                  free_irq(chip->irq, chip);
1110
          /* release the I/O ports & memory */
L
Linus Torvalds 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119
          pci_release_regions(chip->pci);
          /* disable the PCI entry */
          pci_disable_device(chip->pci);
          /* release the data */
          kfree(chip);
          return 0;
  }

  /* chip-specific constructor */
1120 1121 1122
  static int snd_mychip_create(struct snd_card *card,
                               struct pci_dev *pci,
                               struct mychip **rchip)
L
Linus Torvalds 已提交
1123
  {
1124
          struct mychip *chip;
L
Linus Torvalds 已提交
1125
          int err;
1126
          static struct snd_device_ops ops = {
L
Linus Torvalds 已提交
1127 1128 1129 1130 1131 1132
                 .dev_free = snd_mychip_dev_free,
          };

          *rchip = NULL;

          /* initialize the PCI entry */
1133 1134
          err = pci_enable_device(pci);
          if (err < 0)
L
Linus Torvalds 已提交
1135 1136
                  return err;
          /* check PCI availability (28bit DMA) */
1137 1138
          if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
              pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
L
Linus Torvalds 已提交
1139 1140 1141 1142 1143
                  printk(KERN_ERR "error to set 28bit mask DMA\n");
                  pci_disable_device(pci);
                  return -ENXIO;
          }

1144
          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
L
Linus Torvalds 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
          if (chip == NULL) {
                  pci_disable_device(pci);
                  return -ENOMEM;
          }

          /* initialize the stuff */
          chip->card = card;
          chip->pci = pci;
          chip->irq = -1;

          /* (1) PCI resource allocation */
1156 1157
          err = pci_request_regions(pci, "My Chip");
          if (err < 0) {
L
Linus Torvalds 已提交
1158 1159 1160 1161 1162 1163
                  kfree(chip);
                  pci_disable_device(pci);
                  return err;
          }
          chip->port = pci_resource_start(pci, 0);
          if (request_irq(pci->irq, snd_mychip_interrupt,
1164
                          IRQF_SHARED, KBUILD_MODNAME, chip)) {
L
Linus Torvalds 已提交
1165 1166 1167 1168 1169 1170 1171
                  printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
                  snd_mychip_free(chip);
                  return -EBUSY;
          }
          chip->irq = pci->irq;

          /* (2) initialization of the chip hardware */
1172
          .... /*   (not implemented in this document) */
L
Linus Torvalds 已提交
1173

1174 1175
          err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
          if (err < 0) {
L
Linus Torvalds 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184
                  snd_mychip_free(chip);
                  return err;
          }

          *rchip = chip;
          return 0;
  }        

  /* PCI IDs */
1185
  static struct pci_device_id snd_mychip_ids[] = {
L
Linus Torvalds 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194
          { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
            PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
          ....
          { 0, }
  };
  MODULE_DEVICE_TABLE(pci, snd_mychip_ids);

  /* pci_driver definition */
  static struct pci_driver driver = {
1195
          .name = KBUILD_MODNAME,
L
Linus Torvalds 已提交
1196 1197
          .id_table = snd_mychip_ids,
          .probe = snd_mychip_probe,
1198
          .remove = snd_mychip_remove,
L
Linus Torvalds 已提交
1199 1200
  };

1201
  /* module initialization */
L
Linus Torvalds 已提交
1202 1203
  static int __init alsa_card_mychip_init(void)
  {
1204
          return pci_register_driver(&driver);
L
Linus Torvalds 已提交
1205 1206
  }

1207
  /* module clean up */
L
Linus Torvalds 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
  static void __exit alsa_card_mychip_exit(void)
  {
          pci_unregister_driver(&driver);
  }

  module_init(alsa_card_mychip_init)
  module_exit(alsa_card_mychip_exit)

  EXPORT_NO_SYMBOLS; /* for old kernels only */
]]>
          </programlisting>
        </example>
      </para>
    </section>

    <section id="pci-resource-some-haftas">
      <title>Some Hafta's</title>
      <para>
        The allocation of PCI resources is done in the
      <function>probe()</function> function, and usually an extra
      <function>xxx_create()</function> function is written for this
1229
      purpose.
L
Linus Torvalds 已提交
1230 1231 1232
      </para>

      <para>
1233 1234
        In the case of PCI devices, you first have to call
      the <function>pci_enable_device()</function> function before
L
Linus Torvalds 已提交
1235
      allocating resources. Also, you need to set the proper PCI DMA
1236
      mask to limit the accessed I/O range. In some cases, you might
L
Linus Torvalds 已提交
1237
      need to call <function>pci_set_master()</function> function,
1238
      too.
L
Linus Torvalds 已提交
1239 1240 1241 1242 1243 1244 1245 1246
      </para>

      <para>
        Suppose the 28bit mask, and the code to be added would be like:

        <informalexample>
          <programlisting>
<![CDATA[
1247 1248
  err = pci_enable_device(pci);
  if (err < 0)
L
Linus Torvalds 已提交
1249
          return err;
1250 1251
  if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
      pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
L
Linus Torvalds 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
          printk(KERN_ERR "error to set 28bit mask DMA\n");
          pci_disable_device(pci);
          return -ENXIO;
  }
  
]]>
          </programlisting>
        </informalexample>
      </para>
    </section>

    <section id="pci-resource-resource-allocation">
      <title>Resource Allocation</title>
      <para>
1266
        The allocation of I/O ports and irqs is done via standard kernel
L
Linus Torvalds 已提交
1267 1268 1269
      functions. Unlike ALSA ver.0.5.x., there are no helpers for
      that. And these resources must be released in the destructor
      function (see below). Also, on ALSA 0.9.x, you don't need to
1270
      allocate (pseudo-)DMA for PCI like in ALSA 0.5.x.
L
Linus Torvalds 已提交
1271 1272 1273
      </para>

      <para>
1274
        Now assume that the PCI device has an I/O port with 8 bytes
1275
        and an interrupt. Then struct <structname>mychip</structname> will have the
1276
        following fields:
L
Linus Torvalds 已提交
1277 1278 1279 1280

        <informalexample>
          <programlisting>
<![CDATA[
1281 1282
  struct mychip {
          struct snd_card *card;
L
Linus Torvalds 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

          unsigned long port;
          int irq;
  };
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
1293
        For an I/O port (and also a memory region), you need to have
L
Linus Torvalds 已提交
1294 1295 1296 1297 1298
      the resource pointer for the standard resource management. For
      an irq, you have to keep only the irq number (integer). But you
      need to initialize this number as -1 before actual allocation,
      since irq 0 is valid. The port address and its resource pointer
      can be initialized as null by
1299
      <function>kzalloc()</function> automatically, so you
L
Linus Torvalds 已提交
1300 1301 1302 1303
      don't have to take care of resetting them. 
      </para>

      <para>
1304
        The allocation of an I/O port is done like this:
L
Linus Torvalds 已提交
1305 1306 1307 1308

        <informalexample>
          <programlisting>
<![CDATA[
1309 1310
  err = pci_request_regions(pci, "My Chip");
  if (err < 0) { 
L
Linus Torvalds 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
          kfree(chip);
          pci_disable_device(pci);
          return err;
  }
  chip->port = pci_resource_start(pci, 0);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        <!-- obsolete -->
1323
        It will reserve the I/O port region of 8 bytes of the given
L
Linus Torvalds 已提交
1324 1325 1326
      PCI device. The returned value, chip-&gt;res_port, is allocated
      via <function>kmalloc()</function> by
      <function>request_region()</function>. The pointer must be
1327 1328
      released via <function>kfree()</function>, but there is a
      problem with this. This issue will be explained later.
L
Linus Torvalds 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337
      </para>

      <para>
        The allocation of an interrupt source is done like this:

        <informalexample>
          <programlisting>
<![CDATA[
  if (request_irq(pci->irq, snd_mychip_interrupt,
1338
                  IRQF_SHARED, KBUILD_MODNAME, chip)) {
L
Linus Torvalds 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
          printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
          snd_mychip_free(chip);
          return -EBUSY;
  }
  chip->irq = pci->irq;
]]>
          </programlisting>
        </informalexample>

        where <function>snd_mychip_interrupt()</function> is the
      interrupt handler defined <link
      linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
      Note that chip-&gt;irq should be defined
      only when <function>request_irq()</function> succeeded.
      </para>

      <para>
1356 1357
      On the PCI bus, interrupts can be shared. Thus,
      <constant>IRQF_SHARED</constant> is used as the interrupt flag of
L
Linus Torvalds 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
      <function>request_irq()</function>. 
      </para>

      <para>
        The last argument of <function>request_irq()</function> is the
      data pointer passed to the interrupt handler. Usually, the
      chip-specific record is used for that, but you can use what you
      like, too. 
      </para>

      <para>
1369
        I won't give details about the interrupt handler at this
L
Linus Torvalds 已提交
1370 1371 1372 1373 1374 1375
        point, but at least its appearance can be explained now. The
        interrupt handler looks usually like the following: 

        <informalexample>
          <programlisting>
<![CDATA[
1376
  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
L
Linus Torvalds 已提交
1377
  {
1378
          struct mychip *chip = dev_id;
L
Linus Torvalds 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
          ....
          return IRQ_HANDLED;
  }
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        Now let's write the corresponding destructor for the resources
      above. The role of destructor is simple: disable the hardware
      (if already activated) and release the resources. So far, we
1391
      have no hardware part, so the disabling code is not written here. 
L
Linus Torvalds 已提交
1392 1393 1394
      </para>

      <para>
1395
        To release the resources, the <quote>check-and-release</quote>
L
Linus Torvalds 已提交
1396 1397 1398 1399 1400 1401
        method is a safer way. For the interrupt, do like this: 

        <informalexample>
          <programlisting>
<![CDATA[
  if (chip->irq >= 0)
1402
          free_irq(chip->irq, chip);
L
Linus Torvalds 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
]]>
          </programlisting>
        </informalexample>

        Since the irq number can start from 0, you should initialize
        chip-&gt;irq with a negative value (e.g. -1), so that you can
        check the validity of the irq number as above.
      </para>

      <para>
        When you requested I/O ports or memory regions via
	<function>pci_request_region()</function> or
1415
	<function>pci_request_regions()</function> like in this example,
L
Linus Torvalds 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	release the resource(s) using the corresponding function,
	<function>pci_release_region()</function> or
	<function>pci_release_regions()</function>.

        <informalexample>
          <programlisting>
<![CDATA[
  pci_release_regions(chip->pci);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
	When you requested manually via <function>request_region()</function>
	or <function>request_mem_region</function>, you can release it via
	<function>release_resource()</function>.  Suppose that you keep
	the resource pointer returned from <function>request_region()</function>
1434
	in chip-&gt;res_port, the release procedure looks like:
L
Linus Torvalds 已提交
1435 1436 1437 1438

        <informalexample>
          <programlisting>
<![CDATA[
1439
  release_and_free_resource(chip->res_port);
L
Linus Torvalds 已提交
1440 1441 1442 1443 1444 1445 1446
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
      Don't forget to call <function>pci_disable_device()</function>
1447
      before the end.
L
Linus Torvalds 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
      </para>

      <para>
        And finally, release the chip-specific record.

        <informalexample>
          <programlisting>
<![CDATA[
  kfree(chip);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
1463
      We didn't implement the hardware disabling part in the above.
L
Linus Torvalds 已提交
1464 1465
      If you need to do this, please note that the destructor may be
      called even before the initialization of the chip is completed.
1466
      It would be better to have a flag to skip hardware disabling
L
Linus Torvalds 已提交
1467 1468 1469 1470 1471 1472 1473 1474
      if the hardware was not initialized yet.
      </para>

      <para>
      When the chip-data is assigned to the card using
      <function>snd_device_new()</function> with
      <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is 
      called at the last.  That is, it is assured that all other
1475 1476 1477
      components like PCMs and controls have already been released.
      You don't have to stop PCMs, etc. explicitly, but just
      call low-level hardware stopping.
L
Linus Torvalds 已提交
1478 1479 1480 1481
      </para>

      <para>
        The management of a memory-mapped region is almost as same as
1482
        the management of an I/O port. You'll need three fields like
L
Linus Torvalds 已提交
1483 1484 1485 1486 1487
        the following: 

        <informalexample>
          <programlisting>
<![CDATA[
1488
  struct mychip {
L
Linus Torvalds 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
          ....
          unsigned long iobase_phys;
          void __iomem *iobase_virt;
  };
]]>
          </programlisting>
        </informalexample>

        and the allocation would be like below:

        <informalexample>
          <programlisting>
<![CDATA[
  if ((err = pci_request_regions(pci, "My Chip")) < 0) {
          kfree(chip);
          return err;
  }
  chip->iobase_phys = pci_resource_start(pci, 0);
  chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
                                      pci_resource_len(pci, 0));
]]>
          </programlisting>
        </informalexample>
        
        and the corresponding destructor would be:

        <informalexample>
          <programlisting>
<![CDATA[
1518
  static int snd_mychip_free(struct mychip *chip)
L
Linus Torvalds 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
  {
          ....
          if (chip->iobase_virt)
                  iounmap(chip->iobase_virt);
          ....
          pci_release_regions(chip->pci);
          ....
  }
]]>
          </programlisting>
        </informalexample>
      </para>

    </section>

    <section id="pci-resource-entries">
      <title>PCI Entries</title>
      <para>
1537 1538
        So far, so good. Let's finish the missing PCI
      stuff. At first, we need a
L
Linus Torvalds 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
      <structname>pci_device_id</structname> table for this
      chipset. It's a table of PCI vendor/device ID number, and some
      masks. 
      </para>

      <para>
        For example,

        <informalexample>
          <programlisting>
<![CDATA[
1550
  static struct pci_device_id snd_mychip_ids[] = {
L
Linus Torvalds 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
          { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
            PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
          ....
          { 0, }
  };
  MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        The first and second fields of
1564 1565 1566 1567
      the <structname>pci_device_id</structname> structure are the vendor and
      device IDs. If you have no reason to filter the matching
      devices, you can leave the remaining fields as above. The last
      field of the <structname>pci_device_id</structname> struct contains
L
Linus Torvalds 已提交
1568
      private data for this entry. You can specify any value here, for
1569 1570
      example, to define specific operations for supported device IDs.
      Such an example is found in the intel8x0 driver. 
L
Linus Torvalds 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
      </para>

      <para>
        The last entry of this list is the terminator. You must
      specify this all-zero entry. 
      </para>

      <para>
        Then, prepare the <structname>pci_driver</structname> record:

        <informalexample>
          <programlisting>
<![CDATA[
  static struct pci_driver driver = {
1585
          .name = KBUILD_MODNAME,
L
Linus Torvalds 已提交
1586 1587
          .id_table = snd_mychip_ids,
          .probe = snd_mychip_probe,
1588
          .remove = snd_mychip_remove,
L
Linus Torvalds 已提交
1589 1590 1591 1592 1593 1594 1595 1596
  };
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        The <structfield>probe</structfield> and
1597 1598
      <structfield>remove</structfield> functions have already
      been defined in the previous sections.
1599
      The <structfield>name</structfield>
L
Linus Torvalds 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
      field is the name string of this device. Note that you must not
      use a slash <quote>/</quote> in this string. 
      </para>

      <para>
        And at last, the module entries:

        <informalexample>
          <programlisting>
<![CDATA[
  static int __init alsa_card_mychip_init(void)
  {
1612
          return pci_register_driver(&driver);
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
  }

  static void __exit alsa_card_mychip_exit(void)
  {
          pci_unregister_driver(&driver);
  }

  module_init(alsa_card_mychip_init)
  module_exit(alsa_card_mychip_exit)
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        Note that these module entries are tagged with
      <parameter>__init</parameter> and 
1630
      <parameter>__exit</parameter> prefixes.
L
Linus Torvalds 已提交
1631 1632 1633 1634
      </para>

      <para>
        Oh, one thing was forgotten. If you have no exported symbols,
1635
        you need to declare it in 2.2 or 2.4 kernels (it's not necessary in 2.6 kernels).
L
Linus Torvalds 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

        <informalexample>
          <programlisting>
<![CDATA[
  EXPORT_NO_SYMBOLS;
]]>
          </programlisting>
        </informalexample>

        That's all!
      </para>
    </section>
  </chapter>


<!-- ****************************************************** -->
<!-- PCM Interface  -->
<!-- ****************************************************** -->
  <chapter id="pcm-interface">
    <title>PCM Interface</title>

    <section id="pcm-interface-general">
      <title>General</title>
      <para>
        The PCM middle layer of ALSA is quite powerful and it is only
      necessary for each driver to implement the low-level functions
      to access its hardware.
      </para>

      <para>
        For accessing to the PCM layer, you need to include
1667
      <filename>&lt;sound/pcm.h&gt;</filename> first. In addition,
L
Linus Torvalds 已提交
1668 1669 1670 1671 1672 1673 1674 1675
      <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
      if you access to some functions related with hw_param. 
      </para>

      <para>
        Each card device can have up to four pcm instances. A pcm
      instance corresponds to a pcm device file. The limitation of
      number of instances comes only from the available bit size of
1676 1677
      the Linux's device numbers. Once when 64bit device number is
      used, we'll have more pcm instances available. 
L
Linus Torvalds 已提交
1678 1679 1680 1681 1682
      </para>

      <para>
        A pcm instance consists of pcm playback and capture streams,
      and each pcm stream consists of one or more pcm substreams. Some
1683
      soundcards support multiple playback functions. For example,
L
Linus Torvalds 已提交
1684 1685 1686
      emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
      each open, a free substream is (usually) automatically chosen
      and opened. Meanwhile, when only one substream exists and it was
1687 1688 1689 1690
      already opened, the successful open will either block
      or error with <constant>EAGAIN</constant> according to the
      file open mode. But you don't have to care about such details in your
      driver. The PCM middle layer will take care of such work.
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
      </para>
    </section>

    <section id="pcm-interface-example">
      <title>Full Code Example</title>
      <para>
      The example code below does not include any hardware access
      routines but shows only the skeleton, how to build up the PCM
      interfaces.

        <example>
          <title>PCM Example Code</title>
          <programlisting>
<![CDATA[
  #include <sound/pcm.h>
  ....

  /* hardware definition */
1709
  static struct snd_pcm_hardware snd_mychip_playback_hw = {
L
Linus Torvalds 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
          .info = (SNDRV_PCM_INFO_MMAP |
                   SNDRV_PCM_INFO_INTERLEAVED |
                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
                   SNDRV_PCM_INFO_MMAP_VALID),
          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
          .rates =            SNDRV_PCM_RATE_8000_48000,
          .rate_min =         8000,
          .rate_max =         48000,
          .channels_min =     2,
          .channels_max =     2,
          .buffer_bytes_max = 32768,
          .period_bytes_min = 4096,
          .period_bytes_max = 32768,
          .periods_min =      1,
          .periods_max =      1024,
  };

  /* hardware definition */
1728
  static struct snd_pcm_hardware snd_mychip_capture_hw = {
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
          .info = (SNDRV_PCM_INFO_MMAP |
                   SNDRV_PCM_INFO_INTERLEAVED |
                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
                   SNDRV_PCM_INFO_MMAP_VALID),
          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
          .rates =            SNDRV_PCM_RATE_8000_48000,
          .rate_min =         8000,
          .rate_max =         48000,
          .channels_min =     2,
          .channels_max =     2,
          .buffer_bytes_max = 32768,
          .period_bytes_min = 4096,
          .period_bytes_max = 32768,
          .periods_min =      1,
          .periods_max =      1024,
  };

  /* open callback */
1747
  static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
L
Linus Torvalds 已提交
1748
  {
1749 1750
          struct mychip *chip = snd_pcm_substream_chip(substream);
          struct snd_pcm_runtime *runtime = substream->runtime;
L
Linus Torvalds 已提交
1751 1752

          runtime->hw = snd_mychip_playback_hw;
1753 1754
          /* more hardware-initialization will be done here */
          ....
L
Linus Torvalds 已提交
1755 1756 1757 1758
          return 0;
  }

  /* close callback */
1759
  static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
L
Linus Torvalds 已提交
1760
  {
1761
          struct mychip *chip = snd_pcm_substream_chip(substream);
1762 1763
          /* the hardware-specific codes will be here */
          ....
L
Linus Torvalds 已提交
1764 1765 1766 1767 1768
          return 0;

  }

  /* open callback */
1769
  static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
L
Linus Torvalds 已提交
1770
  {
1771 1772
          struct mychip *chip = snd_pcm_substream_chip(substream);
          struct snd_pcm_runtime *runtime = substream->runtime;
L
Linus Torvalds 已提交
1773 1774

          runtime->hw = snd_mychip_capture_hw;
1775 1776
          /* more hardware-initialization will be done here */
          ....
L
Linus Torvalds 已提交
1777 1778 1779 1780
          return 0;
  }

  /* close callback */
1781
  static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
L
Linus Torvalds 已提交
1782
  {
1783
          struct mychip *chip = snd_pcm_substream_chip(substream);
1784 1785
          /* the hardware-specific codes will be here */
          ....
L
Linus Torvalds 已提交
1786 1787 1788 1789 1790
          return 0;

  }

  /* hw_params callback */
1791 1792
  static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
                               struct snd_pcm_hw_params *hw_params)
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797 1798
  {
          return snd_pcm_lib_malloc_pages(substream,
                                     params_buffer_bytes(hw_params));
  }

  /* hw_free callback */
1799
  static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
L
Linus Torvalds 已提交
1800 1801 1802 1803 1804
  {
          return snd_pcm_lib_free_pages(substream);
  }

  /* prepare callback */
1805
  static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
L
Linus Torvalds 已提交
1806
  {
1807 1808
          struct mychip *chip = snd_pcm_substream_chip(substream);
          struct snd_pcm_runtime *runtime = substream->runtime;
L
Linus Torvalds 已提交
1809 1810 1811 1812 1813 1814 1815

          /* set up the hardware with the current configuration
           * for example...
           */
          mychip_set_sample_format(chip, runtime->format);
          mychip_set_sample_rate(chip, runtime->rate);
          mychip_set_channels(chip, runtime->channels);
T
Takashi Iwai 已提交
1816
          mychip_set_dma_setup(chip, runtime->dma_addr,
L
Linus Torvalds 已提交
1817 1818 1819 1820 1821 1822
                               chip->buffer_size,
                               chip->period_size);
          return 0;
  }

  /* trigger callback */
1823
  static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
L
Linus Torvalds 已提交
1824 1825 1826 1827
                                    int cmd)
  {
          switch (cmd) {
          case SNDRV_PCM_TRIGGER_START:
1828 1829
                  /* do something to start the PCM engine */
                  ....
L
Linus Torvalds 已提交
1830 1831
                  break;
          case SNDRV_PCM_TRIGGER_STOP:
1832 1833
                  /* do something to stop the PCM engine */
                  ....
L
Linus Torvalds 已提交
1834 1835 1836 1837 1838 1839 1840 1841
                  break;
          default:
                  return -EINVAL;
          }
  }

  /* pointer callback */
  static snd_pcm_uframes_t
1842
  snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
L
Linus Torvalds 已提交
1843
  {
1844
          struct mychip *chip = snd_pcm_substream_chip(substream);
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849 1850 1851 1852
          unsigned int current_ptr;

          /* get the current hardware pointer */
          current_ptr = mychip_get_hw_pointer(chip);
          return current_ptr;
  }

  /* operators */
1853
  static struct snd_pcm_ops snd_mychip_playback_ops = {
L
Linus Torvalds 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
          .open =        snd_mychip_playback_open,
          .close =       snd_mychip_playback_close,
          .ioctl =       snd_pcm_lib_ioctl,
          .hw_params =   snd_mychip_pcm_hw_params,
          .hw_free =     snd_mychip_pcm_hw_free,
          .prepare =     snd_mychip_pcm_prepare,
          .trigger =     snd_mychip_pcm_trigger,
          .pointer =     snd_mychip_pcm_pointer,
  };

  /* operators */
1865
  static struct snd_pcm_ops snd_mychip_capture_ops = {
L
Linus Torvalds 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
          .open =        snd_mychip_capture_open,
          .close =       snd_mychip_capture_close,
          .ioctl =       snd_pcm_lib_ioctl,
          .hw_params =   snd_mychip_pcm_hw_params,
          .hw_free =     snd_mychip_pcm_hw_free,
          .prepare =     snd_mychip_pcm_prepare,
          .trigger =     snd_mychip_pcm_trigger,
          .pointer =     snd_mychip_pcm_pointer,
  };

  /*
   *  definitions of capture are omitted here...
   */

  /* create a pcm device */
1881
  static int snd_mychip_new_pcm(struct mychip *chip)
L
Linus Torvalds 已提交
1882
  {
1883
          struct snd_pcm *pcm;
L
Linus Torvalds 已提交
1884 1885
          int err;

1886 1887
          err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
          if (err < 0) 
L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
                  return err;
          pcm->private_data = chip;
          strcpy(pcm->name, "My Chip");
          chip->pcm = pcm;
          /* set operators */
          snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
                          &snd_mychip_playback_ops);
          snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
                          &snd_mychip_capture_ops);
          /* pre-allocation of buffers */
          /* NOTE: this may fail */
          snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                                snd_dma_pci_data(chip->pci),
                                                64*1024, 64*1024);
          return 0;
  }
]]>
          </programlisting>
        </example>
      </para>
    </section>

    <section id="pcm-interface-constructor">
      <title>Constructor</title>
      <para>
1913
        A pcm instance is allocated by the <function>snd_pcm_new()</function>
L
Linus Torvalds 已提交
1914 1915 1916 1917 1918 1919
      function. It would be better to create a constructor for pcm,
      namely, 

        <informalexample>
          <programlisting>
<![CDATA[
1920
  static int snd_mychip_new_pcm(struct mychip *chip)
L
Linus Torvalds 已提交
1921
  {
1922
          struct snd_pcm *pcm;
L
Linus Torvalds 已提交
1923 1924
          int err;

1925 1926
          err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
          if (err < 0) 
L
Linus Torvalds 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
                  return err;
          pcm->private_data = chip;
          strcpy(pcm->name, "My Chip");
          chip->pcm = pcm;
	  ....
          return 0;
  }
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
1940
        The <function>snd_pcm_new()</function> function takes four
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945 1946
      arguments. The first argument is the card pointer to which this
      pcm is assigned, and the second is the ID string. 
      </para>

      <para>
        The third argument (<parameter>index</parameter>, 0 in the
1947 1948
      above) is the index of this new pcm. It begins from zero. If
      you create more than one pcm instances, specify the
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953 1954
      different numbers in this argument. For example,
      <parameter>index</parameter> = 1 for the second PCM device.  
      </para>

      <para>
        The fourth and fifth arguments are the number of substreams
1955 1956
      for playback and capture, respectively. Here 1 is used for
      both arguments. When no playback or capture substreams are available,
L
Linus Torvalds 已提交
1957 1958 1959 1960 1961 1962 1963 1964
      pass 0 to the corresponding argument.
      </para>

      <para>
        If a chip supports multiple playbacks or captures, you can
      specify more numbers, but they must be handled properly in
      open/close, etc. callbacks.  When you need to know which
      substream you are referring to, then it can be obtained from
1965
      struct <structname>snd_pcm_substream</structname> data passed to each callback
L
Linus Torvalds 已提交
1966 1967 1968 1969 1970
      as follows: 

        <informalexample>
          <programlisting>
<![CDATA[
1971
  struct snd_pcm_substream *substream;
L
Linus Torvalds 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
  int index = substream->number;
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        After the pcm is created, you need to set operators for each
        pcm stream. 

        <informalexample>
          <programlisting>
<![CDATA[
  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
                  &snd_mychip_playback_ops);
  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
                  &snd_mychip_capture_ops);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        The operators are defined typically like this:

        <informalexample>
          <programlisting>
<![CDATA[
2000
  static struct snd_pcm_ops snd_mychip_playback_ops = {
L
Linus Torvalds 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
          .open =        snd_mychip_pcm_open,
          .close =       snd_mychip_pcm_close,
          .ioctl =       snd_pcm_lib_ioctl,
          .hw_params =   snd_mychip_pcm_hw_params,
          .hw_free =     snd_mychip_pcm_hw_free,
          .prepare =     snd_mychip_pcm_prepare,
          .trigger =     snd_mychip_pcm_trigger,
          .pointer =     snd_mychip_pcm_pointer,
  };
]]>
          </programlisting>
        </informalexample>

2014
        All the callbacks are described in the
L
Linus Torvalds 已提交
2015
        <link linkend="pcm-interface-operators"><citetitle>
2016
        Operators</citetitle></link> subsection.
L
Linus Torvalds 已提交
2017 2018 2019
      </para>

      <para>
2020
        After setting the operators, you probably will want to
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
        pre-allocate the buffer. For the pre-allocation, simply call
        the following: 

        <informalexample>
          <programlisting>
<![CDATA[
  snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                        snd_dma_pci_data(chip->pci),
                                        64*1024, 64*1024);
]]>
          </programlisting>
        </informalexample>

2034 2035
        It will allocate a buffer up to 64kB as default.
      Buffer management details will be described in the later section <link
L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
      linkend="buffer-and-memory"><citetitle>Buffer and Memory
      Management</citetitle></link>. 
      </para>

      <para>
        Additionally, you can set some extra information for this pcm
        in pcm-&gt;info_flags.
        The available values are defined as
        <constant>SNDRV_PCM_INFO_XXX</constant> in
        <filename>&lt;sound/asound.h&gt;</filename>, which is used for
        the hardware definition (described later). When your soundchip
        supports only half-duplex, specify like this: 

        <informalexample>
          <programlisting>
<![CDATA[
  pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
]]>
          </programlisting>
        </informalexample>
      </para>
    </section>

    <section id="pcm-interface-destructor">
      <title>... And the Destructor?</title>
      <para>
        The destructor for a pcm instance is not always
      necessary. Since the pcm device will be released by the middle
2064
      layer code automatically, you don't have to call the destructor
L
Linus Torvalds 已提交
2065 2066 2067 2068
      explicitly.
      </para>

      <para>
2069 2070
        The destructor would be necessary if you created
        special records internally and needed to release them. In such a
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075 2076 2077
        case, set the destructor function to
        pcm-&gt;private_free: 

        <example>
          <title>PCM Instance with a Destructor</title>
          <programlisting>
<![CDATA[
2078
  static void mychip_pcm_free(struct snd_pcm *pcm)
L
Linus Torvalds 已提交
2079
  {
2080
          struct mychip *chip = snd_pcm_chip(pcm);
L
Linus Torvalds 已提交
2081 2082
          /* free your own data */
          kfree(chip->my_private_pcm_data);
2083
          /* do what you like else */
L
Linus Torvalds 已提交
2084 2085 2086
          ....
  }

2087
  static int snd_mychip_new_pcm(struct mychip *chip)
L
Linus Torvalds 已提交
2088
  {
2089
          struct snd_pcm *pcm;
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
          ....
          /* allocate your own data */
          chip->my_private_pcm_data = kmalloc(...);
          /* set the destructor */
          pcm->private_data = chip;
          pcm->private_free = mychip_pcm_free;
          ....
  }
]]>
          </programlisting>
        </example>
      </para>
    </section>

    <section id="pcm-interface-runtime">
      <title>Runtime Pointer - The Chest of PCM Information</title>
	<para>
	  When the PCM substream is opened, a PCM runtime instance is
	allocated and assigned to the substream. This pointer is
	accessible via <constant>substream-&gt;runtime</constant>.
2110 2111 2112
	This runtime pointer holds most information you need
	to control the PCM: the copy of hw_params and sw_params configurations, the buffer
	pointers, mmap records, spinlocks, etc.
L
Linus Torvalds 已提交
2113 2114 2115 2116
	</para>

	<para>
	The definition of runtime instance is found in
2117 2118
	<filename>&lt;sound/pcm.h&gt;</filename>.  Here are
       the contents of this file:
L
Linus Torvalds 已提交
2119 2120 2121 2122 2123
          <informalexample>
            <programlisting>
<![CDATA[
struct _snd_pcm_runtime {
	/* -- Status -- */
2124
	struct snd_pcm_substream *trigger_master;
L
Linus Torvalds 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	snd_timestamp_t trigger_tstamp;	/* trigger timestamp */
	int overrange;
	snd_pcm_uframes_t avail_max;
	snd_pcm_uframes_t hw_ptr_base;	/* Position at buffer restart */
	snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/

	/* -- HW params -- */
	snd_pcm_access_t access;	/* access mode */
	snd_pcm_format_t format;	/* SNDRV_PCM_FORMAT_* */
	snd_pcm_subformat_t subformat;	/* subformat */
	unsigned int rate;		/* rate in Hz */
	unsigned int channels;		/* channels */
	snd_pcm_uframes_t period_size;	/* period size */
	unsigned int periods;		/* periods */
	snd_pcm_uframes_t buffer_size;	/* buffer size */
	unsigned int tick_time;		/* tick time */
	snd_pcm_uframes_t min_align;	/* Min alignment for the format */
	size_t byte_align;
	unsigned int frame_bits;
	unsigned int sample_bits;
	unsigned int info;
	unsigned int rate_num;
	unsigned int rate_den;

	/* -- SW params -- */
T
Takashi Iwai 已提交
2150
	struct timespec tstamp_mode;	/* mmap timestamp is updated */
L
Linus Torvalds 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
  	unsigned int period_step;
	unsigned int sleep_min;		/* min ticks to sleep */
	snd_pcm_uframes_t start_threshold;
	snd_pcm_uframes_t stop_threshold;
	snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
						noise is nearest than this */
	snd_pcm_uframes_t silence_size;	/* Silence filling size */
	snd_pcm_uframes_t boundary;	/* pointers wrap point */

	snd_pcm_uframes_t silenced_start;
	snd_pcm_uframes_t silenced_size;

	snd_pcm_sync_id_t sync;		/* hardware synchronization ID */

	/* -- mmap -- */
2166 2167
	volatile struct snd_pcm_mmap_status *status;
	volatile struct snd_pcm_mmap_control *control;
L
Linus Torvalds 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	atomic_t mmap_count;

	/* -- locking / scheduling -- */
	spinlock_t lock;
	wait_queue_head_t sleep;
	struct timer_list tick_timer;
	struct fasync_struct *fasync;

	/* -- private section -- */
	void *private_data;
2178
	void (*private_free)(struct snd_pcm_runtime *runtime);
L
Linus Torvalds 已提交
2179 2180

	/* -- hardware description -- */
2181 2182
	struct snd_pcm_hardware hw;
	struct snd_pcm_hw_constraints hw_constraints;
L
Linus Torvalds 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195

	/* -- timer -- */
	unsigned int timer_resolution;	/* timer resolution */

	/* -- DMA -- */           
	unsigned char *dma_area;	/* DMA area */
	dma_addr_t dma_addr;		/* physical bus address (not accessible from main CPU) */
	size_t dma_bytes;		/* size of DMA area */

	struct snd_dma_buffer *dma_buffer_p;	/* allocated buffer */

#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
	/* -- OSS things -- */
2196
	struct snd_pcm_oss_runtime oss;
L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
#endif
};
]]>
            </programlisting>
          </informalexample>
	</para>

	<para>
	  For the operators (callbacks) of each sound driver, most of
	these records are supposed to be read-only.  Only the PCM
2207
	middle-layer changes / updates them.  The exceptions are
2208 2209
	the hardware description (hw) DMA buffer information and the
	private data.  Besides, if you use the standard buffer allocation
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	method via <function>snd_pcm_lib_malloc_pages()</function>,
	you don't need to set the DMA buffer information by yourself.
	</para>

	<para>
	In the sections below, important records are explained.
	</para>

	<section id="pcm-interface-runtime-hw">
	<title>Hardware Description</title>
	<para>
2221
	  The hardware descriptor (struct <structname>snd_pcm_hardware</structname>)
L
Linus Torvalds 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	contains the definitions of the fundamental hardware
	configuration.  Above all, you'll need to define this in
	<link linkend="pcm-interface-operators-open-callback"><citetitle>
	the open callback</citetitle></link>.
	Note that the runtime instance holds the copy of the
	descriptor, not the pointer to the existing descriptor.  That
	is, in the open callback, you can modify the copied descriptor
	(<constant>runtime-&gt;hw</constant>) as you need.  For example, if the maximum
	number of channels is 1 only on some chip models, you can
	still use the same hardware descriptor and change the
	channels_max later:
          <informalexample>
            <programlisting>
<![CDATA[
2236
          struct snd_pcm_runtime *runtime = substream->runtime;
L
Linus Torvalds 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
          ...
          runtime->hw = snd_mychip_playback_hw; /* common definition */
          if (chip->model == VERY_OLD_ONE)
                  runtime->hw.channels_max = 1;
]]>
            </programlisting>
          </informalexample>
	</para>

	<para>
2247
	  Typically, you'll have a hardware descriptor as below:
L
Linus Torvalds 已提交
2248 2249 2250
          <informalexample>
            <programlisting>
<![CDATA[
2251
  static struct snd_pcm_hardware snd_mychip_playback_hw = {
L
Linus Torvalds 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
          .info = (SNDRV_PCM_INFO_MMAP |
                   SNDRV_PCM_INFO_INTERLEAVED |
                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
                   SNDRV_PCM_INFO_MMAP_VALID),
          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
          .rates =            SNDRV_PCM_RATE_8000_48000,
          .rate_min =         8000,
          .rate_max =         48000,
          .channels_min =     2,
          .channels_max =     2,
          .buffer_bytes_max = 32768,
          .period_bytes_min = 4096,
          .period_bytes_max = 32768,
          .periods_min =      1,
          .periods_max =      1024,
  };
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
	<itemizedlist>
	<listitem><para>
          The <structfield>info</structfield> field contains the type and
        capabilities of this pcm. The bit flags are defined in
        <filename>&lt;sound/asound.h&gt;</filename> as
        <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
        have to specify whether the mmap is supported and which
        interleaved format is supported.
2282
        When the hardware supports mmap, add the
L
Linus Torvalds 已提交
2283 2284
        <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
        hardware supports the interleaved or the non-interleaved
2285
        formats, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290 2291 2292
        <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
        be set, respectively. If both are supported, you can set both,
        too. 
        </para>

        <para>
          In the above example, <constant>MMAP_VALID</constant> and
2293
        <constant>BLOCK_TRANSFER</constant> are specified for the OSS mmap
L
Linus Torvalds 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
        mode. Usually both are set. Of course,
        <constant>MMAP_VALID</constant> is set only if the mmap is
        really supported. 
        </para>

        <para>
          The other possible flags are
        <constant>SNDRV_PCM_INFO_PAUSE</constant> and
        <constant>SNDRV_PCM_INFO_RESUME</constant>. The
        <constant>PAUSE</constant> bit means that the pcm supports the
        <quote>pause</quote> operation, while the
        <constant>RESUME</constant> bit means that the pcm supports
2306
        the full <quote>suspend/resume</quote> operation.
2307
	If the <constant>PAUSE</constant> flag is set,
2308 2309 2310
	the <structfield>trigger</structfield> callback below
        must handle the corresponding (pause push/release) commands.
	The suspend/resume trigger commands can be defined even without
2311
	the <constant>RESUME</constant> flag.  See <link
2312 2313
	linkend="power-management"><citetitle>
	Power Management</citetitle></link> section for details.
L
Linus Torvalds 已提交
2314 2315 2316 2317
        </para>

	<para>
	  When the PCM substreams can be synchronized (typically,
2318
	synchronized start/stop of a playback and a capture streams),
L
Linus Torvalds 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
	too.  In this case, you'll need to check the linked-list of
	PCM substreams in the trigger callback.  This will be
	described in the later section.
	</para>
	</listitem>

	<listitem>
        <para>
          <structfield>formats</structfield> field contains the bit-flags
        of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
        If the hardware supports more than one format, give all or'ed
        bits.  In the example above, the signed 16bit little-endian
        format is specified.
        </para>
	</listitem>

	<listitem>
        <para>
        <structfield>rates</structfield> field contains the bit-flags of
        supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
        When the chip supports continuous rates, pass
        <constant>CONTINUOUS</constant> bit additionally.
        The pre-defined rate bits are provided only for typical
	rates. If your chip supports unconventional rates, you need to add
2344
        the <constant>KNOT</constant> bit and set up the hardware
L
Linus Torvalds 已提交
2345 2346 2347 2348 2349 2350 2351
        constraint manually (explained later).
        </para>
	</listitem>

	<listitem>
	<para>
	<structfield>rate_min</structfield> and
2352 2353
	<structfield>rate_max</structfield> define the minimum and
	maximum sample rate.  This should correspond somehow to
L
Linus Torvalds 已提交
2354 2355 2356 2357 2358 2359 2360 2361
	<structfield>rates</structfield> bits.
	</para>
	</listitem>

	<listitem>
	<para>
	<structfield>channel_min</structfield> and
	<structfield>channel_max</structfield> 
2362
	define, as you might already expected, the minimum and maximum
L
Linus Torvalds 已提交
2363 2364 2365 2366 2367 2368 2369
	number of channels.
	</para>
	</listitem>

	<listitem>
	<para>
	<structfield>buffer_bytes_max</structfield> defines the
2370
	maximum buffer size in bytes.  There is no
L
Linus Torvalds 已提交
2371
	<structfield>buffer_bytes_min</structfield> field, since
2372 2373
	it can be calculated from the minimum period size and the
	minimum number of periods.
L
Linus Torvalds 已提交
2374
	Meanwhile, <structfield>period_bytes_min</structfield> and
2375
	define the minimum and maximum size of the period in bytes.
L
Linus Torvalds 已提交
2376
	<structfield>periods_max</structfield> and
2377 2378
	<structfield>periods_min</structfield> define the maximum and
	minimum number of periods in the buffer.
L
Linus Torvalds 已提交
2379 2380 2381
        </para>

	<para>
2382 2383 2384
	The <quote>period</quote> is a term that corresponds to
	a fragment in the OSS world. The period defines the size at
	which a PCM interrupt is generated. This size strongly
L
Linus Torvalds 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	depends on the hardware. 
	Generally, the smaller period size will give you more
	interrupts, that is, more controls. 
	In the case of capture, this size defines the input latency.
	On the other hand, the whole buffer size defines the
	output latency for the playback direction.
	</para>
	</listitem>

	<listitem>
	<para>
	There is also a field <structfield>fifo_size</structfield>.
2397 2398
	This specifies the size of the hardware FIFO, but currently it
	is neither used in the driver nor in the alsa-lib.  So, you
L
Linus Torvalds 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	can ignore this field.
	</para>
	</listitem>
	</itemizedlist>
	</para>
	</section>

	<section id="pcm-interface-runtime-config">
	<title>PCM Configurations</title>
	<para>
	Ok, let's go back again to the PCM runtime records.
	The most frequently referred records in the runtime instance are
	the PCM configurations.
2412
	The PCM configurations are stored in the runtime instance
L
Linus Torvalds 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	after the application sends <type>hw_params</type> data via
	alsa-lib.  There are many fields copied from hw_params and
	sw_params structs.  For example,
	<structfield>format</structfield> holds the format type
	chosen by the application.  This field contains the enum value
	<constant>SNDRV_PCM_FORMAT_XXX</constant>.
	</para>

	<para>
	One thing to be noted is that the configured buffer and period
2423
	sizes are stored in <quote>frames</quote> in the runtime.
L
Linus Torvalds 已提交
2424 2425
        In the ALSA world, 1 frame = channels * samples-size.
	For conversion between frames and bytes, you can use the
2426 2427
	<function>frames_to_bytes()</function> and
          <function>bytes_to_frames()</function> helper functions. 
L
Linus Torvalds 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
          <informalexample>
            <programlisting>
<![CDATA[
  period_bytes = frames_to_bytes(runtime, runtime->period_size);
]]>
            </programlisting>
          </informalexample>
        </para>

	<para>
	Also, many software parameters (sw_params) are
	stored in frames, too.  Please check the type of the field.
	<type>snd_pcm_uframes_t</type> is for the frames as unsigned
	integer while <type>snd_pcm_sframes_t</type> is for the frames
	as signed integer.
	</para>
	</section>

	<section id="pcm-interface-runtime-dma">
	<title>DMA Buffer Information</title>
	<para>
	The DMA buffer is defined by the following four fields,
	<structfield>dma_area</structfield>,
	<structfield>dma_addr</structfield>,
	<structfield>dma_bytes</structfield> and
	<structfield>dma_private</structfield>.
	The <structfield>dma_area</structfield> holds the buffer
	pointer (the logical address).  You can call
	<function>memcpy</function> from/to 
	this pointer.  Meanwhile, <structfield>dma_addr</structfield>
	holds the physical address of the buffer.  This field is
	specified only when the buffer is a linear buffer.
	<structfield>dma_bytes</structfield> holds the size of buffer
	in bytes.  <structfield>dma_private</structfield> is used for
	the ALSA DMA allocator.
	</para>

	<para>
	If you use a standard ALSA function,
	<function>snd_pcm_lib_malloc_pages()</function>, for
	allocating the buffer, these fields are set by the ALSA middle
	layer, and you should <emphasis>not</emphasis> change them by
	yourself.  You can read them but not write them.
	On the other hand, if you want to allocate the buffer by
	yourself, you'll need to manage it in hw_params callback.
	At least, <structfield>dma_bytes</structfield> is mandatory.
	<structfield>dma_area</structfield> is necessary when the
	buffer is mmapped.  If your driver doesn't support mmap, this
	field is not necessary.  <structfield>dma_addr</structfield>
2477
	is also optional.  You can use
L
Linus Torvalds 已提交
2478 2479 2480 2481 2482 2483 2484 2485
	<structfield>dma_private</structfield> as you like, too.
	</para>
	</section>

	<section id="pcm-interface-runtime-status">
	<title>Running Status</title>
	<para>
	The running status can be referred via <constant>runtime-&gt;status</constant>.
2486
	This is the pointer to the struct <structname>snd_pcm_mmap_status</structname>
L
Linus Torvalds 已提交
2487 2488 2489 2490 2491 2492
	record.  For example, you can get the current DMA hardware
	pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
	</para>

	<para>
	The DMA application pointer can be referred via
2493
	<constant>runtime-&gt;control</constant>, which points to the
2494
	struct <structname>snd_pcm_mmap_control</structname> record.
L
Linus Torvalds 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503
	However, accessing directly to this value is not recommended.
	</para>
	</section>

	<section id="pcm-interface-runtime-private">
	<title>Private Data</title> 
	<para>
	You can allocate a record for the substream and store it in
	<constant>runtime-&gt;private_data</constant>.  Usually, this
2504
	is done in
L
Linus Torvalds 已提交
2505 2506 2507
	<link linkend="pcm-interface-operators-open-callback"><citetitle>
	the open callback</citetitle></link>.
	Don't mix this with <constant>pcm-&gt;private_data</constant>.
2508
	The <constant>pcm-&gt;private_data</constant> usually points to the
L
Linus Torvalds 已提交
2509
	chip instance assigned statically at the creation of PCM, while the 
2510 2511
	<constant>runtime-&gt;private_data</constant> points to a dynamic
	data structure created at the PCM open callback.
L
Linus Torvalds 已提交
2512 2513 2514 2515

          <informalexample>
            <programlisting>
<![CDATA[
2516
  static int snd_xxx_open(struct snd_pcm_substream *substream)
L
Linus Torvalds 已提交
2517
  {
2518
          struct my_pcm_data *data;
L
Linus Torvalds 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
          ....
          data = kmalloc(sizeof(*data), GFP_KERNEL);
          substream->runtime->private_data = data;
          ....
  }
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
          The allocated object must be released in
	<link linkend="pcm-interface-operators-open-callback"><citetitle>
	the close callback</citetitle></link>.
        </para>
	</section>

    </section>

    <section id="pcm-interface-operators">
      <title>Operators</title>
      <para>
2541
        OK, now let me give details about each pcm callback
L
Linus Torvalds 已提交
2542
      (<parameter>ops</parameter>). In general, every callback must
2543 2544 2545 2546
      return 0 if successful, or a negative error number
      such as <constant>-EINVAL</constant>. To choose an appropriate
      error number, it is advised to check what value other parts of
      the kernel return when the same kind of request fails.
L
Linus Torvalds 已提交
2547 2548 2549 2550
      </para>

      <para>
        The callback function takes at least the argument with
2551 2552
        <structname>snd_pcm_substream</structname> pointer. To retrieve
        the chip record from the given substream instance, you can use the
L
Linus Torvalds 已提交
2553 2554 2555 2556 2557 2558
        following macro. 

        <informalexample>
          <programlisting>
<![CDATA[
  int xxx() {
2559
          struct mychip *chip = snd_pcm_substream_chip(substream);
L
Linus Torvalds 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568
          ....
  }
]]>
          </programlisting>
        </informalexample>

	The macro reads <constant>substream-&gt;private_data</constant>,
	which is a copy of <constant>pcm-&gt;private_data</constant>.
	You can override the former if you need to assign different data
2569
	records per PCM substream.  For example, the cmi8330 driver assigns
L
Linus Torvalds 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	different private_data for playback and capture directions,
	because it uses two different codecs (SB- and AD-compatible) for
	different directions.
      </para>

      <section id="pcm-interface-operators-open-callback">
        <title>open callback</title>
        <para>
          <informalexample>
            <programlisting>
<![CDATA[
2581
  static int snd_xxx_open(struct snd_pcm_substream *substream);
L
Linus Torvalds 已提交
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
]]>
            </programlisting>
          </informalexample>

          This is called when a pcm substream is opened.
        </para>

        <para>
          At least, here you have to initialize the runtime-&gt;hw
          record. Typically, this is done by like this: 

          <informalexample>
            <programlisting>
<![CDATA[
2596
  static int snd_xxx_open(struct snd_pcm_substream *substream)
L
Linus Torvalds 已提交
2597
  {
2598 2599
          struct mychip *chip = snd_pcm_substream_chip(substream);
          struct snd_pcm_runtime *runtime = substream->runtime;
L
Linus Torvalds 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

          runtime->hw = snd_mychip_playback_hw;
          return 0;
  }
]]>
            </programlisting>
          </informalexample>

          where <parameter>snd_mychip_playback_hw</parameter> is the
          pre-defined hardware description.
	</para>

	<para>
	You can allocate a private data in this callback, as described
	in <link linkend="pcm-interface-runtime-private"><citetitle>
	Private Data</citetitle></link> section.
	</para>

	<para>
	If the hardware configuration needs more constraints, set the
	hardware constraints here, too.
	See <link linkend="pcm-interface-constraints"><citetitle>
	Constraints</citetitle></link> for more details.
	</para>
      </section>

      <section id="pcm-interface-operators-close-callback">
        <title>close callback</title>
        <para>
          <informalexample>
            <programlisting>
<![CDATA[
2632
  static int snd_xxx_close(struct snd_pcm_substream *substream);
L
Linus Torvalds 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
]]>
            </programlisting>
          </informalexample>

          Obviously, this is called when a pcm substream is closed.
        </para>

        <para>
          Any private instance for a pcm substream allocated in the
          open callback will be released here. 

          <informalexample>
            <programlisting>
<![CDATA[
2647
  static int snd_xxx_close(struct snd_pcm_substream *substream)
L
Linus Torvalds 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
  {
          ....
          kfree(substream->runtime->private_data);
          ....
  }
]]>
            </programlisting>
          </informalexample>
        </para>
      </section>

      <section id="pcm-interface-operators-ioctl-callback">
        <title>ioctl callback</title>
        <para>
2662
          This is used for any special call to pcm ioctls. But
L
Linus Torvalds 已提交
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
        usually you can pass a generic ioctl callback, 
        <function>snd_pcm_lib_ioctl</function>.
        </para>
      </section>

      <section id="pcm-interface-operators-hw-params-callback">
        <title>hw_params callback</title>
        <para>
          <informalexample>
            <programlisting>
<![CDATA[
2674 2675
  static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
                               struct snd_pcm_hw_params *hw_params);
L
Linus Torvalds 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
          This is called when the hardware parameter
        (<structfield>hw_params</structfield>) is set
        up by the application, 
        that is, once when the buffer size, the period size, the
        format, etc. are defined for the pcm substream. 
        </para>

        <para>
2690
          Many hardware setups should be done in this callback,
L
Linus Torvalds 已提交
2691 2692 2693 2694 2695
        including the allocation of buffers. 
        </para>

        <para>
          Parameters to be initialized are retrieved by
2696
          <function>params_xxx()</function> macros. To allocate
L
Linus Torvalds 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
          buffer, you can call a helper function, 

          <informalexample>
            <programlisting>
<![CDATA[
  snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
]]>
            </programlisting>
          </informalexample>

          <function>snd_pcm_lib_malloc_pages()</function> is available
	  only when the DMA buffers have been pre-allocated.
	  See the section <link
	  linkend="buffer-and-memory-buffer-types"><citetitle>
	  Buffer Types</citetitle></link> for more details.
        </para>

        <para>
          Note that this and <structfield>prepare</structfield> callbacks
        may be called multiple times per initialization.
        For example, the OSS emulation may
        call these callbacks at each change via its ioctl. 
        </para>

        <para>
2722 2723
          Thus, you need to be careful not to allocate the same buffers
        many times, which will lead to memory leaks!  Calling the
L
Linus Torvalds 已提交
2724 2725 2726 2727 2728 2729
        helper function above many times is OK. It will release the
        previous buffer automatically when it was already allocated. 
        </para>

        <para>
          Another note is that this callback is non-atomic
2730 2731 2732
        (schedulable) as default, i.e. when no
	<structfield>nonatomic</structfield> flag set.
	This is important, because the
L
Linus Torvalds 已提交
2733
        <structfield>trigger</structfield> callback 
2734
        is atomic (non-schedulable). That is, mutexes or any
L
Linus Torvalds 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
        schedule-related functions are not available in
        <structfield>trigger</structfield> callback.
	Please see the subsection
	<link linkend="pcm-interface-atomicity"><citetitle>
	Atomicity</citetitle></link> for details.
        </para>
      </section>

      <section id="pcm-interface-operators-hw-free-callback">
        <title>hw_free callback</title>
        <para>
          <informalexample>
            <programlisting>
<![CDATA[
2749
  static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
L
Linus Torvalds 已提交
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
          This is called to release the resources allocated via
          <structfield>hw_params</structfield>. For example, releasing the
          buffer via 
          <function>snd_pcm_lib_malloc_pages()</function> is done by
          calling the following: 

          <informalexample>
            <programlisting>
<![CDATA[
  snd_pcm_lib_free_pages(substream);
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
          This function is always called before the close callback is called.
          Also, the callback may be called multiple times, too.
          Keep track whether the resource was already released. 
        </para>
      </section>

      <section id="pcm-interface-operators-prepare-callback">
       <title>prepare callback</title>
        <para>
          <informalexample>
            <programlisting>
<![CDATA[
2784
  static int snd_xxx_prepare(struct snd_pcm_substream *substream);
L
Linus Torvalds 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
          This callback is called when the pcm is
        <quote>prepared</quote>. You can set the format type, sample
        rate, etc. here. The difference from
        <structfield>hw_params</structfield> is that the 
2795
        <structfield>prepare</structfield> callback will be called each
L
Linus Torvalds 已提交
2796 2797
        time 
        <function>snd_pcm_prepare()</function> is called, i.e. when
2798
        recovering after underruns, etc. 
L
Linus Torvalds 已提交
2799 2800 2801
        </para>

        <para>
2802 2803
	Note that this callback is now non-atomic.
	You can use schedule-related functions safely in this callback.
L
Linus Torvalds 已提交
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
        </para>

        <para>
          In this and the following callbacks, you can refer to the
        values via the runtime record,
        substream-&gt;runtime.
        For example, to get the current
        rate, format or channels, access to
        runtime-&gt;rate,
        runtime-&gt;format or
        runtime-&gt;channels, respectively. 
        The physical address of the allocated buffer is set to
	runtime-&gt;dma_area.  The buffer and period sizes are
	in runtime-&gt;buffer_size and runtime-&gt;period_size,
	respectively.
        </para>

        <para>
          Be careful that this callback will be called many times at
2823
        each setup, too. 
L
Linus Torvalds 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832
        </para>
      </section>

      <section id="pcm-interface-operators-trigger-callback">
        <title>trigger callback</title>
        <para>
          <informalexample>
            <programlisting>
<![CDATA[
2833
  static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
L
Linus Torvalds 已提交
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
]]>
            </programlisting>
          </informalexample>

          This is called when the pcm is started, stopped or paused.
        </para>

        <para>
          Which action is specified in the second argument,
          <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
          <filename>&lt;sound/pcm.h&gt;</filename>. At least,
2845
          the <constant>START</constant> and <constant>STOP</constant>
L
Linus Torvalds 已提交
2846 2847 2848 2849 2850 2851 2852
          commands must be defined in this callback. 

          <informalexample>
            <programlisting>
<![CDATA[
  switch (cmd) {
  case SNDRV_PCM_TRIGGER_START:
2853
          /* do something to start the PCM engine */
L
Linus Torvalds 已提交
2854 2855
          break;
  case SNDRV_PCM_TRIGGER_STOP:
2856
          /* do something to stop the PCM engine */
L
Linus Torvalds 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
          break;
  default:
          return -EINVAL;
  }
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
2867
          When the pcm supports the pause operation (given in the info
2868
        field of the hardware table), the <constant>PAUSE_PUSH</constant>
L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874
        and <constant>PAUSE_RELEASE</constant> commands must be
        handled here, too. The former is the command to pause the pcm,
        and the latter to restart the pcm again. 
        </para>

        <para>
2875 2876
          When the pcm supports the suspend/resume operation,
	regardless of full or partial suspend/resume support,
2877
        the <constant>SUSPEND</constant> and <constant>RESUME</constant>
L
Linus Torvalds 已提交
2878 2879 2880
        commands must be handled, too.
        These commands are issued when the power-management status is
        changed.  Obviously, the <constant>SUSPEND</constant> and
2881 2882 2883
        <constant>RESUME</constant> commands
        suspend and resume the pcm substream, and usually, they
        are identical to the <constant>STOP</constant> and
L
Linus Torvalds 已提交
2884
        <constant>START</constant> commands, respectively.
2885
	  See the <link linkend="power-management"><citetitle>
2886
	Power Management</citetitle></link> section for details.
L
Linus Torvalds 已提交
2887 2888 2889
        </para>

        <para>
2890 2891 2892
          As mentioned, this callback is atomic as default unless
	  <structfield>nonatomic</structfield> flag set, and
	  you cannot call functions which may sleep.
L
Linus Torvalds 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	  The trigger callback should be as minimal as possible,
	  just really triggering the DMA.  The other stuff should be
	  initialized hw_params and prepare callbacks properly
	  beforehand.
        </para>
      </section>

      <section id="pcm-interface-operators-pointer-callback">
        <title>pointer callback</title>
        <para>
          <informalexample>
            <programlisting>
<![CDATA[
2906
  static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
L
Linus Torvalds 已提交
2907 2908 2909 2910 2911 2912
]]>
            </programlisting>
          </informalexample>

          This callback is called when the PCM middle layer inquires
        the current hardware position on the buffer. The position must
2913 2914
        be returned in frames,
        ranging from 0 to buffer_size - 1.
L
Linus Torvalds 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
        </para>

        <para>
          This is called usually from the buffer-update routine in the
        pcm middle layer, which is invoked when
        <function>snd_pcm_period_elapsed()</function> is called in the
        interrupt routine. Then the pcm middle layer updates the
        position and calculates the available space, and wakes up the
        sleeping poll threads, etc. 
        </para>

        <para>
2927
          This callback is also atomic as default.
L
Linus Torvalds 已提交
2928 2929 2930 2931 2932 2933 2934 2935
        </para>
      </section>

      <section id="pcm-interface-operators-copy-silence">
        <title>copy and silence callbacks</title>
        <para>
          These callbacks are not mandatory, and can be omitted in
        most cases. These callbacks are used when the hardware buffer
2936
        cannot be in the normal memory space. Some chips have their
L
Linus Torvalds 已提交
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
        own buffer on the hardware which is not mappable. In such a
        case, you have to transfer the data manually from the memory
        buffer to the hardware buffer. Or, if the buffer is
        non-contiguous on both physical and virtual memory spaces,
        these callbacks must be defined, too. 
        </para>

        <para>
          If these two callbacks are defined, copy and set-silence
        operations are done by them. The detailed will be described in
        the later section <link
        linkend="buffer-and-memory"><citetitle>Buffer and Memory
        Management</citetitle></link>. 
        </para>
      </section>

      <section id="pcm-interface-operators-ack">
        <title>ack callback</title>
        <para>
          This callback is also not mandatory. This callback is called
        when the appl_ptr is updated in read or write operations.
        Some drivers like emu10k1-fx and cs46xx need to track the
	current appl_ptr for the internal buffer, and this callback
	is useful only for such a purpose.
	</para>
	<para>
2963
	  This callback is atomic as default.
L
Linus Torvalds 已提交
2964 2965 2966 2967 2968 2969 2970
	</para>
      </section>

      <section id="pcm-interface-operators-page-callback">
        <title>page callback</title>

        <para>
2971 2972
          This callback is optional too. This callback is used
        mainly for non-contiguous buffers. The mmap calls this
L
Linus Torvalds 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
        callback to get the page address. Some examples will be
        explained in the later section <link
        linkend="buffer-and-memory"><citetitle>Buffer and Memory
        Management</citetitle></link>, too. 
        </para>
      </section>
    </section>

    <section id="pcm-interface-interrupt-handler">
      <title>Interrupt Handler</title>
      <para>
        The rest of pcm stuff is the PCM interrupt handler. The
      role of PCM interrupt handler in the sound driver is to update
      the buffer position and to tell the PCM middle layer when the
      buffer position goes across the prescribed period size. To
2988
      inform this, call the <function>snd_pcm_period_elapsed()</function>
L
Linus Torvalds 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
      function. 
      </para>

      <para>
        There are several types of sound chips to generate the interrupts.
      </para>

      <section id="pcm-interface-interrupt-handler-boundary">
        <title>Interrupts at the period (fragment) boundary</title>
        <para>
          This is the most frequently found type:  the hardware
        generates an interrupt at each period boundary.
	In this case, you can call
        <function>snd_pcm_period_elapsed()</function> at each 
        interrupt. 
        </para>

        <para>
          <function>snd_pcm_period_elapsed()</function> takes the
        substream pointer as its argument. Thus, you need to keep the
        substream pointer accessible from the chip instance. For
        example, define substream field in the chip record to hold the
        current running substream pointer, and set the pointer value
        at open callback (and reset at close callback). 
        </para>

        <para>
A
Adrian Bunk 已提交
3016
          If you acquire a spinlock in the interrupt handler, and the
L
Linus Torvalds 已提交
3017 3018 3019 3020 3021 3022 3023 3024
        lock is used in other pcm callbacks, too, then you have to
        release the lock before calling
        <function>snd_pcm_period_elapsed()</function>, because
        <function>snd_pcm_period_elapsed()</function> calls other pcm
        callbacks inside. 
        </para>

        <para>
3025
          Typical code would be like:
L
Linus Torvalds 已提交
3026 3027 3028 3029 3030

          <example>
	    <title>Interrupt Handler Case #1</title>
            <programlisting>
<![CDATA[
3031
  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
L
Linus Torvalds 已提交
3032
  {
3033
          struct mychip *chip = dev_id;
L
Linus Torvalds 已提交
3034 3035 3036 3037 3038 3039 3040
          spin_lock(&chip->lock);
          ....
          if (pcm_irq_invoked(chip)) {
                  /* call updater, unlock before it */
                  spin_unlock(&chip->lock);
                  snd_pcm_period_elapsed(chip->substream);
                  spin_lock(&chip->lock);
3041
                  /* acknowledge the interrupt if necessary */
L
Linus Torvalds 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
          }
          ....
          spin_unlock(&chip->lock);
          return IRQ_HANDLED;
  }
]]>
            </programlisting>
          </example>
        </para>
      </section>

      <section id="pcm-interface-interrupt-handler-timer">
3054
        <title>High frequency timer interrupts</title>
L
Linus Torvalds 已提交
3055
        <para>
3056
	This happens when the hardware doesn't generate interrupts
3057
        at the period boundary but issues timer interrupts at a fixed
L
Linus Torvalds 已提交
3058 3059
        timer rate (e.g. es1968 or ymfpci drivers). 
        In this case, you need to check the current hardware
3060 3061
        position and accumulate the processed sample length at each
        interrupt.  When the accumulated size exceeds the period
L
Linus Torvalds 已提交
3062 3063 3064 3065 3066 3067
        size, call 
        <function>snd_pcm_period_elapsed()</function> and reset the
        accumulator. 
        </para>

        <para>
3068
          Typical code would be like the following.
L
Linus Torvalds 已提交
3069 3070 3071 3072 3073

          <example>
	    <title>Interrupt Handler Case #2</title>
            <programlisting>
<![CDATA[
3074
  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
L
Linus Torvalds 已提交
3075
  {
3076
          struct mychip *chip = dev_id;
L
Linus Torvalds 已提交
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
          spin_lock(&chip->lock);
          ....
          if (pcm_irq_invoked(chip)) {
                  unsigned int last_ptr, size;
                  /* get the current hardware pointer (in frames) */
                  last_ptr = get_hw_ptr(chip);
                  /* calculate the processed frames since the
                   * last update
                   */
                  if (last_ptr < chip->last_ptr)
                          size = runtime->buffer_size + last_ptr 
                                   - chip->last_ptr; 
                  else
                          size = last_ptr - chip->last_ptr;
                  /* remember the last updated point */
                  chip->last_ptr = last_ptr;
                  /* accumulate the size */
                  chip->size += size;
                  /* over the period boundary? */
                  if (chip->size >= runtime->period_size) {
                          /* reset the accumulator */
                          chip->size %= runtime->period_size;
                          /* call updater */
                          spin_unlock(&chip->lock);
                          snd_pcm_period_elapsed(substream);
                          spin_lock(&chip->lock);
                  }
3104
                  /* acknowledge the interrupt if necessary */
L
Linus Torvalds 已提交
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
          }
          ....
          spin_unlock(&chip->lock);
          return IRQ_HANDLED;
  }
]]>
            </programlisting>
          </example>
        </para>
      </section>

      <section id="pcm-interface-interrupt-handler-both">
        <title>On calling <function>snd_pcm_period_elapsed()</function></title>
        <para>
          In both cases, even if more than one period are elapsed, you
        don't have to call
        <function>snd_pcm_period_elapsed()</function> many times. Call
        only once. And the pcm layer will check the current hardware
        pointer and update to the latest status. 
        </para>
      </section>
    </section>

    <section id="pcm-interface-atomicity">
      <title>Atomicity</title>
      <para>
3131 3132 3133 3134 3135 3136 3137 3138 3139
      One of the most important (and thus difficult to debug) problems
      in kernel programming are race conditions.
      In the Linux kernel, they are usually avoided via spin-locks, mutexes
      or semaphores.  In general, if a race condition can happen
      in an interrupt handler, it has to be managed atomically, and you
      have to use a spinlock to protect the critical session. If the
      critical section is not in interrupt handler code and
      if taking a relatively long time to execute is acceptable, you
      should use mutexes or semaphores instead.
L
Linus Torvalds 已提交
3140 3141 3142 3143
      </para>

      <para>
      As already seen, some pcm callbacks are atomic and some are
3144
      not.  For example, the <parameter>hw_params</parameter> callback is
L
Linus Torvalds 已提交
3145 3146 3147
      non-atomic, while <parameter>trigger</parameter> callback is
      atomic.  This means, the latter is called already in a spinlock
      held by the PCM middle layer. Please take this atomicity into
3148
      account when you choose a locking scheme in the callbacks.
L
Linus Torvalds 已提交
3149 3150 3151 3152 3153
      </para>

      <para>
      In the atomic callbacks, you cannot use functions which may call
      <function>schedule</function> or go to
3154
      <function>sleep</function>.  Semaphores and mutexes can sleep,
L
Linus Torvalds 已提交
3155 3156
      and hence they cannot be used inside the atomic callbacks
      (e.g. <parameter>trigger</parameter> callback).
3157
      To implement some delay in such a callback, please use
L
Linus Torvalds 已提交
3158 3159 3160 3161 3162 3163 3164 3165
      <function>udelay()</function> or <function>mdelay()</function>.
      </para>

      <para>
      All three atomic callbacks (trigger, pointer, and ack) are
      called with local interrupts disabled.
      </para>

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
      <para>
      The recent changes in PCM core code, however, allow all PCM
      operations to be non-atomic.  This assumes that the all caller
      sides are in non-atomic contexts.  For example, the function
      <function>snd_pcm_period_elapsed()</function> is called
      typically from the interrupt handler.  But, if you set up the
      driver to use a threaded interrupt handler, this call can be in
      non-atomic context, too.  In such a case, you can set
      <structfield>nonatomic</structfield> filed of
      <structname>snd_pcm</structname> object after creating it.
      When this flag is set, mutex and rwsem are used internally in
      the PCM core instead of spin and rwlocks, so that you can call
      all PCM functions safely in a non-atomic context.
      </para>

L
Linus Torvalds 已提交
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
    </section>
    <section id="pcm-interface-constraints">
      <title>Constraints</title>
      <para>
        If your chip supports unconventional sample rates, or only the
      limited samples, you need to set a constraint for the
      condition. 
      </para>

      <para>
        For example, in order to restrict the sample rates in the some
        supported values, use
	<function>snd_pcm_hw_constraint_list()</function>.
	You need to call this function in the open callback.

        <example>
	  <title>Example of Hardware Constraints</title>
          <programlisting>
<![CDATA[
  static unsigned int rates[] =
          {4000, 10000, 22050, 44100};
3202
  static struct snd_pcm_hw_constraint_list constraints_rates = {
L
Linus Torvalds 已提交
3203 3204 3205 3206 3207
          .count = ARRAY_SIZE(rates),
          .list = rates,
          .mask = 0,
  };

3208
  static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
L
Linus Torvalds 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
  {
          int err;
          ....
          err = snd_pcm_hw_constraint_list(substream->runtime, 0,
                                           SNDRV_PCM_HW_PARAM_RATE,
                                           &constraints_rates);
          if (err < 0)
                  return err;
          ....
  }
]]>
          </programlisting>
        </example>
      </para>

      <para>
        There are many different constraints.
3226
        Look at <filename>sound/pcm.h</filename> for a complete list.
L
Linus Torvalds 已提交
3227 3228 3229
        You can even define your own constraint rules.
        For example, let's suppose my_chip can manage a substream of 1 channel
        if and only if the format is S16_LE, otherwise it supports any format
3230
        specified in the <structname>snd_pcm_hardware</structname> structure (or in any
L
Linus Torvalds 已提交
3231 3232 3233 3234 3235 3236
        other constraint_list). You can build a rule like this:

        <example>
	  <title>Example of Hardware Constraints for Channels</title>
	  <programlisting>
<![CDATA[
3237
  static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
3238
                                        struct snd_pcm_hw_rule *rule)
L
Linus Torvalds 已提交
3239
  {
3240
          struct snd_interval *c = hw_param_interval(params,
3241
                        SNDRV_PCM_HW_PARAM_CHANNELS);
3242
          struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3243
          struct snd_interval ch;
L
Linus Torvalds 已提交
3244

3245 3246 3247 3248 3249
          snd_interval_any(&ch);
          if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
                  ch.min = ch.max = 1;
                  ch.integer = 1;
                  return snd_interval_refine(c, &ch);
L
Linus Torvalds 已提交
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
          }
          return 0;
  }
]]>
          </programlisting>
        </example>
      </para>
 
      <para>
        Then you need to call this function to add your rule:

       <informalexample>
	 <programlisting>
<![CDATA[
  snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3265 3266
                      hw_rule_channels_by_format, NULL,
                      SNDRV_PCM_HW_PARAM_FORMAT, -1);
L
Linus Torvalds 已提交
3267 3268 3269 3270 3271 3272
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
3273 3274 3275 3276
        The rule function is called when an application sets the PCM
	format, and it refines the number of channels accordingly.
        But an application may set the number of channels before
	setting the format. Thus you also need to define the inverse rule:
L
Linus Torvalds 已提交
3277 3278

       <example>
3279
	 <title>Example of Hardware Constraints for Formats</title>
L
Linus Torvalds 已提交
3280 3281
	 <programlisting>
<![CDATA[
3282
  static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
3283
                                        struct snd_pcm_hw_rule *rule)
L
Linus Torvalds 已提交
3284
  {
3285
          struct snd_interval *c = hw_param_interval(params,
3286
                SNDRV_PCM_HW_PARAM_CHANNELS);
3287
          struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3288
          struct snd_mask fmt;
L
Linus Torvalds 已提交
3289

3290 3291 3292 3293
          snd_mask_any(&fmt);    /* Init the struct */
          if (c->min < 2) {
                  fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
                  return snd_mask_refine(f, &fmt);
L
Linus Torvalds 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
          }
          return 0;
  }
]]>
          </programlisting>
        </example>
      </para>

      <para>
      ...and in the open callback:
       <informalexample>
	 <programlisting>
<![CDATA[
  snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3308 3309
                      hw_rule_format_by_channels, NULL,
                      SNDRV_PCM_HW_PARAM_CHANNELS, -1);
L
Linus Torvalds 已提交
3310 3311 3312 3313 3314 3315
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
3316
        I won't give more details here, rather I
L
Linus Torvalds 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
        would like to say, <quote>Luke, use the source.</quote>
      </para>
    </section>

  </chapter>


<!-- ****************************************************** -->
<!-- Control Interface  -->
<!-- ****************************************************** -->
  <chapter id="control-interface">
    <title>Control Interface</title>

    <section id="control-interface-general">
      <title>General</title>
      <para>
        The control interface is used widely for many switches,
3334 3335 3336
      sliders, etc. which are accessed from user-space. Its most
      important use is the mixer interface. In other words, since ALSA
      0.9.x, all the mixer stuff is implemented on the control kernel API.
L
Linus Torvalds 已提交
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
      </para>

      <para>
        ALSA has a well-defined AC97 control module. If your chip
      supports only the AC97 and nothing else, you can skip this
      section. 
      </para>

      <para>
        The control API is defined in
      <filename>&lt;sound/control.h&gt;</filename>.
3348
      Include this file if you want to add your own controls.
L
Linus Torvalds 已提交
3349 3350 3351 3352 3353 3354
      </para>
    </section>

    <section id="control-interface-definition">
      <title>Definition of Controls</title>
      <para>
3355 3356
        To create a new control, you need to define the
	following three
L
Linus Torvalds 已提交
3357 3358 3359
      callbacks: <structfield>info</structfield>,
      <structfield>get</structfield> and
      <structfield>put</structfield>. Then, define a
3360
      struct <structname>snd_kcontrol_new</structname> record, such as: 
L
Linus Torvalds 已提交
3361 3362 3363 3364 3365

        <example>
	  <title>Definition of a Control</title>
          <programlisting>
<![CDATA[
3366
  static struct snd_kcontrol_new my_control = {
L
Linus Torvalds 已提交
3367 3368 3369 3370
          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
          .name = "PCM Playback Switch",
          .index = 0,
          .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
T
Takashi Iwai 已提交
3371
          .private_value = 0xffff,
L
Linus Torvalds 已提交
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
          .info = my_control_info,
          .get = my_control_get,
          .put = my_control_put
  };
]]>
          </programlisting>
        </example>
      </para>

      <para>
3382 3383
        The <structfield>iface</structfield> field specifies the control
      type, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
      is usually <constant>MIXER</constant>.
      Use <constant>CARD</constant> for global controls that are not
      logically part of the mixer.
      If the control is closely associated with some specific device on
      the sound card, use <constant>HWDEP</constant>,
      <constant>PCM</constant>, <constant>RAWMIDI</constant>,
      <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
      specify the device number with the
      <structfield>device</structfield> and
      <structfield>subdevice</structfield> fields.
L
Linus Torvalds 已提交
3394 3395 3396 3397
      </para>

      <para>
        The <structfield>name</structfield> is the name identifier
3398
      string. Since ALSA 0.9.x, the control name is very important,
L
Linus Torvalds 已提交
3399 3400
      because its role is classified from its name. There are
      pre-defined standard control names. The details are described in
3401 3402
      the <link linkend="control-interface-control-names"><citetitle>
      Control Names</citetitle></link> subsection.
L
Linus Torvalds 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
      </para>

      <para>
        The <structfield>index</structfield> field holds the index number
      of this control. If there are several different controls with
      the same name, they can be distinguished by the index
      number. This is the case when 
      several codecs exist on the card. If the index is zero, you can
      omit the definition above. 
      </para>

      <para>
        The <structfield>access</structfield> field contains the access
      type of this control. Give the combination of bit masks,
      <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
3418 3419 3420
      The details will be explained in
      the <link linkend="control-interface-access-flags"><citetitle>
      Access Flags</citetitle></link> subsection.
L
Linus Torvalds 已提交
3421 3422 3423
      </para>

      <para>
T
Takashi Iwai 已提交
3424
        The <structfield>private_value</structfield> field contains
L
Linus Torvalds 已提交
3425
      an arbitrary long integer value for this record. When using
3426
      the generic <structfield>info</structfield>,
L
Linus Torvalds 已提交
3427 3428 3429 3430 3431 3432 3433
      <structfield>get</structfield> and
      <structfield>put</structfield> callbacks, you can pass a value 
      through this field. If several small numbers are necessary, you can
      combine them in bitwise. Or, it's possible to give a pointer
      (casted to unsigned long) of some record to this field, too. 
      </para>

C
Clemens Ladisch 已提交
3434 3435 3436 3437 3438 3439 3440
      <para>
      The <structfield>tlv</structfield> field can be used to provide
      metadata about the control; see the
      <link linkend="control-interface-tlv">
      <citetitle>Metadata</citetitle></link> subsection.
      </para>

L
Linus Torvalds 已提交
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
      <para>
        The other three are
	<link linkend="control-interface-callbacks"><citetitle>
	callback functions</citetitle></link>.
      </para>
    </section>

    <section id="control-interface-control-names">
      <title>Control Names</title>
      <para>
3451
        There are some standards to define the control names. A
L
Linus Torvalds 已提交
3452 3453 3454 3455 3456 3457 3458
      control is usually defined from the three parts as
      <quote>SOURCE DIRECTION FUNCTION</quote>. 
      </para>

      <para>
        The first, <constant>SOURCE</constant>, specifies the source
      of the control, and is a string such as <quote>Master</quote>,
3459
      <quote>PCM</quote>, <quote>CD</quote> and
L
Linus Torvalds 已提交
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
      <quote>Line</quote>. There are many pre-defined sources. 
      </para>

      <para>
        The second, <constant>DIRECTION</constant>, is one of the
      following strings according to the direction of the control:
      <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
      Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
      be omitted, meaning both playback and capture directions. 
      </para>

      <para>
        The third, <constant>FUNCTION</constant>, is one of the
      following strings according to the function of the control:
      <quote>Switch</quote>, <quote>Volume</quote> and
      <quote>Route</quote>. 
      </para>

      <para>
        The example of control names are, thus, <quote>Master Capture
      Switch</quote> or <quote>PCM Playback Volume</quote>. 
      </para>

      <para>
        There are some exceptions:
      </para>

      <section id="control-interface-control-names-global">
        <title>Global capture and playback</title>
        <para>
          <quote>Capture Source</quote>, <quote>Capture Switch</quote>
        and <quote>Capture Volume</quote> are used for the global
        capture (input) source, switch and volume. Similarly,
        <quote>Playback Switch</quote> and <quote>Playback
        Volume</quote> are used for the global output gain switch and
        volume. 
        </para>
      </section>

      <section id="control-interface-control-names-tone">
        <title>Tone-controls</title>
        <para>
          tone-control switch and volumes are specified like
        <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
        Switch</quote>, <quote>Tone Control - Bass</quote>,
        <quote>Tone Control - Center</quote>.  
        </para>
      </section>

      <section id="control-interface-control-names-3d">
        <title>3D controls</title>
        <para>
          3D-control switches and volumes are specified like <quote>3D
        Control - XXX</quote>, e.g. <quote>3D Control -
        Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
        Control - Space</quote>. 
        </para>
      </section>

      <section id="control-interface-control-names-mic">
        <title>Mic boost</title>
        <para>
          Mic-boost switch is set as <quote>Mic Boost</quote> or
        <quote>Mic Boost (6dB)</quote>. 
        </para>

        <para>
          More precise information can be found in
        <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
        </para>
      </section>
    </section>

    <section id="control-interface-access-flags">
      <title>Access Flags</title>

      <para>
3537
      The access flag is the bitmask which specifies the access type
L
Linus Torvalds 已提交
3538 3539 3540 3541
      of the given control.  The default access type is
      <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>, 
      which means both read and write are allowed to this control.
      When the access flag is omitted (i.e. = 0), it is
3542
      considered as <constant>READWRITE</constant> access as default. 
L
Linus Torvalds 已提交
3543 3544 3545 3546 3547 3548
      </para>

      <para>
      When the control is read-only, pass
      <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
      In this case, you don't have to define
3549
      the <structfield>put</structfield> callback.
L
Linus Torvalds 已提交
3550
      Similarly, when the control is write-only (although it's a rare
3551 3552
      case), you can use the <constant>WRITE</constant> flag instead, and
      you don't need the <structfield>get</structfield> callback.
L
Linus Torvalds 已提交
3553 3554 3555 3556 3557 3558 3559
      </para>

      <para>
      If the control value changes frequently (e.g. the VU meter),
      <constant>VOLATILE</constant> flag should be given.  This means
      that the control may be changed without
      <link linkend="control-interface-change-notification"><citetitle>
3560
      notification</citetitle></link>. Applications should poll such
L
Linus Torvalds 已提交
3561 3562 3563 3564 3565
      a control constantly.
      </para>

      <para>
      When the control is inactive, set
3566
      the <constant>INACTIVE</constant> flag, too.
L
Linus Torvalds 已提交
3567
      There are <constant>LOCK</constant> and
3568
      <constant>OWNER</constant> flags to change the write
L
Linus Torvalds 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
      permissions.
      </para>

    </section>

    <section id="control-interface-callbacks">
      <title>Callbacks</title>

      <section id="control-interface-callbacks-info">
        <title>info callback</title>
        <para>
          The <structfield>info</structfield> callback is used to get
3581
        detailed information on this control. This must store the
3582
        values of the given struct <structname>snd_ctl_elem_info</structname>
L
Linus Torvalds 已提交
3583
        object. For example, for a boolean control with a single
3584
        element: 
L
Linus Torvalds 已提交
3585 3586 3587 3588 3589

          <example>
	    <title>Example of info callback</title>
            <programlisting>
<![CDATA[
3590
  static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
3591
                          struct snd_ctl_elem_info *uinfo)
L
Linus Torvalds 已提交
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
  {
          uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
          uinfo->count = 1;
          uinfo->value.integer.min = 0;
          uinfo->value.integer.max = 1;
          return 0;
  }
]]>
            </programlisting>
          </example>
        </para>

        <para>
          The <structfield>type</structfield> field specifies the type
        of the control. There are <constant>BOOLEAN</constant>,
        <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
        <constant>BYTES</constant>, <constant>IEC958</constant> and
        <constant>INTEGER64</constant>. The
        <structfield>count</structfield> field specifies the 
        number of elements in this control. For example, a stereo
        volume would have count = 2. The
        <structfield>value</structfield> field is a union, and 
        the values stored are depending on the type. The boolean and
3615
        integer types are identical. 
L
Linus Torvalds 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624
        </para>

        <para>
          The enumerated type is a bit different from others.  You'll
          need to set the string for the currently given item index. 

          <informalexample>
            <programlisting>
<![CDATA[
3625
  static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
3626
                          struct snd_ctl_elem_info *uinfo)
L
Linus Torvalds 已提交
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
  {
          static char *texts[4] = {
                  "First", "Second", "Third", "Fourth"
          };
          uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
          uinfo->count = 1;
          uinfo->value.enumerated.items = 4;
          if (uinfo->value.enumerated.item > 3)
                  uinfo->value.enumerated.item = 3;
          strcpy(uinfo->value.enumerated.name,
                 texts[uinfo->value.enumerated.item]);
          return 0;
  }
]]>
            </programlisting>
          </informalexample>
        </para>
3644

3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
        <para>
	  The above callback can be simplified with a helper function,
	  <function>snd_ctl_enum_info</function>.  The final code
	  looks like below.
	  (You can pass ARRAY_SIZE(texts) instead of 4 in the third
	   argument; it's a matter of taste.)

          <informalexample>
            <programlisting>
<![CDATA[
  static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_info *uinfo)
  {
          static char *texts[4] = {
                  "First", "Second", "Third", "Fourth"
          };
          return snd_ctl_enum_info(uinfo, 1, 4, texts);
  }
]]>
            </programlisting>
          </informalexample>
        </para>

3668
        <para>
3669
	  Some common info callbacks are available for your convenience:
3670 3671 3672 3673 3674 3675 3676
	<function>snd_ctl_boolean_mono_info()</function> and
	<function>snd_ctl_boolean_stereo_info()</function>.
	Obviously, the former is an info callback for a mono channel
	boolean item, just like <function>snd_myctl_mono_info</function>
	above, and the latter is for a stereo channel boolean item.
	</para>

L
Linus Torvalds 已提交
3677 3678 3679 3680 3681 3682 3683
      </section>

      <section id="control-interface-callbacks-get">
        <title>get callback</title>

        <para>
          This callback is used to read the current value of the
3684
        control and to return to user-space. 
L
Linus Torvalds 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693
        </para>

        <para>
          For example,

          <example>
	    <title>Example of get callback</title>
            <programlisting>
<![CDATA[
3694 3695
  static int snd_myctl_get(struct snd_kcontrol *kcontrol,
                           struct snd_ctl_elem_value *ucontrol)
L
Linus Torvalds 已提交
3696
  {
3697
          struct mychip *chip = snd_kcontrol_chip(kcontrol);
L
Linus Torvalds 已提交
3698 3699 3700 3701 3702 3703 3704 3705 3706
          ucontrol->value.integer.value[0] = get_some_value(chip);
          return 0;
  }
]]>
            </programlisting>
          </example>
        </para>

        <para>
3707 3708
	The <structfield>value</structfield> field depends on 
        the type of control as well as on the info callback.  For example,
L
Linus Torvalds 已提交
3709 3710
	the sb driver uses this field to store the register offset,
        the bit-shift and the bit-mask.  The
3711
        <structfield>private_value</structfield> field is set as follows:
L
Linus Torvalds 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
          <informalexample>
            <programlisting>
<![CDATA[
  .private_value = reg | (shift << 16) | (mask << 24)
]]>
            </programlisting>
          </informalexample>
	and is retrieved in callbacks like
          <informalexample>
            <programlisting>
<![CDATA[
3723 3724
  static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
                                    struct snd_ctl_elem_value *ucontrol)
L
Linus Torvalds 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
  {
          int reg = kcontrol->private_value & 0xff;
          int shift = (kcontrol->private_value >> 16) & 0xff;
          int mask = (kcontrol->private_value >> 24) & 0xff;
          ....
  }
]]>
            </programlisting>
          </informalexample>
	</para>

	<para>
3737 3738
	In the <structfield>get</structfield> callback,
	you have to fill all the elements if the
L
Linus Torvalds 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
        control has more than one elements,
        i.e. <structfield>count</structfield> &gt; 1.
	In the example above, we filled only one element
        (<structfield>value.integer.value[0]</structfield>) since it's
        assumed as <structfield>count</structfield> = 1.
        </para>
      </section>

      <section id="control-interface-callbacks-put">
        <title>put callback</title>

        <para>
3751
          This callback is used to write a value from user-space.
L
Linus Torvalds 已提交
3752 3753 3754 3755 3756 3757 3758 3759 3760
        </para>

        <para>
          For example,

          <example>
	    <title>Example of put callback</title>
            <programlisting>
<![CDATA[
3761 3762
  static int snd_myctl_put(struct snd_kcontrol *kcontrol,
                           struct snd_ctl_elem_value *ucontrol)
L
Linus Torvalds 已提交
3763
  {
3764
          struct mychip *chip = snd_kcontrol_chip(kcontrol);
L
Linus Torvalds 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
          int changed = 0;
          if (chip->current_value !=
               ucontrol->value.integer.value[0]) {
                  change_current_value(chip,
                              ucontrol->value.integer.value[0]);
                  changed = 1;
          }
          return changed;
  }
]]>
            </programlisting>
          </example>

          As seen above, you have to return 1 if the value is
        changed. If the value is not changed, return 0 instead. 
	If any fatal error happens, return a negative error code as
        usual.
        </para>

        <para>
3785
	As in the <structfield>get</structfield> callback,
L
Linus Torvalds 已提交
3786
	when the control has more than one elements,
3787
	all elements must be evaluated in this callback, too.
L
Linus Torvalds 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
        </para>
      </section>

      <section id="control-interface-callbacks-all">
        <title>Callbacks are not atomic</title>
        <para>
          All these three callbacks are basically not atomic.
        </para>
      </section>
    </section>

    <section id="control-interface-constructor">
      <title>Constructor</title>
      <para>
        When everything is ready, finally we can create a new
3803
      control. To create a control, there are two functions to be
L
Linus Torvalds 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
      called, <function>snd_ctl_new1()</function> and
      <function>snd_ctl_add()</function>. 
      </para>

      <para>
        In the simplest way, you can do like this:

        <informalexample>
          <programlisting>
<![CDATA[
3814 3815
  err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
  if (err < 0)
L
Linus Torvalds 已提交
3816 3817 3818 3819 3820 3821
          return err;
]]>
          </programlisting>
        </informalexample>

        where <parameter>my_control</parameter> is the
3822
      struct <structname>snd_kcontrol_new</structname> object defined above, and chip
L
Linus Torvalds 已提交
3823 3824
      is the object pointer to be passed to
      kcontrol-&gt;private_data 
3825
      which can be referred to in callbacks. 
L
Linus Torvalds 已提交
3826 3827 3828 3829
      </para>

      <para>
        <function>snd_ctl_new1()</function> allocates a new
3830 3831
      <structname>snd_kcontrol</structname> instance,
      and <function>snd_ctl_add</function> assigns the given
L
Linus Torvalds 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
      control component to the card. 
      </para>
    </section>

    <section id="control-interface-change-notification">
      <title>Change Notification</title>
      <para>
        If you need to change and update a control in the interrupt
      routine, you can call <function>snd_ctl_notify()</function>. For
      example, 

        <informalexample>
          <programlisting>
<![CDATA[
  snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
]]>
          </programlisting>
        </informalexample>

        This function takes the card pointer, the event-mask, and the
      control id pointer for the notification. The event-mask
      specifies the types of notification, for example, in the above
      example, the change of control values is notified.
3855
      The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname>
L
Linus Torvalds 已提交
3856 3857 3858 3859 3860 3861
      to be notified.
      You can find some examples in <filename>es1938.c</filename> or
      <filename>es1968.c</filename> for hardware volume interrupts. 
      </para>
    </section>

C
Clemens Ladisch 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
    <section id="control-interface-tlv">
      <title>Metadata</title>
      <para>
      To provide information about the dB values of a mixer control, use
      on of the <constant>DECLARE_TLV_xxx</constant> macros from
      <filename>&lt;sound/tlv.h&gt;</filename> to define a variable
      containing this information, set the<structfield>tlv.p
      </structfield> field to point to this variable, and include the
      <constant>SNDRV_CTL_ELEM_ACCESS_TLV_READ</constant> flag in the
      <structfield>access</structfield> field; like this:
      <informalexample>
        <programlisting>
<![CDATA[
  static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0);

3877
  static struct snd_kcontrol_new my_control = {
C
Clemens Ladisch 已提交
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
          ...
          .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
                    SNDRV_CTL_ELEM_ACCESS_TLV_READ,
          ...
          .tlv.p = db_scale_my_control,
  };
]]>
        </programlisting>
      </informalexample>
      </para>

      <para>
      The <function>DECLARE_TLV_DB_SCALE</function> macro defines
      information about a mixer control where each step in the control's
      value changes the dB value by a constant dB amount.
      The first parameter is the name of the variable to be defined.
      The second parameter is the minimum value, in units of 0.01 dB.
      The third parameter is the step size, in units of 0.01 dB.
      Set the fourth parameter to 1 if the minimum value actually mutes
      the control.
      </para>

      <para>
      The <function>DECLARE_TLV_DB_LINEAR</function> macro defines
      information about a mixer control where the control's value affects
      the output linearly.
      The first parameter is the name of the variable to be defined.
      The second parameter is the minimum value, in units of 0.01 dB.
      The third parameter is the maximum value, in units of 0.01 dB.
      If the minimum value mutes the control, set the second parameter to
      <constant>TLV_DB_GAIN_MUTE</constant>.
      </para>
    </section>

L
Linus Torvalds 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
  </chapter>


<!-- ****************************************************** -->
<!-- API for AC97 Codec  -->
<!-- ****************************************************** -->
  <chapter id="api-ac97">
    <title>API for AC97 Codec</title>

    <section>
      <title>General</title>
      <para>
        The ALSA AC97 codec layer is a well-defined one, and you don't
3925
      have to write much code to control it. Only low-level control
L
Linus Torvalds 已提交
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
      routines are necessary. The AC97 codec API is defined in
      <filename>&lt;sound/ac97_codec.h&gt;</filename>. 
      </para>
    </section>

    <section id="api-ac97-example">
      <title>Full Code Example</title>
      <para>
          <example>
	    <title>Example of AC97 Interface</title>
            <programlisting>
<![CDATA[
3938
  struct mychip {
L
Linus Torvalds 已提交
3939
          ....
3940
          struct snd_ac97 *ac97;
L
Linus Torvalds 已提交
3941 3942 3943
          ....
  };

3944
  static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
L
Linus Torvalds 已提交
3945 3946
                                             unsigned short reg)
  {
3947
          struct mychip *chip = ac97->private_data;
L
Linus Torvalds 已提交
3948
          ....
3949
          /* read a register value here from the codec */
L
Linus Torvalds 已提交
3950 3951 3952
          return the_register_value;
  }

3953
  static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
L
Linus Torvalds 已提交
3954 3955
                                   unsigned short reg, unsigned short val)
  {
3956
          struct mychip *chip = ac97->private_data;
L
Linus Torvalds 已提交
3957
          ....
3958
          /* write the given register value to the codec */
L
Linus Torvalds 已提交
3959 3960
  }

3961
  static int snd_mychip_ac97(struct mychip *chip)
L
Linus Torvalds 已提交
3962
  {
3963 3964
          struct snd_ac97_bus *bus;
          struct snd_ac97_template ac97;
L
Linus Torvalds 已提交
3965
          int err;
3966
          static struct snd_ac97_bus_ops ops = {
L
Linus Torvalds 已提交
3967 3968 3969 3970
                  .write = snd_mychip_ac97_write,
                  .read = snd_mychip_ac97_read,
          };

3971 3972
          err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus);
          if (err < 0)
L
Linus Torvalds 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
                  return err;
          memset(&ac97, 0, sizeof(ac97));
          ac97.private_data = chip;
          return snd_ac97_mixer(bus, &ac97, &chip->ac97);
  }

]]>
          </programlisting>
        </example>
      </para>
    </section>

    <section id="api-ac97-constructor">
      <title>Constructor</title>
      <para>
3988
        To create an ac97 instance, first call <function>snd_ac97_bus</function>
L
Linus Torvalds 已提交
3989 3990 3991 3992 3993
      with an <type>ac97_bus_ops_t</type> record with callback functions.

        <informalexample>
          <programlisting>
<![CDATA[
3994 3995
  struct snd_ac97_bus *bus;
  static struct snd_ac97_bus_ops ops = {
L
Linus Torvalds 已提交
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
        .write = snd_mychip_ac97_write,
        .read = snd_mychip_ac97_read,
  };

  snd_ac97_bus(card, 0, &ops, NULL, &pbus);
]]>
          </programlisting>
        </informalexample>

      The bus record is shared among all belonging ac97 instances.
      </para>

      <para>
4009 4010
      And then call <function>snd_ac97_mixer()</function> with an
      struct <structname>snd_ac97_template</structname>
L
Linus Torvalds 已提交
4011 4012 4013 4014 4015
      record together with the bus pointer created above.

        <informalexample>
          <programlisting>
<![CDATA[
4016
  struct snd_ac97_template ac97;
L
Linus Torvalds 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025
  int err;

  memset(&ac97, 0, sizeof(ac97));
  ac97.private_data = chip;
  snd_ac97_mixer(bus, &ac97, &chip->ac97);
]]>
          </programlisting>
        </informalexample>

4026
        where chip-&gt;ac97 is a pointer to a newly created
L
Linus Torvalds 已提交
4027 4028 4029 4030
        <type>ac97_t</type> instance.
        In this case, the chip pointer is set as the private data, so that
        the read/write callback functions can refer to this chip instance.
        This instance is not necessarily stored in the chip
4031
	record.  If you need to change the register values from the
L
Linus Torvalds 已提交
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
        driver, or need the suspend/resume of ac97 codecs, keep this
        pointer to pass to the corresponding functions.
      </para>
    </section>

    <section id="api-ac97-callbacks">
      <title>Callbacks</title>
      <para>
        The standard callbacks are <structfield>read</structfield> and
      <structfield>write</structfield>. Obviously they 
      correspond to the functions for read and write accesses to the
      hardware low-level codes. 
      </para>

      <para>
        The <structfield>read</structfield> callback returns the
        register value specified in the argument. 

        <informalexample>
          <programlisting>
<![CDATA[
4053
  static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
L
Linus Torvalds 已提交
4054 4055
                                             unsigned short reg)
  {
4056
          struct mychip *chip = ac97->private_data;
L
Linus Torvalds 已提交
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
          ....
          return the_register_value;
  }
]]>
          </programlisting>
        </informalexample>

        Here, the chip can be cast from ac97-&gt;private_data.
      </para>

      <para>
        Meanwhile, the <structfield>write</structfield> callback is
        used to set the register value. 

        <informalexample>
          <programlisting>
<![CDATA[
4074
  static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
L
Linus Torvalds 已提交
4075 4076 4077 4078 4079 4080 4081
                       unsigned short reg, unsigned short val)
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
4082
      These callbacks are non-atomic like the control API callbacks.
L
Linus Torvalds 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
      </para>

      <para>
        There are also other callbacks:
      <structfield>reset</structfield>,
      <structfield>wait</structfield> and
      <structfield>init</structfield>. 
      </para>

      <para>
        The <structfield>reset</structfield> callback is used to reset
4094
      the codec. If the chip requires a special kind of reset, you can
L
Linus Torvalds 已提交
4095 4096 4097 4098
      define this callback. 
      </para>

      <para>
4099 4100 4101
        The <structfield>wait</structfield> callback is used to
      add some waiting time in the standard initialization of the codec. If the
      chip requires the extra waiting time, define this callback. 
L
Linus Torvalds 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
      </para>

      <para>
        The <structfield>init</structfield> callback is used for
      additional initialization of the codec.
      </para>
    </section>

    <section id="api-ac97-updating-registers">
      <title>Updating Registers in The Driver</title>
      <para>
        If you need to access to the codec from the driver, you can
      call the following functions:
      <function>snd_ac97_write()</function>,
      <function>snd_ac97_read()</function>,
      <function>snd_ac97_update()</function> and
      <function>snd_ac97_update_bits()</function>. 
      </para>

      <para>
        Both <function>snd_ac97_write()</function> and
        <function>snd_ac97_update()</function> functions are used to
        set a value to the given register
        (<constant>AC97_XXX</constant>). The difference between them is
        that <function>snd_ac97_update()</function> doesn't write a
        value if the given value has been already set, while
        <function>snd_ac97_write()</function> always rewrites the
        value. 

        <informalexample>
          <programlisting>
<![CDATA[
  snd_ac97_write(ac97, AC97_MASTER, 0x8080);
  snd_ac97_update(ac97, AC97_MASTER, 0x8080);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        <function>snd_ac97_read()</function> is used to read the value
        of the given register. For example, 

        <informalexample>
          <programlisting>
<![CDATA[
  value = snd_ac97_read(ac97, AC97_MASTER);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        <function>snd_ac97_update_bits()</function> is used to update
4156
        some bits in the given register.  
L
Linus Torvalds 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168

        <informalexample>
          <programlisting>
<![CDATA[
  snd_ac97_update_bits(ac97, reg, mask, value);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        Also, there is a function to change the sample rate (of a
4169
        given register such as
L
Linus Torvalds 已提交
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
        <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
        DRA is supported by the codec:
        <function>snd_ac97_set_rate()</function>. 

        <informalexample>
          <programlisting>
<![CDATA[
  snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
4184
        The following registers are available to set the rate:
L
Linus Torvalds 已提交
4185 4186 4187
      <constant>AC97_PCM_MIC_ADC_RATE</constant>,
      <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
      <constant>AC97_PCM_LR_ADC_RATE</constant>,
4188
      <constant>AC97_SPDIF</constant>. When
L
Linus Torvalds 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197
      <constant>AC97_SPDIF</constant> is specified, the register is
      not really changed but the corresponding IEC958 status bits will
      be updated. 
      </para>
    </section>

    <section id="api-ac97-clock-adjustment">
      <title>Clock Adjustment</title>
      <para>
4198
        In some chips, the clock of the codec isn't 48000 but using a
L
Linus Torvalds 已提交
4199 4200 4201
      PCI clock (to save a quartz!). In this case, change the field
      bus-&gt;clock to the corresponding
      value. For example, intel8x0 
4202
      and es1968 drivers have their own function to read from the clock.
L
Linus Torvalds 已提交
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
      </para>
    </section>

    <section id="api-ac97-proc-files">
      <title>Proc Files</title>
      <para>
        The ALSA AC97 interface will create a proc file such as
      <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
      <filename>ac97#0-0+regs</filename>. You can refer to these files to
      see the current status and registers of the codec. 
      </para>
    </section>

    <section id="api-ac97-multiple-codecs">
      <title>Multiple Codecs</title>
      <para>
        When there are several codecs on the same card, you need to
4220
      call <function>snd_ac97_mixer()</function> multiple times with
L
Linus Torvalds 已提交
4221
      ac97.num=1 or greater. The <structfield>num</structfield> field
4222
      specifies the codec number. 
L
Linus Torvalds 已提交
4223 4224 4225
      </para>

      <para>
4226
        If you set up multiple codecs, you either need to write
L
Linus Torvalds 已提交
4227
      different callbacks for each codec or check
4228
      ac97-&gt;num in the callback routines. 
L
Linus Torvalds 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
      </para>
    </section>

  </chapter>


<!-- ****************************************************** -->
<!-- MIDI (MPU401-UART) Interface  -->
<!-- ****************************************************** -->
  <chapter id="midi-interface">
    <title>MIDI (MPU401-UART) Interface</title>

    <section id="midi-interface-general">
      <title>General</title>
      <para>
        Many soundcards have built-in MIDI (MPU401-UART)
      interfaces. When the soundcard supports the standard MPU401-UART
      interface, most likely you can use the ALSA MPU401-UART API. The
      MPU401-UART API is defined in
      <filename>&lt;sound/mpu401.h&gt;</filename>. 
      </para>

      <para>
4252
        Some soundchips have a similar but slightly different
L
Linus Torvalds 已提交
4253 4254 4255 4256 4257 4258 4259 4260
      implementation of mpu401 stuff. For example, emu10k1 has its own
      mpu401 routines. 
      </para>
    </section>

    <section id="midi-interface-constructor">
      <title>Constructor</title>
      <para>
4261
        To create a rawmidi object, call
L
Linus Torvalds 已提交
4262 4263 4264 4265 4266
      <function>snd_mpu401_uart_new()</function>. 

        <informalexample>
          <programlisting>
<![CDATA[
4267
  struct snd_rawmidi *rmidi;
4268
  snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
4269
                      irq, &rmidi);
L
Linus Torvalds 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        The first argument is the card pointer, and the second is the
      index of this component. You can create up to 8 rawmidi
      devices. 
      </para>

      <para>
        The third argument is the type of the hardware,
      <constant>MPU401_HW_XXX</constant>. If it's not a special one,
      you can use <constant>MPU401_HW_MPU401</constant>. 
      </para>

      <para>
4288 4289 4290
        The 4th argument is the I/O port address. Many
      backward-compatible MPU401 have an I/O port such as 0x330. Or, it
      might be a part of its own PCI I/O region. It depends on the
L
Linus Torvalds 已提交
4291 4292 4293 4294
      chip design. 
      </para>

      <para>
4295 4296 4297
	The 5th argument is a bitflag for additional information.
        When the I/O port address above is part of the PCI I/O
      region, the MPU401 I/O port might have been already allocated
4298 4299
      (reserved) by the driver itself. In such a case, pass a bit flag
      <constant>MPU401_INFO_INTEGRATED</constant>,
4300
      and the mpu401-uart layer will allocate the I/O ports by itself. 
L
Linus Torvalds 已提交
4301 4302
      </para>

4303 4304
	<para>
	When the controller supports only the input or output MIDI stream,
4305
	pass the <constant>MPU401_INFO_INPUT</constant> or
4306 4307 4308 4309 4310 4311 4312
	<constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively.
	Then the rawmidi instance is created as a single stream.
	</para>

	<para>
	<constant>MPU401_INFO_MMIO</constant> bitflag is used to change
	the access method to MMIO (via readb and writeb) instead of
4313
	iob and outb. In this case, you have to pass the iomapped address
4314 4315 4316 4317 4318 4319 4320
	to <function>snd_mpu401_uart_new()</function>.
	</para>

	<para>
	When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output
	stream isn't checked in the default interrupt handler.  The driver
	needs to call <function>snd_mpu401_uart_interrupt_tx()</function>
4321
	by itself to start processing the output stream in the irq handler.
4322 4323
	</para>

4324 4325 4326 4327 4328 4329 4330
	<para>
	If the MPU-401 interface shares its interrupt with the other logical
	devices on the card, set <constant>MPU401_INFO_IRQ_HOOK</constant>
	(see <link linkend="midi-interface-interrupt-handler"><citetitle>
	below</citetitle></link>).
	</para>

L
Linus Torvalds 已提交
4331 4332 4333 4334
      <para>
        Usually, the port address corresponds to the command port and
        port + 1 corresponds to the data port. If not, you may change
        the <structfield>cport</structfield> field of
4335 4336
        struct <structname>snd_mpu401</structname> manually 
        afterward. However, <structname>snd_mpu401</structname> pointer is not
L
Linus Torvalds 已提交
4337 4338 4339
        returned explicitly by
        <function>snd_mpu401_uart_new()</function>. You need to cast
        rmidi-&gt;private_data to
4340
        <structname>snd_mpu401</structname> explicitly, 
L
Linus Torvalds 已提交
4341 4342 4343 4344

        <informalexample>
          <programlisting>
<![CDATA[
4345
  struct snd_mpu401 *mpu;
L
Linus Torvalds 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
  mpu = rmidi->private_data;
]]>
          </programlisting>
        </informalexample>

        and reset the cport as you like:

        <informalexample>
          <programlisting>
<![CDATA[
  mpu->cport = my_own_control_port;
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
4363 4364 4365 4366 4367 4368
	The 6th argument specifies the ISA irq number that will be
	allocated.  If no interrupt is to be allocated (because your
	code is already allocating a shared interrupt, or because the
	device does not use interrupts), pass -1 instead.
	For a MPU-401 device without an interrupt, a polling timer
	will be used instead.
L
Linus Torvalds 已提交
4369 4370 4371 4372 4373 4374 4375
      </para>
    </section>

    <section id="midi-interface-interrupt-handler">
      <title>Interrupt Handler</title>
      <para>
        When the interrupt is allocated in
4376 4377 4378 4379 4380 4381 4382
      <function>snd_mpu401_uart_new()</function>, an exclusive ISA
      interrupt handler is automatically used, hence you don't have
      anything else to do than creating the mpu401 stuff.  Otherwise, you
      have to set <constant>MPU401_INFO_IRQ_HOOK</constant>, and call
      <function>snd_mpu401_uart_interrupt()</function> explicitly from your
      own interrupt handler when it has determined that a UART interrupt
      has occurred.
L
Linus Torvalds 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
      </para>

      <para>
        In this case, you need to pass the private_data of the
        returned rawmidi object from
        <function>snd_mpu401_uart_new()</function> as the second
        argument of <function>snd_mpu401_uart_interrupt()</function>. 

        <informalexample>
          <programlisting>
<![CDATA[
  snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
]]>
          </programlisting>
        </informalexample>
      </para>
    </section>

  </chapter>


<!-- ****************************************************** -->
<!-- RawMIDI Interface  -->
<!-- ****************************************************** -->
  <chapter id="rawmidi-interface">
    <title>RawMIDI Interface</title>

    <section id="rawmidi-interface-overview">
      <title>Overview</title>

      <para>
      The raw MIDI interface is used for hardware MIDI ports that can
      be accessed as a byte stream.  It is not used for synthesizer
      chips that do not directly understand MIDI.
      </para>

      <para>
      ALSA handles file and buffer management.  All you have to do is
      to write some code to move data between the buffer and the
      hardware.
      </para>

      <para>
      The rawmidi API is defined in
      <filename>&lt;sound/rawmidi.h&gt;</filename>.
      </para>
    </section>

    <section id="rawmidi-interface-constructor">
      <title>Constructor</title>

      <para>
      To create a rawmidi device, call the
      <function>snd_rawmidi_new</function> function:
        <informalexample>
          <programlisting>
<![CDATA[
4440
  struct snd_rawmidi *rmidi;
L
Linus Torvalds 已提交
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
  err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
  if (err < 0)
          return err;
  rmidi->private_data = chip;
  strcpy(rmidi->name, "My MIDI");
  rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
                      SNDRV_RAWMIDI_INFO_INPUT |
                      SNDRV_RAWMIDI_INFO_DUPLEX;
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
      The first argument is the card pointer, the second argument is
      the ID string.
      </para>

      <para>
      The third argument is the index of this component.  You can
      create up to 8 rawmidi devices.
      </para>

      <para>
      The fourth and fifth arguments are the number of output and
4466 4467
      input substreams, respectively, of this device (a substream is
      the equivalent of a MIDI port).
L
Linus Torvalds 已提交
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
      </para>

      <para>
      Set the <structfield>info_flags</structfield> field to specify
      the capabilities of the device.
      Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
      at least one output port,
      <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
      least one input port,
      and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
      can handle output and input at the same time.
      </para>

      <para>
      After the rawmidi device is created, you need to set the
      operators (callbacks) for each substream.  There are helper
4484
      functions to set the operators for all the substreams of a device:
L
Linus Torvalds 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
        <informalexample>
          <programlisting>
<![CDATA[
  snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
  snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
      The operators are usually defined like this:
        <informalexample>
          <programlisting>
<![CDATA[
4500
  static struct snd_rawmidi_ops snd_mymidi_output_ops = {
L
Linus Torvalds 已提交
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
          .open =    snd_mymidi_output_open,
          .close =   snd_mymidi_output_close,
          .trigger = snd_mymidi_output_trigger,
  };
]]>
          </programlisting>
        </informalexample>
      These callbacks are explained in the <link
      linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
      section.
      </para>

      <para>
4514 4515
      If there are more than one substream, you should give a
      unique name to each of them:
L
Linus Torvalds 已提交
4516 4517 4518
        <informalexample>
          <programlisting>
<![CDATA[
4519
  struct snd_rawmidi_substream *substream;
4520 4521 4522
  list_for_each_entry(substream,
                      &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
                      list {
L
Linus Torvalds 已提交
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
          sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
  }
  /* same for SNDRV_RAWMIDI_STREAM_INPUT */
]]>
          </programlisting>
        </informalexample>
      </para>
    </section>

    <section id="rawmidi-interface-callbacks">
      <title>Callbacks</title>

      <para>
4536
      In all the callbacks, the private data that you've set for the
L
Linus Torvalds 已提交
4537 4538 4539 4540 4541 4542 4543
      rawmidi device can be accessed as
      substream-&gt;rmidi-&gt;private_data.
      <!-- <code> isn't available before DocBook 4.3 -->
      </para>

      <para>
      If there is more than one port, your callbacks can determine the
4544
      port index from the struct snd_rawmidi_substream data passed to each
L
Linus Torvalds 已提交
4545 4546 4547 4548
      callback:
        <informalexample>
          <programlisting>
<![CDATA[
4549
  struct snd_rawmidi_substream *substream;
L
Linus Torvalds 已提交
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
  int index = substream->number;
]]>
          </programlisting>
        </informalexample>
      </para>

      <section id="rawmidi-interface-op-open">
      <title><function>open</function> callback</title>

        <informalexample>
          <programlisting>
<![CDATA[
4562
  static int snd_xxx_open(struct snd_rawmidi_substream *substream);
L
Linus Torvalds 已提交
4563 4564 4565 4566 4567 4568
]]>
          </programlisting>
        </informalexample>

        <para>
        This is called when a substream is opened.
4569 4570
        You can initialize the hardware here, but you shouldn't
        start transmitting/receiving data yet.
L
Linus Torvalds 已提交
4571 4572 4573 4574 4575 4576 4577 4578 4579
        </para>
      </section>

      <section id="rawmidi-interface-op-close">
      <title><function>close</function> callback</title>

        <informalexample>
          <programlisting>
<![CDATA[
4580
  static int snd_xxx_close(struct snd_rawmidi_substream *substream);
L
Linus Torvalds 已提交
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
]]>
          </programlisting>
        </informalexample>

        <para>
        Guess what.
        </para>

        <para>
        The <function>open</function> and <function>close</function>
        callbacks of a rawmidi device are serialized with a mutex,
        and can sleep.
        </para>
      </section>

      <section id="rawmidi-interface-op-trigger-out">
      <title><function>trigger</function> callback for output
      substreams</title>

        <informalexample>
          <programlisting>
<![CDATA[
4603
  static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
L
Linus Torvalds 已提交
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
]]>
          </programlisting>
        </informalexample>

        <para>
        This is called with a nonzero <parameter>up</parameter>
        parameter when there is some data in the substream buffer that
        must be transmitted.
        </para>

        <para>
        To read data from the buffer, call
        <function>snd_rawmidi_transmit_peek</function>.  It will
        return the number of bytes that have been read; this will be
4618
        less than the number of bytes requested when there are no more
L
Linus Torvalds 已提交
4619
        data in the buffer.
4620
        After the data have been transmitted successfully, call
L
Linus Torvalds 已提交
4621 4622 4623 4624 4625 4626 4627
        <function>snd_rawmidi_transmit_ack</function> to remove the
        data from the substream buffer:
          <informalexample>
            <programlisting>
<![CDATA[
  unsigned char data;
  while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
4628
          if (snd_mychip_try_to_transmit(data))
L
Linus Torvalds 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
                  snd_rawmidi_transmit_ack(substream, 1);
          else
                  break; /* hardware FIFO full */
  }
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
        If you know beforehand that the hardware will accept data, you
        can use the <function>snd_rawmidi_transmit</function> function
4641
        which reads some data and removes them from the buffer at once:
L
Linus Torvalds 已提交
4642 4643 4644
          <informalexample>
            <programlisting>
<![CDATA[
4645
  while (snd_mychip_transmit_possible()) {
L
Linus Torvalds 已提交
4646 4647 4648
          unsigned char data;
          if (snd_rawmidi_transmit(substream, &data, 1) != 1)
                  break; /* no more data */
4649
          snd_mychip_transmit(data);
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
  }
]]>
            </programlisting>
          </informalexample>
        </para>

        <para>
        If you know beforehand how many bytes you can accept, you can
        use a buffer size greater than one with the
        <function>snd_rawmidi_transmit*</function> functions.
        </para>

        <para>
        The <function>trigger</function> callback must not sleep.  If
        the hardware FIFO is full before the substream buffer has been
        emptied, you have to continue transmitting data later, either
        in an interrupt handler, or with a timer if the hardware
        doesn't have a MIDI transmit interrupt.
        </para>

        <para>
        The <function>trigger</function> callback is called with a
        zero <parameter>up</parameter> parameter when the transmission
        of data should be aborted.
        </para>
      </section>

      <section id="rawmidi-interface-op-trigger-in">
      <title><function>trigger</function> callback for input
      substreams</title>

        <informalexample>
          <programlisting>
<![CDATA[
4684
  static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
L
Linus Torvalds 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
]]>
          </programlisting>
        </informalexample>

        <para>
        This is called with a nonzero <parameter>up</parameter>
        parameter to enable receiving data, or with a zero
        <parameter>up</parameter> parameter do disable receiving data.
        </para>

        <para>
        The <function>trigger</function> callback must not sleep; the
        actual reading of data from the device is usually done in an
        interrupt handler.
        </para>

        <para>
        When data reception is enabled, your interrupt handler should
        call <function>snd_rawmidi_receive</function> for all received
        data:
          <informalexample>
            <programlisting>
<![CDATA[
  void snd_mychip_midi_interrupt(...)
  {
          while (mychip_midi_available()) {
                  unsigned char data;
                  data = mychip_midi_read();
                  snd_rawmidi_receive(substream, &data, 1);
          }
  }
]]>
            </programlisting>
          </informalexample>
        </para>
      </section>

      <section id="rawmidi-interface-op-drain">
      <title><function>drain</function> callback</title>

        <informalexample>
          <programlisting>
<![CDATA[
4728
  static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
L
Linus Torvalds 已提交
4729 4730 4731 4732 4733 4734
]]>
          </programlisting>
        </informalexample>

        <para>
        This is only used with output substreams.  This function should wait
4735
        until all data read from the substream buffer have been transmitted.
L
Linus Torvalds 已提交
4736 4737 4738 4739 4740
        This ensures that the device can be closed and the driver unloaded
        without losing data.
        </para>

        <para>
4741
        This callback is optional. If you do not set
4742
        <structfield>drain</structfield> in the struct snd_rawmidi_ops
L
Linus Torvalds 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
        structure, ALSA will simply wait for 50&nbsp;milliseconds
        instead.
        </para>
      </section>
    </section>

  </chapter>


<!-- ****************************************************** -->
<!-- Miscellaneous Devices  -->
<!-- ****************************************************** -->
  <chapter id="misc-devices">
    <title>Miscellaneous Devices</title>

    <section id="misc-devices-opl3">
      <title>FM OPL3</title>
      <para>
4761
        The FM OPL3 is still used in many chips (mainly for backward
L
Linus Torvalds 已提交
4762 4763 4764 4765 4766 4767
      compatibility). ALSA has a nice OPL3 FM control layer, too. The
      OPL3 API is defined in
      <filename>&lt;sound/opl3.h&gt;</filename>. 
      </para>

      <para>
4768
        FM registers can be directly accessed through the direct-FM API,
L
Linus Torvalds 已提交
4769 4770
      defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
      ALSA native mode, FM registers are accessed through
L
Lucas De Marchi 已提交
4771
      the Hardware-Dependent Device direct-FM extension API, whereas in
4772 4773
      OSS compatible mode, FM registers can be accessed with the OSS
      direct-FM compatible API in <filename>/dev/dmfmX</filename> device. 
L
Linus Torvalds 已提交
4774 4775 4776
      </para>

      <para>
4777 4778
        To create the OPL3 component, you have two functions to
        call. The first one is a constructor for the <type>opl3_t</type>
L
Linus Torvalds 已提交
4779 4780 4781 4782 4783
        instance. 

        <informalexample>
          <programlisting>
<![CDATA[
4784
  struct snd_opl3 *opl3;
L
Linus Torvalds 已提交
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
  snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
                  integrated, &opl3);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        The first argument is the card pointer, the second one is the
      left port address, and the third is the right port address. In
      most cases, the right port is placed at the left port + 2. 
      </para>

      <para>
        The fourth argument is the hardware type.
      </para>

      <para>
        When the left and right ports have been already allocated by
      the card driver, pass non-zero to the fifth argument
4805
      (<parameter>integrated</parameter>). Otherwise, the opl3 module will
L
Linus Torvalds 已提交
4806 4807 4808 4809
      allocate the specified ports by itself. 
      </para>

      <para>
4810
        When the accessing the hardware requires special method
L
Linus Torvalds 已提交
4811 4812 4813 4814 4815 4816
        instead of the standard I/O access, you can create opl3 instance
        separately with <function>snd_opl3_new()</function>.

        <informalexample>
          <programlisting>
<![CDATA[
4817
  struct snd_opl3 *opl3;
L
Linus Torvalds 已提交
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
  snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
	Then set <structfield>command</structfield>,
	<structfield>private_data</structfield> and
	<structfield>private_free</structfield> for the private
	access function, the private data and the destructor.
	The l_port and r_port are not necessarily set.  Only the
	command must be set properly.  You can retrieve the data
4831
	from the opl3-&gt;private_data field.
L
Linus Torvalds 已提交
4832 4833 4834 4835 4836
      </para>

      <para>
	After creating the opl3 instance via <function>snd_opl3_new()</function>,
	call <function>snd_opl3_init()</function> to initialize the chip to the
4837
	proper state. Note that <function>snd_opl3_create()</function> always
L
Linus Torvalds 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
	calls it internally.
      </para>

      <para>
        If the opl3 instance is created successfully, then create a
        hwdep device for this opl3. 

        <informalexample>
          <programlisting>
<![CDATA[
4848
  struct snd_hwdep *opl3hwdep;
L
Linus Torvalds 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
  snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        The first argument is the <type>opl3_t</type> instance you
      created, and the second is the index number, usually 0. 
      </para>

      <para>
        The third argument is the index-offset for the sequencer
      client assigned to the OPL3 port. When there is an MPU401-UART,
      give 1 for here (UART always takes 0). 
      </para>
    </section>

    <section id="misc-devices-hardware-dependent">
      <title>Hardware-Dependent Devices</title>
      <para>
4870
        Some chips need user-space access for special
L
Linus Torvalds 已提交
4871 4872 4873 4874 4875 4876 4877 4878
      controls or for loading the micro code. In such a case, you can
      create a hwdep (hardware-dependent) device. The hwdep API is
      defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
      find examples in opl3 driver or
      <filename>isa/sb/sb16_csp.c</filename>. 
      </para>

      <para>
4879
        The creation of the <type>hwdep</type> instance is done via
L
Linus Torvalds 已提交
4880 4881 4882 4883 4884
        <function>snd_hwdep_new()</function>. 

        <informalexample>
          <programlisting>
<![CDATA[
4885
  struct snd_hwdep *hw;
L
Linus Torvalds 已提交
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
  snd_hwdep_new(card, "My HWDEP", 0, &hw);
]]>
          </programlisting>
        </informalexample>

        where the third argument is the index number.
      </para>

      <para>
        You can then pass any pointer value to the
        <parameter>private_data</parameter>.
        If you assign a private data, you should define the
4898 4899
        destructor, too. The destructor function is set in
        the <structfield>private_free</structfield> field.  
L
Linus Torvalds 已提交
4900 4901 4902 4903

        <informalexample>
          <programlisting>
<![CDATA[
4904
  struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
L
Linus Torvalds 已提交
4905 4906 4907 4908 4909 4910
  hw->private_data = p;
  hw->private_free = mydata_free;
]]>
          </programlisting>
        </informalexample>

4911
        and the implementation of the destructor would be:
L
Linus Torvalds 已提交
4912 4913 4914 4915

        <informalexample>
          <programlisting>
<![CDATA[
4916
  static void mydata_free(struct snd_hwdep *hw)
L
Linus Torvalds 已提交
4917
  {
4918
          struct mydata *p = hw->private_data;
L
Linus Torvalds 已提交
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
          kfree(p);
  }
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        The arbitrary file operations can be defined for this
        instance. The file operators are defined in
4929
        the <parameter>ops</parameter> table. For example, assume that
L
Linus Torvalds 已提交
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
        this chip needs an ioctl. 

        <informalexample>
          <programlisting>
<![CDATA[
  hw->ops.open = mydata_open;
  hw->ops.ioctl = mydata_ioctl;
  hw->ops.release = mydata_release;
]]>
          </programlisting>
        </informalexample>

        And implement the callback functions as you like.
      </para>
    </section>

    <section id="misc-devices-IEC958">
      <title>IEC958 (S/PDIF)</title>
      <para>
        Usually the controls for IEC958 devices are implemented via
4950
      the control interface. There is a macro to compose a name string for
L
Linus Torvalds 已提交
4951 4952 4953 4954 4955 4956 4957 4958
      IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
      defined in <filename>&lt;include/asound.h&gt;</filename>.  
      </para>

      <para>
        There are some standard controls for IEC958 status bits. These
      controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
      and the size of element is fixed as 4 bytes array
4959
      (value.iec958.status[x]). For the <structfield>info</structfield>
L
Linus Torvalds 已提交
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
      callback, you don't specify 
      the value field for this type (the count field must be set,
      though). 
      </para>

      <para>
        <quote>IEC958 Playback Con Mask</quote> is used to return the
      bit-mask for the IEC958 status bits of consumer mode. Similarly,
      <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
      professional mode. They are read-only controls, and are defined
      as MIXER controls (iface =
      <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).  
      </para>

      <para>
        Meanwhile, <quote>IEC958 Playback Default</quote> control is
      defined for getting and setting the current default IEC958
      bits. Note that this one is usually defined as a PCM control
      (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
      although in some places it's defined as a MIXER control. 
      </para>

      <para>
        In addition, you can define the control switches to
      enable/disable or to set the raw bit mode. The implementation
      will depend on the chip, but the control should be named as
      <quote>IEC958 xxx</quote>, preferably using
4987
      the <function>SNDRV_CTL_NAME_IEC958()</function> macro. 
L
Linus Torvalds 已提交
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
      </para>

      <para>
        You can find several cases, for example,
      <filename>pci/emu10k1</filename>,
      <filename>pci/ice1712</filename>, or
      <filename>pci/cmipci.c</filename>.  
      </para>
    </section>

  </chapter>


<!-- ****************************************************** -->
<!-- Buffer and Memory Management  -->
<!-- ****************************************************** -->
  <chapter id="buffer-and-memory">
    <title>Buffer and Memory Management</title>

    <section id="buffer-and-memory-buffer-types">
      <title>Buffer Types</title>
      <para>
        ALSA provides several different buffer allocation functions
      depending on the bus and the architecture. All these have a
      consistent API. The allocation of physically-contiguous pages is
      done via 
      <function>snd_malloc_xxx_pages()</function> function, where xxx
      is the bus type. 
      </para>

      <para>
        The allocation of pages with fallback is
      <function>snd_malloc_xxx_pages_fallback()</function>. This
      function tries to allocate the specified pages but if the pages
5022
      are not available, it tries to reduce the page sizes until
L
Linus Torvalds 已提交
5023 5024 5025 5026
      enough space is found.
      </para>

      <para>
5027
      The release the pages, call
L
Linus Torvalds 已提交
5028 5029 5030 5031 5032 5033 5034 5035
      <function>snd_free_xxx_pages()</function> function. 
      </para>

      <para>
      Usually, ALSA drivers try to allocate and reserve
       a large contiguous physical space
       at the time the module is loaded for the later use.
       This is called <quote>pre-allocation</quote>.
5036 5037
       As already written, you can call the following function at 
       pcm instance construction time (in the case of PCI bus). 
L
Linus Torvalds 已提交
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

        <informalexample>
          <programlisting>
<![CDATA[
  snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                        snd_dma_pci_data(pci), size, max);
]]>
          </programlisting>
        </informalexample>

        where <parameter>size</parameter> is the byte size to be
5049 5050 5051
      pre-allocated and the <parameter>max</parameter> is the maximum
      size to be changed via the <filename>prealloc</filename> proc file.
      The allocator will try to get an area as large as possible
L
Linus Torvalds 已提交
5052 5053 5054 5055 5056 5057
      within the given size. 
      </para>

      <para>
      The second argument (type) and the third argument (device pointer)
      are dependent on the bus.
5058
      In the case of the ISA bus, pass <function>snd_dma_isa_data()</function>
L
Linus Torvalds 已提交
5059 5060 5061 5062
      as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
      For the continuous buffer unrelated to the bus can be pre-allocated
      with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
      <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
5063
      where <constant>GFP_KERNEL</constant> is the kernel allocation flag to
5064
      use.
L
Linus Torvalds 已提交
5065 5066 5067
      For the PCI scatter-gather buffers, use
      <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
      <function>snd_dma_pci_data(pci)</function>
5068
      (see the 
L
Linus Torvalds 已提交
5069
          <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
5070
          </citetitle></link> section).
L
Linus Torvalds 已提交
5071 5072 5073
      </para>

      <para>
5074 5075
        Once the buffer is pre-allocated, you can use the
        allocator in the <structfield>hw_params</structfield> callback: 
L
Linus Torvalds 已提交
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100

        <informalexample>
          <programlisting>
<![CDATA[
  snd_pcm_lib_malloc_pages(substream, size);
]]>
          </programlisting>
        </informalexample>

        Note that you have to pre-allocate to use this function.
      </para>
    </section>

    <section id="buffer-and-memory-external-hardware">
      <title>External Hardware Buffers</title>
      <para>
        Some chips have their own hardware buffers and the DMA
      transfer from the host memory is not available. In such a case,
      you need to either 1) copy/set the audio data directly to the
      external hardware buffer, or 2) make an intermediate buffer and
      copy/set the data from it to the external hardware buffer in
      interrupts (or in tasklets, preferably).
      </para>

      <para>
5101 5102
        The first case works fine if the external hardware buffer is large
      enough.  This method doesn't need any extra buffers and thus is
L
Linus Torvalds 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111
      more effective. You need to define the
      <structfield>copy</structfield> and
      <structfield>silence</structfield> callbacks for 
      the data transfer. However, there is a drawback: it cannot
      be mmapped. The examples are GUS's GF1 PCM or emu8000's
      wavetable PCM. 
      </para>

      <para>
5112 5113
        The second case allows for mmap on the buffer, although you have
      to handle an interrupt or a tasklet to transfer the data
L
Linus Torvalds 已提交
5114
      from the intermediate buffer to the hardware buffer. You can find an
5115
      example in the vxpocket driver. 
L
Linus Torvalds 已提交
5116 5117 5118
      </para>

      <para>
5119
        Another case is when the chip uses a PCI memory-map
L
Linus Torvalds 已提交
5120
      region for the buffer instead of the host memory. In this case,
5121 5122 5123 5124
      mmap is available only on certain architectures like the Intel one.
      In non-mmap mode, the data cannot be transferred as in the normal
      way. Thus you need to define the <structfield>copy</structfield> and
      <structfield>silence</structfield> callbacks as well, 
L
Linus Torvalds 已提交
5125 5126 5127 5128 5129
      as in the cases above. The examples are found in
      <filename>rme32.c</filename> and <filename>rme96.c</filename>. 
      </para>

      <para>
5130
        The implementation of the <structfield>copy</structfield> and
L
Linus Torvalds 已提交
5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
        <structfield>silence</structfield> callbacks depends upon 
        whether the hardware supports interleaved or non-interleaved
        samples. The <structfield>copy</structfield> callback is
        defined like below, a bit 
        differently depending whether the direction is playback or
        capture: 

        <informalexample>
          <programlisting>
<![CDATA[
5141
  static int playback_copy(struct snd_pcm_substream *substream, int channel,
L
Linus Torvalds 已提交
5142
               snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
5143
  static int capture_copy(struct snd_pcm_substream *substream, int channel,
L
Linus Torvalds 已提交
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
               snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        In the case of interleaved samples, the second argument
      (<parameter>channel</parameter>) is not used. The third argument
      (<parameter>pos</parameter>) points the 
      current position offset in frames. 
      </para>

      <para>
        The meaning of the fourth argument is different between
      playback and capture. For playback, it holds the source data
      pointer, and for capture, it's the destination data pointer. 
      </para>

      <para>
        The last argument is the number of frames to be copied.
      </para>

      <para>
        What you have to do in this callback is again different
5169 5170
        between playback and capture directions. In the
        playback case, you copy the given amount of data
L
Linus Torvalds 已提交
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
        (<parameter>count</parameter>) at the specified pointer
        (<parameter>src</parameter>) to the specified offset
        (<parameter>pos</parameter>) on the hardware buffer. When
        coded like memcpy-like way, the copy would be like: 

        <informalexample>
          <programlisting>
<![CDATA[
  my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
            frames_to_bytes(runtime, count));
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
5187
        For the capture direction, you copy the given amount of
L
Linus Torvalds 已提交
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
        data (<parameter>count</parameter>) at the specified offset
        (<parameter>pos</parameter>) on the hardware buffer to the
        specified pointer (<parameter>dst</parameter>). 

        <informalexample>
          <programlisting>
<![CDATA[
  my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
            frames_to_bytes(runtime, count));
]]>
          </programlisting>
        </informalexample>

5201
        Note that both the position and the amount of data are given
L
Linus Torvalds 已提交
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
      in frames. 
      </para>

      <para>
        In the case of non-interleaved samples, the implementation
      will be a bit more complicated. 
      </para>

      <para>
        You need to check the channel argument, and if it's -1, copy
      the whole channels. Otherwise, you have to copy only the
      specified channel. Please check
      <filename>isa/gus/gus_pcm.c</filename> as an example. 
      </para>

      <para>
        The <structfield>silence</structfield> callback is also
        implemented in a similar way. 

        <informalexample>
          <programlisting>
<![CDATA[
5224
  static int silence(struct snd_pcm_substream *substream, int channel,
L
Linus Torvalds 已提交
5225 5226 5227 5228 5229 5230 5231
                     snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
5232
        The meanings of arguments are the same as in the
L
Linus Torvalds 已提交
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
      <structfield>copy</structfield> 
      callback, although there is no <parameter>src/dst</parameter>
      argument. In the case of interleaved samples, the channel
      argument has no meaning, as well as on
      <structfield>copy</structfield> callback.  
      </para>

      <para>
        The role of <structfield>silence</structfield> callback is to
        set the given amount 
        (<parameter>count</parameter>) of silence data at the
        specified offset (<parameter>pos</parameter>) on the hardware
        buffer. Suppose that the data format is signed (that is, the
        silent-data is 0), and the implementation using a memset-like
        function would be like: 

        <informalexample>
          <programlisting>
<![CDATA[
  my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
            frames_to_bytes(runtime, count));
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        In the case of non-interleaved samples, again, the
      implementation becomes a bit more complicated. See, for example,
      <filename>isa/gus/gus_pcm.c</filename>. 
      </para>
    </section>

    <section id="buffer-and-memory-non-contiguous">
      <title>Non-Contiguous Buffers</title>
      <para>
5269 5270
        If your hardware supports the page table as in emu10k1 or the
      buffer descriptors as in via82xx, you can use the scatter-gather
L
Linus Torvalds 已提交
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
      (SG) DMA. ALSA provides an interface for handling SG-buffers.
      The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>. 
      </para>

      <para>
        For creating the SG-buffer handler, call
        <function>snd_pcm_lib_preallocate_pages()</function> or
        <function>snd_pcm_lib_preallocate_pages_for_all()</function>
        with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
	in the PCM constructor like other PCI pre-allocator.
5281
        You need to pass <function>snd_dma_pci_data(pci)</function>,
L
Linus Torvalds 已提交
5282 5283
        where pci is the struct <structname>pci_dev</structname> pointer
        of the chip as well.
5284
        The <type>struct snd_sg_buf</type> instance is created as
L
Linus Torvalds 已提交
5285 5286 5287 5288 5289 5290
        substream-&gt;dma_private. You can cast
        the pointer like: 

        <informalexample>
          <programlisting>
<![CDATA[
5291
  struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
L
Linus Torvalds 已提交
5292 5293 5294 5295 5296 5297 5298
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        Then call <function>snd_pcm_lib_malloc_pages()</function>
5299
      in the <structfield>hw_params</structfield> callback
L
Linus Torvalds 已提交
5300 5301 5302 5303 5304
      as well as in the case of normal PCI buffer.
      The SG-buffer handler will allocate the non-contiguous kernel
      pages of the given size and map them onto the virtually contiguous
      memory.  The virtual pointer is addressed in runtime-&gt;dma_area.
      The physical address (runtime-&gt;dma_addr) is set to zero,
5305
      because the buffer is physically non-contiguous.
L
Linus Torvalds 已提交
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
      The physical address table is set up in sgbuf-&gt;table.
      You can get the physical address at a certain offset via
      <function>snd_pcm_sgbuf_get_addr()</function>. 
      </para>

      <para>
        When a SG-handler is used, you need to set
      <function>snd_pcm_sgbuf_ops_page</function> as
      the <structfield>page</structfield> callback.
      (See <link linkend="pcm-interface-operators-page-callback">
      <citetitle>page callback section</citetitle></link>.)
      </para>

      <para>
5320
        To release the data, call
L
Linus Torvalds 已提交
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
      <function>snd_pcm_lib_free_pages()</function> in the
      <structfield>hw_free</structfield> callback as usual.
      </para>
    </section>

    <section id="buffer-and-memory-vmalloced">
      <title>Vmalloc'ed Buffers</title>
      <para>
        It's possible to use a buffer allocated via
      <function>vmalloc</function>, for example, for an intermediate
      buffer. Since the allocated pages are not contiguous, you need
      to set the <structfield>page</structfield> callback to obtain
      the physical address at every offset. 
      </para>

      <para>
        The implementation of <structfield>page</structfield> callback
        would be like this: 

        <informalexample>
          <programlisting>
<![CDATA[
  #include <linux/vmalloc.h>

  /* get the physical page pointer on the given offset */
5346
  static struct page *mychip_page(struct snd_pcm_substream *substream,
L
Linus Torvalds 已提交
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
                                  unsigned long offset)
  {
          void *pageptr = substream->runtime->dma_area + offset;
          return vmalloc_to_page(pageptr);
  }
]]>
          </programlisting>
        </informalexample>
      </para>
    </section>

  </chapter>


<!-- ****************************************************** -->
<!-- Proc Interface  -->
<!-- ****************************************************** -->
  <chapter id="proc-interface">
    <title>Proc Interface</title>
    <para>
      ALSA provides an easy interface for procfs. The proc files are
      very useful for debugging. I recommend you set up proc files if
      you write a driver and want to get a running status or register
      dumps. The API is found in
      <filename>&lt;sound/info.h&gt;</filename>. 
    </para>

    <para>
5375
      To create a proc file, call
L
Linus Torvalds 已提交
5376 5377 5378 5379 5380
      <function>snd_card_proc_new()</function>. 

      <informalexample>
        <programlisting>
<![CDATA[
5381
  struct snd_info_entry *entry;
L
Linus Torvalds 已提交
5382 5383 5384 5385 5386
  int err = snd_card_proc_new(card, "my-file", &entry);
]]>
        </programlisting>
      </informalexample>

5387
      where the second argument specifies the name of the proc file to be
L
Linus Torvalds 已提交
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
    created. The above example will create a file
    <filename>my-file</filename> under the card directory,
    e.g. <filename>/proc/asound/card0/my-file</filename>. 
    </para>

    <para>
    Like other components, the proc entry created via
    <function>snd_card_proc_new()</function> will be registered and
    released automatically in the card registration and release
    functions.
    </para>

    <para>
      When the creation is successful, the function stores a new
5402 5403
    instance in the pointer given in the third argument.
    It is initialized as a text proc file for read only.  To use
L
Linus Torvalds 已提交
5404 5405 5406 5407 5408 5409 5410
    this proc file as a read-only text file as it is, set the read
    callback with a private data via 
     <function>snd_info_set_text_ops()</function>.

      <informalexample>
        <programlisting>
<![CDATA[
5411
  snd_info_set_text_ops(entry, chip, my_proc_read);
L
Linus Torvalds 已提交
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
]]>
        </programlisting>
      </informalexample>
    
    where the second argument (<parameter>chip</parameter>) is the
    private data to be used in the callbacks. The third parameter
    specifies the read buffer size and the fourth
    (<parameter>my_proc_read</parameter>) is the callback function, which
    is defined like

      <informalexample>
        <programlisting>
<![CDATA[
5425 5426
  static void my_proc_read(struct snd_info_entry *entry,
                           struct snd_info_buffer *buffer);
L
Linus Torvalds 已提交
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
]]>
        </programlisting>
      </informalexample>
    
    </para>

    <para>
    In the read callback, use <function>snd_iprintf()</function> for
    output strings, which works just like normal
    <function>printf()</function>.  For example,

      <informalexample>
        <programlisting>
<![CDATA[
5441 5442
  static void my_proc_read(struct snd_info_entry *entry,
                           struct snd_info_buffer *buffer)
L
Linus Torvalds 已提交
5443
  {
5444
          struct my_chip *chip = entry->private_data;
L
Linus Torvalds 已提交
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454

          snd_iprintf(buffer, "This is my chip!\n");
          snd_iprintf(buffer, "Port = %ld\n", chip->port);
  }
]]>
        </programlisting>
      </informalexample>
    </para>

    <para>
5455 5456 5457
    The file permissions can be changed afterwards.  As default, it's
    set as read only for all users.  If you want to add write
    permission for the user (root as default), do as follows:
L
Linus Torvalds 已提交
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487

      <informalexample>
        <programlisting>
<![CDATA[
 entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
]]>
        </programlisting>
      </informalexample>

    and set the write buffer size and the callback

      <informalexample>
        <programlisting>
<![CDATA[
  entry->c.text.write = my_proc_write;
]]>
        </programlisting>
      </informalexample>
    </para>

    <para>
      For the write callback, you can use
    <function>snd_info_get_line()</function> to get a text line, and
    <function>snd_info_get_str()</function> to retrieve a string from
    the line. Some examples are found in
    <filename>core/oss/mixer_oss.c</filename>, core/oss/and
    <filename>pcm_oss.c</filename>. 
    </para>

    <para>
5488
      For a raw-data proc-file, set the attributes as follows:
L
Linus Torvalds 已提交
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504

      <informalexample>
        <programlisting>
<![CDATA[
  static struct snd_info_entry_ops my_file_io_ops = {
          .read = my_file_io_read,
  };

  entry->content = SNDRV_INFO_CONTENT_DATA;
  entry->private_data = chip;
  entry->c.ops = &my_file_io_ops;
  entry->size = 4096;
  entry->mode = S_IFREG | S_IRUGO;
]]>
        </programlisting>
      </informalexample>
5505 5506 5507

      For the raw data, <structfield>size</structfield> field must be
      set properly.  This specifies the maximum size of the proc file access.
L
Linus Torvalds 已提交
5508 5509 5510
    </para>

    <para>
5511 5512
      The read/write callbacks of raw mode are more direct than the text mode.
      You need to use a low-level I/O functions such as
L
Linus Torvalds 已提交
5513 5514 5515 5516 5517 5518
      <function>copy_from/to_user()</function> to transfer the
      data.

      <informalexample>
        <programlisting>
<![CDATA[
5519
  static ssize_t my_file_io_read(struct snd_info_entry *entry,
L
Linus Torvalds 已提交
5520 5521 5522
                              void *file_private_data,
                              struct file *file,
                              char *buf,
5523 5524
                              size_t count,
                              loff_t pos)
L
Linus Torvalds 已提交
5525
  {
5526
          if (copy_to_user(buf, local_data + pos, count))
L
Linus Torvalds 已提交
5527
                  return -EFAULT;
5528
          return count;
L
Linus Torvalds 已提交
5529 5530 5531 5532
  }
]]>
        </programlisting>
      </informalexample>
5533 5534 5535 5536 5537 5538 5539

      If the size of the info entry has been set up properly,
      <structfield>count</structfield> and <structfield>pos</structfield> are
      guaranteed to fit within 0 and the given size.
      You don't have to check the range in the callbacks unless any
      other condition is required.

L
Linus Torvalds 已提交
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
    </para>

  </chapter>


<!-- ****************************************************** -->
<!-- Power Management  -->
<!-- ****************************************************** -->
  <chapter id="power-management">
    <title>Power Management</title>
    <para>
5551
      If the chip is supposed to work with suspend/resume
5552 5553
      functions, you need to add power-management code to the
      driver. The additional code for power-management should be
L
Linus Torvalds 已提交
5554 5555 5556 5557
      <function>ifdef</function>'ed with
      <constant>CONFIG_PM</constant>. 
    </para>

5558
	<para>
5559 5560 5561 5562 5563 5564 5565 5566 5567
	If the driver <emphasis>fully</emphasis> supports suspend/resume
	that is, the device can be
	properly resumed to its state when suspend was called,
	you can set the <constant>SNDRV_PCM_INFO_RESUME</constant> flag
	in the pcm info field.  Usually, this is possible when the
	registers of the chip can be safely saved and restored to
	RAM. If this is set, the trigger callback is called with
	<constant>SNDRV_PCM_TRIGGER_RESUME</constant> after the resume
	callback completes. 
5568 5569 5570
	</para>

	<para>
5571 5572 5573
	Even if the driver doesn't support PM fully but 
	partial suspend/resume is still possible, it's still worthy to
	implement suspend/resume callbacks. In such a case, applications
5574 5575 5576 5577 5578 5579 5580 5581
	would reset the status by calling
	<function>snd_pcm_prepare()</function> and restart the stream
	appropriately.  Hence, you can define suspend/resume callbacks
	below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant>
	info flag to the PCM.
	</para>
	
	<para>
5582
	Note that the trigger with SUSPEND can always be called when
5583
	<function>snd_pcm_suspend_all</function> is called,
5584
	regardless of the <constant>SNDRV_PCM_INFO_RESUME</constant> flag.
5585 5586 5587 5588 5589 5590
	The <constant>RESUME</constant> flag affects only the behavior
	of <function>snd_pcm_resume()</function>.
	(Thus, in theory,
	<constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed
	to be handled in the trigger callback when no
	<constant>SNDRV_PCM_INFO_RESUME</constant> flag is set.  But,
5591
	it's better to keep it for compatibility reasons.)
5592
	</para>
L
Linus Torvalds 已提交
5593
    <para>
5594 5595 5596
      In the earlier version of ALSA drivers, a common
      power-management layer was provided, but it has been removed.
      The driver needs to define the suspend/resume hooks according to
5597
      the bus the device is connected to.  In the case of PCI drivers, the
5598
      callbacks look like below:
L
Linus Torvalds 已提交
5599 5600 5601 5602 5603

      <informalexample>
        <programlisting>
<![CDATA[
  #ifdef CONFIG_PM
5604
  static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
L
Linus Torvalds 已提交
5605
  {
5606
          .... /* do things for suspend */
L
Linus Torvalds 已提交
5607 5608
          return 0;
  }
5609
  static int snd_my_resume(struct pci_dev *pci)
L
Linus Torvalds 已提交
5610
  {
5611
          .... /* do things for suspend */
L
Linus Torvalds 已提交
5612 5613 5614 5615 5616 5617 5618 5619 5620
          return 0;
  }
  #endif
]]>
        </programlisting>
      </informalexample>
    </para>

    <para>
5621
      The scheme of the real suspend job is as follows.
L
Linus Torvalds 已提交
5622 5623

      <orderedlist>
5624 5625 5626 5627
        <listitem><para>Retrieve the card and the chip data.</para></listitem>
        <listitem><para>Call <function>snd_power_change_state()</function> with
	  <constant>SNDRV_CTL_POWER_D3hot</constant> to change the
	  power status.</para></listitem>
L
Linus Torvalds 已提交
5628
        <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
5629
	<listitem><para>If AC97 codecs are used, call
5630
	<function>snd_ac97_suspend()</function> for each codec.</para></listitem>
L
Linus Torvalds 已提交
5631 5632
        <listitem><para>Save the register values if necessary.</para></listitem>
        <listitem><para>Stop the hardware if necessary.</para></listitem>
5633 5634 5635
        <listitem><para>Disable the PCI device by calling
	  <function>pci_disable_device()</function>.  Then, call
          <function>pci_save_state()</function> at last.</para></listitem>
L
Linus Torvalds 已提交
5636 5637 5638 5639 5640 5641 5642 5643 5644
      </orderedlist>
    </para>

    <para>
      A typical code would be like:

      <informalexample>
        <programlisting>
<![CDATA[
5645
  static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
L
Linus Torvalds 已提交
5646 5647
  {
          /* (1) */
5648 5649
          struct snd_card *card = pci_get_drvdata(pci);
          struct mychip *chip = card->private_data;
L
Linus Torvalds 已提交
5650
          /* (2) */
5651
          snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
L
Linus Torvalds 已提交
5652
          /* (3) */
5653
          snd_pcm_suspend_all(chip->pcm);
L
Linus Torvalds 已提交
5654
          /* (4) */
5655
          snd_ac97_suspend(chip->ac97);
L
Linus Torvalds 已提交
5656
          /* (5) */
5657 5658 5659 5660 5661 5662
          snd_mychip_save_registers(chip);
          /* (6) */
          snd_mychip_stop_hardware(chip);
          /* (7) */
          pci_disable_device(pci);
          pci_save_state(pci);
L
Linus Torvalds 已提交
5663 5664 5665 5666 5667 5668 5669 5670
          return 0;
  }
]]>
        </programlisting>
      </informalexample>
    </para>

    <para>
5671
    The scheme of the real resume job is as follows.
L
Linus Torvalds 已提交
5672 5673

    <orderedlist>
5674
    <listitem><para>Retrieve the card and the chip data.</para></listitem>
5675
    <listitem><para>Set up PCI. First, call <function>pci_restore_state()</function>.
5676 5677
    	Then enable the pci device again by calling <function>pci_enable_device()</function>.
	Call <function>pci_set_master()</function> if necessary, too.</para></listitem>
L
Linus Torvalds 已提交
5678 5679 5680 5681 5682
    <listitem><para>Re-initialize the chip.</para></listitem>
    <listitem><para>Restore the saved registers if necessary.</para></listitem>
    <listitem><para>Resume the mixer, e.g. calling
    <function>snd_ac97_resume()</function>.</para></listitem>
    <listitem><para>Restart the hardware (if any).</para></listitem>
5683 5684
    <listitem><para>Call <function>snd_power_change_state()</function> with
	<constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem>
L
Linus Torvalds 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693
    </orderedlist>
    </para>

    <para>
    A typical code would be like:

      <informalexample>
        <programlisting>
<![CDATA[
5694
  static int mychip_resume(struct pci_dev *pci)
L
Linus Torvalds 已提交
5695 5696
  {
          /* (1) */
5697 5698
          struct snd_card *card = pci_get_drvdata(pci);
          struct mychip *chip = card->private_data;
L
Linus Torvalds 已提交
5699
          /* (2) */
5700 5701 5702
          pci_restore_state(pci);
          pci_enable_device(pci);
          pci_set_master(pci);
L
Linus Torvalds 已提交
5703 5704 5705 5706 5707 5708 5709 5710
          /* (3) */
          snd_mychip_reinit_chip(chip);
          /* (4) */
          snd_mychip_restore_registers(chip);
          /* (5) */
          snd_ac97_resume(chip->ac97);
          /* (6) */
          snd_mychip_restart_chip(chip);
5711 5712
          /* (7) */
          snd_power_change_state(card, SNDRV_CTL_POWER_D0);
L
Linus Torvalds 已提交
5713 5714 5715 5716 5717 5718 5719 5720
          return 0;
  }
]]>
        </programlisting>
      </informalexample>
    </para>

    <para>
5721 5722 5723 5724
	As shown in the above, it's better to save registers after
	suspending the PCM operations via
	<function>snd_pcm_suspend_all()</function> or
	<function>snd_pcm_suspend()</function>.  It means that the PCM
M
Masanari Iida 已提交
5725
	streams are already stopped when the register snapshot is
5726
	taken.  But, remember that you don't have to restart the PCM
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
	stream in the resume callback. It'll be restarted via 
	trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant>
	when necessary.
    </para>

    <para>
      OK, we have all callbacks now. Let's set them up. In the
      initialization of the card, make sure that you can get the chip
      data from the card instance, typically via
      <structfield>private_data</structfield> field, in case you
      created the chip data individually.

      <informalexample>
        <programlisting>
<![CDATA[
5742 5743
  static int snd_mychip_probe(struct pci_dev *pci,
                              const struct pci_device_id *pci_id)
5744 5745 5746 5747
  {
          ....
          struct snd_card *card;
          struct mychip *chip;
5748
          int err;
5749
          ....
5750 5751
          err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
                             0, &card);
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
          ....
          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
          ....
          card->private_data = chip;
          ....
  }
]]>
        </programlisting>
      </informalexample>

	When you created the chip data with
5763
	<function>snd_card_new()</function>, it's anyway accessible
5764
	via <structfield>private_data</structfield> field.
L
Linus Torvalds 已提交
5765 5766 5767 5768

      <informalexample>
        <programlisting>
<![CDATA[
5769 5770
  static int snd_mychip_probe(struct pci_dev *pci,
                              const struct pci_device_id *pci_id)
L
Linus Torvalds 已提交
5771 5772
  {
          ....
5773 5774
          struct snd_card *card;
          struct mychip *chip;
5775
          int err;
L
Linus Torvalds 已提交
5776
          ....
5777 5778
          err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
                             sizeof(struct mychip), &card);
5779 5780
          ....
          chip = card->private_data;
L
Linus Torvalds 已提交
5781 5782 5783 5784 5785 5786 5787 5788 5789
          ....
  }
]]>
        </programlisting>
      </informalexample>

    </para>

    <para>
5790
      If you need a space to save the registers, allocate the
5791
	buffer for it here, too, since it would be fatal
L
Linus Torvalds 已提交
5792 5793 5794 5795 5796 5797
    if you cannot allocate a memory in the suspend phase.
    The allocated buffer should be released in the corresponding
    destructor.
    </para>

    <para>
5798
      And next, set suspend/resume callbacks to the pci_driver.
L
Linus Torvalds 已提交
5799 5800 5801 5802 5803

      <informalexample>
        <programlisting>
<![CDATA[
  static struct pci_driver driver = {
5804
          .name = KBUILD_MODNAME,
L
Linus Torvalds 已提交
5805 5806
          .id_table = snd_my_ids,
          .probe = snd_my_probe,
5807
          .remove = snd_my_remove,
5808 5809 5810 5811
  #ifdef CONFIG_PM
          .suspend = snd_my_suspend,
          .resume = snd_my_resume,
  #endif
L
Linus Torvalds 已提交
5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
  };
]]>
        </programlisting>
      </informalexample>
    </para>

  </chapter>


<!-- ****************************************************** -->
<!-- Module Parameters  -->
<!-- ****************************************************** -->
  <chapter id="module-parameters">
    <title>Module Parameters</title>
    <para>
      There are standard module options for ALSA. At least, each
5828
      module should have the <parameter>index</parameter>,
L
Linus Torvalds 已提交
5829 5830 5831 5832 5833 5834 5835
      <parameter>id</parameter> and <parameter>enable</parameter>
      options. 
    </para>

    <para>
      If the module supports multiple cards (usually up to
      8 = <constant>SNDRV_CARDS</constant> cards), they should be
5836 5837
      arrays. The default initial values are defined already as
      constants for easier programming:
L
Linus Torvalds 已提交
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852

      <informalexample>
        <programlisting>
<![CDATA[
  static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
  static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
  static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
]]>
        </programlisting>
      </informalexample>
    </para>

    <para>
      If the module supports only a single card, they could be single
    variables, instead.  <parameter>enable</parameter> option is not
5853
    always necessary in this case, but it would be better to have a
L
Linus Torvalds 已提交
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
    dummy option for compatibility.
    </para>

    <para>
      The module parameters must be declared with the standard
    <function>module_param()()</function>,
    <function>module_param_array()()</function> and
    <function>MODULE_PARM_DESC()</function> macros.
    </para>

    <para>
      The typical coding would be like below:

      <informalexample>
        <programlisting>
<![CDATA[
  #define CARD_NAME "My Chip"

  module_param_array(index, int, NULL, 0444);
  MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
  module_param_array(id, charp, NULL, 0444);
  MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
  module_param_array(enable, bool, NULL, 0444);
  MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
]]>
        </programlisting>
      </informalexample>
    </para>

    <para>
      Also, don't forget to define the module description, classes,
      license and devices. Especially, the recent modprobe requires to
      define the module license as GPL, etc., otherwise the system is
      shown as <quote>tainted</quote>. 

      <informalexample>
        <programlisting>
<![CDATA[
  MODULE_DESCRIPTION("My Chip");
  MODULE_LICENSE("GPL");
  MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
]]>
        </programlisting>
      </informalexample>
    </para>

  </chapter>


<!-- ****************************************************** -->
<!-- How To Put Your Driver  -->
<!-- ****************************************************** -->
  <chapter id="how-to-put-your-driver">
    <title>How To Put Your Driver Into ALSA Tree</title>
	<section>
	<title>General</title>
	<para>
	So far, you've learned how to write the driver codes.
	And you might have a question now: how to put my own
	driver into the ALSA driver tree?
	Here (finally :) the standard procedure is described briefly.
	</para>

	<para>
5918
	Suppose that you create a new PCI driver for the card
L
Linus Torvalds 已提交
5919
	<quote>xyz</quote>.  The card module name would be
5920
	snd-xyz.  The new driver is usually put into the alsa-driver
L
Linus Torvalds 已提交
5921 5922 5923 5924
	tree, <filename>alsa-driver/pci</filename> directory in
	the case of PCI cards.
	Then the driver is evaluated, audited and tested
	by developers and users.  After a certain time, the driver
5925
	will go to the alsa-kernel tree (to the corresponding directory,
L
Linus Torvalds 已提交
5926
	such as <filename>alsa-kernel/pci</filename>) and eventually
5927
 	will be integrated into the Linux 2.6 tree (the directory would be
L
Linus Torvalds 已提交
5928 5929 5930 5931 5932
	<filename>linux/sound/pci</filename>).
	</para>

	<para>
	In the following sections, the driver code is supposed
5933
	to be put into alsa-driver tree. The two cases are covered:
L
Linus Torvalds 已提交
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
	a driver consisting of a single source file and one consisting
	of several source files.
	</para>
	</section>

	<section>
	<title>Driver with A Single Source File</title>
	<para>
	<orderedlist>
	<listitem>
	<para>
	Modify alsa-driver/pci/Makefile
	</para>

	<para>
	Suppose you have a file xyz.c.  Add the following
	two lines
      <informalexample>
        <programlisting>
<![CDATA[
  snd-xyz-objs := xyz.o
  obj-$(CONFIG_SND_XYZ) += snd-xyz.o
]]>
        </programlisting>
      </informalexample>
	</para>
	</listitem>

	<listitem>
	<para>
	Create the Kconfig entry
	</para>

	<para>
	Add the new entry of Kconfig for your xyz driver.
      <informalexample>
        <programlisting>
<![CDATA[
  config SND_XYZ
          tristate "Foobar XYZ"
          depends on SND
          select SND_PCM
          help
            Say Y here to include support for Foobar XYZ soundcard.

            To compile this driver as a module, choose M here: the module
            will be called snd-xyz.
]]>
        </programlisting>
      </informalexample>

	the line, select SND_PCM, specifies that the driver xyz supports
	PCM.  In addition to SND_PCM, the following components are
	supported for select command:
	SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
	SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
	Add the select command for each supported component.
	</para>

	<para>
	Note that some selections imply the lowlevel selections.
	For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
	AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
	You don't need to give the lowlevel selections again.
	</para>

	<para>
	For the details of Kconfig script, refer to the kbuild
	documentation.
	</para>

	</listitem>

	<listitem>
	<para>
	Run cvscompile script to re-generate the configure script and
	build the whole stuff again.
	</para>
	</listitem>
	</orderedlist>
	</para>
	</section>

	<section>
	<title>Drivers with Several Source Files</title>
	<para>
	Suppose that the driver snd-xyz have several source files.
	They are located in the new subdirectory,
	pci/xyz.

	<orderedlist>
	<listitem>
	<para>
	Add a new directory (<filename>xyz</filename>) in
6028
	<filename>alsa-driver/pci/Makefile</filename> as below
L
Linus Torvalds 已提交
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096

      <informalexample>
        <programlisting>
<![CDATA[
  obj-$(CONFIG_SND) += xyz/
]]>
        </programlisting>
      </informalexample>
	</para>
	</listitem>

	<listitem>
	<para>
	Under the directory <filename>xyz</filename>, create a Makefile

      <example>
	<title>Sample Makefile for a driver xyz</title>
        <programlisting>
<![CDATA[
  ifndef SND_TOPDIR
  SND_TOPDIR=../..
  endif

  include $(SND_TOPDIR)/toplevel.config
  include $(SND_TOPDIR)/Makefile.conf

  snd-xyz-objs := xyz.o abc.o def.o

  obj-$(CONFIG_SND_XYZ) += snd-xyz.o

  include $(SND_TOPDIR)/Rules.make
]]>
        </programlisting>
      </example>
	</para>
	</listitem>

	<listitem>
	<para>
	Create the Kconfig entry
	</para>

	<para>
	This procedure is as same as in the last section.
	</para>
	</listitem>

	<listitem>
	<para>
	Run cvscompile script to re-generate the configure script and
	build the whole stuff again.
	</para>
	</listitem>
	</orderedlist>
	</para>
	</section>

  </chapter>

<!-- ****************************************************** -->
<!-- Useful Functions  -->
<!-- ****************************************************** -->
  <chapter id="useful-functions">
    <title>Useful Functions</title>

    <section id="useful-functions-snd-printk">
      <title><function>snd_printk()</function> and friends</title>
      <para>
6097
        ALSA provides a verbose version of the
L
Linus Torvalds 已提交
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
      <function>printk()</function> function. If a kernel config
      <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
      function prints the given message together with the file name
      and the line of the caller. The <constant>KERN_XXX</constant>
      prefix is processed as 
      well as the original <function>printk()</function> does, so it's
      recommended to add this prefix, e.g. 

        <informalexample>
          <programlisting>
<![CDATA[
  snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
]]>
          </programlisting>
        </informalexample>
      </para>

      <para>
        There are also <function>printk()</function>'s for
      debugging. <function>snd_printd()</function> can be used for
      general debugging purposes. If
      <constant>CONFIG_SND_DEBUG</constant> is set, this function is
      compiled, and works just like
      <function>snd_printk()</function>. If the ALSA is compiled
      without the debugging flag, it's ignored. 
      </para>

      <para>
        <function>snd_printdd()</function> is compiled in only when
6127 6128
      <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is set. Please note
      that <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is not set as default
L
Linus Torvalds 已提交
6129 6130 6131 6132 6133 6134 6135 6136 6137
      even if you configure the alsa-driver with
      <option>--with-debug=full</option> option. You need to give
      explicitly <option>--with-debug=detect</option> option instead. 
      </para>
    </section>

    <section id="useful-functions-snd-bug">
      <title><function>snd_BUG()</function></title>
      <para>
6138
        It shows the <computeroutput>BUG?</computeroutput> message and
6139
      stack trace as well as <function>snd_BUG_ON</function> at the point.
6140 6141 6142 6143
      It's useful to show that a fatal error happens there. 
      </para>
      <para>
	 When no debug flag is set, this macro is ignored. 
L
Linus Torvalds 已提交
6144 6145
      </para>
    </section>
6146 6147 6148 6149 6150 6151

    <section id="useful-functions-snd-bug-on">
      <title><function>snd_BUG_ON()</function></title>
      <para>
        <function>snd_BUG_ON()</function> macro is similar with
	<function>WARN_ON()</function> macro. For example,  
L
Linus Torvalds 已提交
6152 6153 6154 6155

        <informalexample>
          <programlisting>
<![CDATA[
6156
  snd_BUG_ON(!pointer);
L
Linus Torvalds 已提交
6157 6158 6159 6160
]]>
          </programlisting>
        </informalexample>

6161 6162 6163 6164 6165 6166 6167 6168 6169
	or it can be used as the condition,
        <informalexample>
          <programlisting>
<![CDATA[
  if (snd_BUG_ON(non_zero_is_bug))
          return -EINVAL;
]]>
          </programlisting>
        </informalexample>
L
Linus Torvalds 已提交
6170

6171
      </para>
6172

6173
      <para>
6174
        The macro takes an conditional expression to evaluate.
6175 6176
	When <constant>CONFIG_SND_DEBUG</constant>, is set, if the
	expression is non-zero, it shows the warning message such as
6177
	<computeroutput>BUG? (xxx)</computeroutput>
6178 6179 6180
	normally followed by stack trace.

	In both cases it returns the evaluated value.
L
Linus Torvalds 已提交
6181
      </para>
6182

L
Linus Torvalds 已提交
6183
    </section>
6184

L
Linus Torvalds 已提交
6185 6186 6187 6188 6189 6190
  </chapter>


<!-- ****************************************************** -->
<!-- Acknowledgments  -->
<!-- ****************************************************** -->
6191
  <chapter id="acknowledgments">
L
Linus Torvalds 已提交
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
    <title>Acknowledgments</title>
    <para>
      I would like to thank Phil Kerr for his help for improvement and
      corrections of this document. 
    </para>
    <para>
    Kevin Conder reformatted the original plain-text to the
    DocBook format.
    </para>
    <para>
    Giuliano Pochini corrected typos and contributed the example codes
    in the hardware constraints section.
    </para>
  </chapter>
</book>