lrw.c 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/* LRW: as defined by Cyril Guyot in
 *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
 *
 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
 *
 * Based om ecb.c
 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 */
/* This implementation is checked against the test vectors in the above
 * document and by a test vector provided by Ken Buchanan at
 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
 *
 * The test vectors are included in the testing module tcrypt.[ch] */
#include <crypto/algapi.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>

#include <crypto/b128ops.h>
#include <crypto/gf128mul.h>

struct priv {
	struct crypto_cipher *child;
	/* optimizes multiplying a random (non incrementing, as at the
	 * start of a new sector) value with key2, we could also have
	 * used 4k optimization tables or no optimization at all. In the
	 * latter case we would have to store key2 here */
	struct gf128mul_64k *table;
	/* stores:
	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
	 * needed for optimized multiplication of incrementing values
	 * with key2 */
	be128 mulinc[128];
};

static inline void setbit128_bbe(void *b, int bit)
{
	__set_bit(bit ^ 0x78, b);
}

static int setkey(struct crypto_tfm *parent, const u8 *key,
		  unsigned int keylen)
{
	struct priv *ctx = crypto_tfm_ctx(parent);
	struct crypto_cipher *child = ctx->child;
	int err, i;
	be128 tmp = { 0 };
	int bsize = crypto_cipher_blocksize(child);

	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
				       CRYPTO_TFM_REQ_MASK);
	if ((err = crypto_cipher_setkey(child, key, keylen - bsize)))
		return err;
	crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
				     CRYPTO_TFM_RES_MASK);

	if (ctx->table)
		gf128mul_free_64k(ctx->table);

	/* initialize multiplication table for Key2 */
	ctx->table = gf128mul_init_64k_bbe((be128 *)(key + keylen - bsize));
	if (!ctx->table)
		return -ENOMEM;

	/* initialize optimization table */
	for (i = 0; i < 128; i++) {
		setbit128_bbe(&tmp, i);
		ctx->mulinc[i] = tmp;
		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
	}

	return 0;
}

struct sinfo {
	be128 t;
	struct crypto_tfm *tfm;
	void (*fn)(struct crypto_tfm *, u8 *, const u8 *);
};

static inline void inc(be128 *iv)
{
	if (!(iv->b = cpu_to_be64(be64_to_cpu(iv->b) + 1)))
		iv->a = cpu_to_be64(be64_to_cpu(iv->a) + 1);
}

98
static inline void lrw_round(struct sinfo *s, void *dst, const void *src)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
{
	be128_xor(dst, &s->t, src);		/* PP <- T xor P */
	s->fn(s->tfm, dst, dst);		/* CC <- E(Key2,PP) */
	be128_xor(dst, dst, &s->t);		/* C <- T xor CC */
}

/* this returns the number of consequative 1 bits starting
 * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
static inline int get_index128(be128 *block)
{
	int x;
	__be32 *p = (__be32 *) block;

	for (p += 3, x = 0; x < 128; p--, x += 32) {
		u32 val = be32_to_cpup(p);

		if (!~val)
			continue;

		return x + ffz(val);
	}

	return x;
}

static int crypt(struct blkcipher_desc *d,
		 struct blkcipher_walk *w, struct priv *ctx,
		 void (*fn)(struct crypto_tfm *, u8 *, const u8 *))
{
	int err;
	unsigned int avail;
	const int bs = crypto_cipher_blocksize(ctx->child);
	struct sinfo s = {
		.tfm = crypto_cipher_tfm(ctx->child),
		.fn = fn
	};
	be128 *iv;
	u8 *wsrc;
	u8 *wdst;

	err = blkcipher_walk_virt(d, w);
	if (!(avail = w->nbytes))
		return err;

	wsrc = w->src.virt.addr;
	wdst = w->dst.virt.addr;

	/* calculate first value of T */
	iv = (be128 *)w->iv;
	s.t = *iv;

	/* T <- I*Key2 */
	gf128mul_64k_bbe(&s.t, ctx->table);

	goto first;

	for (;;) {
		do {
			/* T <- I*Key2, using the optimization
			 * discussed in the specification */
			be128_xor(&s.t, &s.t, &ctx->mulinc[get_index128(iv)]);
			inc(iv);

first:
163
			lrw_round(&s, wdst, wsrc);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

			wsrc += bs;
			wdst += bs;
		} while ((avail -= bs) >= bs);

		err = blkcipher_walk_done(d, w, avail);
		if (!(avail = w->nbytes))
			break;

		wsrc = w->src.virt.addr;
		wdst = w->dst.virt.addr;
	}

	return err;
}

static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		   struct scatterlist *src, unsigned int nbytes)
{
	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
	struct blkcipher_walk w;

	blkcipher_walk_init(&w, dst, src, nbytes);
	return crypt(desc, &w, ctx,
		     crypto_cipher_alg(ctx->child)->cia_encrypt);
}

static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		   struct scatterlist *src, unsigned int nbytes)
{
	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
	struct blkcipher_walk w;

	blkcipher_walk_init(&w, dst, src, nbytes);
	return crypt(desc, &w, ctx,
		     crypto_cipher_alg(ctx->child)->cia_decrypt);
}

static int init_tfm(struct crypto_tfm *tfm)
{
H
Herbert Xu 已提交
204
	struct crypto_cipher *cipher;
205 206 207 208 209
	struct crypto_instance *inst = (void *)tfm->__crt_alg;
	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
	struct priv *ctx = crypto_tfm_ctx(tfm);
	u32 *flags = &tfm->crt_flags;

H
Herbert Xu 已提交
210 211 212
	cipher = crypto_spawn_cipher(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);
213

H
Herbert Xu 已提交
214
	if (crypto_cipher_blocksize(cipher) != 16) {
215 216 217 218
		*flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
		return -EINVAL;
	}

H
Herbert Xu 已提交
219
	ctx->child = cipher;
220 221 222 223 224 225 226 227 228 229 230
	return 0;
}

static void exit_tfm(struct crypto_tfm *tfm)
{
	struct priv *ctx = crypto_tfm_ctx(tfm);
	if (ctx->table)
		gf128mul_free_64k(ctx->table);
	crypto_free_cipher(ctx->child);
}

231
static struct crypto_instance *alloc(struct rtattr **tb)
232 233 234
{
	struct crypto_instance *inst;
	struct crypto_alg *alg;
235 236 237 238 239
	int err;

	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
	if (err)
		return ERR_PTR(err);
240

241 242
	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
				  CRYPTO_ALG_TYPE_MASK);
243
	if (IS_ERR(alg))
244
		return ERR_CAST(alg);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

	inst = crypto_alloc_instance("lrw", alg);
	if (IS_ERR(inst))
		goto out_put_alg;

	inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
	inst->alg.cra_priority = alg->cra_priority;
	inst->alg.cra_blocksize = alg->cra_blocksize;

	if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7;
	else inst->alg.cra_alignmask = alg->cra_alignmask;
	inst->alg.cra_type = &crypto_blkcipher_type;

	if (!(alg->cra_blocksize % 4))
		inst->alg.cra_alignmask |= 3;
	inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize;
	inst->alg.cra_blkcipher.min_keysize =
		alg->cra_cipher.cia_min_keysize + alg->cra_blocksize;
	inst->alg.cra_blkcipher.max_keysize =
		alg->cra_cipher.cia_max_keysize + alg->cra_blocksize;

	inst->alg.cra_ctxsize = sizeof(struct priv);

	inst->alg.cra_init = init_tfm;
	inst->alg.cra_exit = exit_tfm;

	inst->alg.cra_blkcipher.setkey = setkey;
	inst->alg.cra_blkcipher.encrypt = encrypt;
	inst->alg.cra_blkcipher.decrypt = decrypt;

out_put_alg:
	crypto_mod_put(alg);
	return inst;
}

static void free(struct crypto_instance *inst)
{
	crypto_drop_spawn(crypto_instance_ctx(inst));
	kfree(inst);
}

static struct crypto_template crypto_tmpl = {
	.name = "lrw",
	.alloc = alloc,
	.free = free,
	.module = THIS_MODULE,
};

static int __init crypto_module_init(void)
{
	return crypto_register_template(&crypto_tmpl);
}

static void __exit crypto_module_exit(void)
{
	crypto_unregister_template(&crypto_tmpl);
}

module_init(crypto_module_init);
module_exit(crypto_module_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("LRW block cipher mode");