arm_arch_timer.c 42.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12 13

#define pr_fmt(fmt)	"arm_arch_timer: " fmt

14 15 16 17 18
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
19
#include <linux/cpu_pm.h>
20
#include <linux/clockchips.h>
21
#include <linux/clocksource.h>
22 23
#include <linux/interrupt.h>
#include <linux/of_irq.h>
24
#include <linux/of_address.h>
25
#include <linux/io.h>
26
#include <linux/slab.h>
27
#include <linux/sched/clock.h>
28
#include <linux/sched_clock.h>
29
#include <linux/acpi.h>
30 31

#include <asm/arch_timer.h>
32
#include <asm/virt.h>
33 34 35

#include <clocksource/arm_arch_timer.h>

36 37 38
#undef pr_fmt
#define pr_fmt(fmt) "arch_timer: " fmt

39 40 41
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

42 43 44 45 46 47 48 49
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

69
static u32 arch_timer_rate;
70
static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71 72 73

static struct clock_event_device __percpu *arch_timer_evt;

74
static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75
static bool arch_timer_c3stop;
76
static bool arch_timer_mem_use_virtual;
77
static bool arch_counter_suspend_stop;
78
static bool vdso_default = true;
79

80
static cpumask_t evtstrm_available = CPU_MASK_NONE;
81 82 83 84 85 86 87 88
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

89 90 91 92
/*
 * Architected system timer support.
 */

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
			  struct clock_event_device *clk)
{
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
			struct clock_event_device *clk)
{
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
}

155 156 157 158 159 160 161
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
162
EXPORT_SYMBOL_GPL(arch_timer_read_counter);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

static u64 arch_counter_read(struct clocksource *cs)
{
	return arch_timer_read_counter();
}

static u64 arch_counter_read_cc(const struct cyclecounter *cc)
{
	return arch_timer_read_counter();
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

static struct cyclecounter cyclecounter __ro_after_init = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

187 188 189 190 191 192
struct ate_acpi_oem_info {
	char oem_id[ACPI_OEM_ID_SIZE + 1];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
	u32 oem_revision;
};

193
#ifdef CONFIG_FSL_ERRATUM_A008585
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/*
 * The number of retries is an arbitrary value well beyond the highest number
 * of iterations the loop has been observed to take.
 */
#define __fsl_a008585_read_reg(reg) ({			\
	u64 _old, _new;					\
	int _retries = 200;				\
							\
	do {						\
		_old = read_sysreg(reg);		\
		_new = read_sysreg(reg);		\
		_retries--;				\
	} while (unlikely(_old != _new) && _retries);	\
							\
	WARN_ON_ONCE(!_retries);			\
	_new;						\
})

static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
213 214 215 216
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

217
static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
218 219 220 221
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

222 223 224 225 226
static u64 notrace fsl_a008585_read_cntpct_el0(void)
{
	return __fsl_a008585_read_reg(cntpct_el0);
}

227
static u64 notrace fsl_a008585_read_cntvct_el0(void)
228 229 230
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
231 232
#endif

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
#ifdef CONFIG_HISILICON_ERRATUM_161010101
/*
 * Verify whether the value of the second read is larger than the first by
 * less than 32 is the only way to confirm the value is correct, so clear the
 * lower 5 bits to check whether the difference is greater than 32 or not.
 * Theoretically the erratum should not occur more than twice in succession
 * when reading the system counter, but it is possible that some interrupts
 * may lead to more than twice read errors, triggering the warning, so setting
 * the number of retries far beyond the number of iterations the loop has been
 * observed to take.
 */
#define __hisi_161010101_read_reg(reg) ({				\
	u64 _old, _new;						\
	int _retries = 50;					\
								\
	do {							\
		_old = read_sysreg(reg);			\
		_new = read_sysreg(reg);			\
		_retries--;					\
	} while (unlikely((_new - _old) >> 5) && _retries);	\
								\
	WARN_ON_ONCE(!_retries);				\
	_new;							\
})

static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntp_tval_el0);
}

static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntv_tval_el0);
}

268 269 270 271 272
static u64 notrace hisi_161010101_read_cntpct_el0(void)
{
	return __hisi_161010101_read_reg(cntpct_el0);
}

273 274 275 276
static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
	return __hisi_161010101_read_reg(cntvct_el0);
}
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
	/*
	 * Note that trailing spaces are required to properly match
	 * the OEM table information.
	 */
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP05   ",
		.oem_revision	= 0,
	},
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP06   ",
		.oem_revision	= 0,
	},
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP07   ",
		.oem_revision	= 0,
	},
	{ /* Sentinel indicating the end of the OEM array */ },
};
300 301
#endif

302
#ifdef CONFIG_ARM64_ERRATUM_858921
303 304 305 306 307 308 309 310 311
static u64 notrace arm64_858921_read_cntpct_el0(void)
{
	u64 old, new;

	old = read_sysreg(cntpct_el0);
	new = read_sysreg(cntpct_el0);
	return (((old ^ new) >> 32) & 1) ? old : new;
}

312 313 314 315 316 317 318 319 320 321
static u64 notrace arm64_858921_read_cntvct_el0(void)
{
	u64 old, new;

	old = read_sysreg(cntvct_el0);
	new = read_sysreg(cntvct_el0);
	return (((old ^ new) >> 32) & 1) ? old : new;
}
#endif

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
/*
 * The low bits of the counter registers are indeterminate while bit 10 or
 * greater is rolling over. Since the counter value can jump both backward
 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 */
#define __sun50i_a64_read_reg(reg) ({					\
	u64 _val;							\
	int _retries = 150;						\
									\
	do {								\
		_val = read_sysreg(reg);				\
		_retries--;						\
	} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);	\
									\
	WARN_ON_ONCE(!_retries);					\
	_val;								\
})

static u64 notrace sun50i_a64_read_cntpct_el0(void)
{
	return __sun50i_a64_read_reg(cntpct_el0);
}

static u64 notrace sun50i_a64_read_cntvct_el0(void)
{
	return __sun50i_a64_read_reg(cntvct_el0);
}

static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
{
	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
}

static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
{
	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
}
#endif

364
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
365
DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
366 367 368 369 370
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);

DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);

371 372 373 374
static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
						struct clock_event_device *clk)
{
	unsigned long ctrl;
375
	u64 cval;
376 377 378 379 380

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

381 382
	if (access == ARCH_TIMER_PHYS_ACCESS) {
		cval = evt + arch_counter_get_cntpct();
383
		write_sysreg(cval, cntp_cval_el0);
384 385
	} else {
		cval = evt + arch_counter_get_cntvct();
386
		write_sysreg(cval, cntv_cval_el0);
387
	}
388 389 390 391

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

392
static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
393 394 395 396 397 398
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
	return 0;
}

399
static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
400 401 402 403 404 405
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
	return 0;
}

406 407 408
static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
	{
409
		.match_type = ate_match_dt,
410
		.id = "fsl,erratum-a008585",
411
		.desc = "Freescale erratum a005858",
412 413
		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
414
		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
415
		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
416 417
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
418 419
	},
#endif
420 421
#ifdef CONFIG_HISILICON_ERRATUM_161010101
	{
422
		.match_type = ate_match_dt,
423
		.id = "hisilicon,erratum-161010101",
424
		.desc = "HiSilicon erratum 161010101",
425 426
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
427
		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
428
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
429 430
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
431 432 433 434 435 436 437
	},
	{
		.match_type = ate_match_acpi_oem_info,
		.id = hisi_161010101_oem_info,
		.desc = "HiSilicon erratum 161010101",
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
438
		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
439 440 441
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
442 443
	},
#endif
444 445 446 447 448
#ifdef CONFIG_ARM64_ERRATUM_858921
	{
		.match_type = ate_match_local_cap_id,
		.id = (void *)ARM64_WORKAROUND_858921,
		.desc = "ARM erratum 858921",
449
		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
450 451 452
		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
	},
#endif
453 454 455 456 457 458 459 460 461 462 463 464 465
#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
	{
		.match_type = ate_match_dt,
		.id = "allwinner,erratum-unknown1",
		.desc = "Allwinner erratum UNKNOWN1",
		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
	},
#endif
466
};
467 468 469 470 471 472 473 474 475 476 477 478 479

typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
			       const void *);

static
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
				 const void *arg)
{
	const struct device_node *np = arg;

	return of_property_read_bool(np, wa->id);
}

480 481 482 483 484 485 486
static
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
					const void *arg)
{
	return this_cpu_has_cap((uintptr_t)wa->id);
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

static
bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
				       const void *arg)
{
	static const struct ate_acpi_oem_info empty_oem_info = {};
	const struct ate_acpi_oem_info *info = wa->id;
	const struct acpi_table_header *table = arg;

	/* Iterate over the ACPI OEM info array, looking for a match */
	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
		    info->oem_revision == table->oem_revision)
			return true;

		info++;
	}

	return false;
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
			  ate_match_fn_t match_fn,
			  void *arg)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
		if (ool_workarounds[i].match_type != type)
			continue;

		if (match_fn(&ool_workarounds[i], arg))
			return &ool_workarounds[i];
	}

	return NULL;
}

static
528 529
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
				  bool local)
530
{
531 532 533 534 535 536 537 538 539
	int i;

	if (local) {
		__this_cpu_write(timer_unstable_counter_workaround, wa);
	} else {
		for_each_possible_cpu(i)
			per_cpu(timer_unstable_counter_workaround, i) = wa;
	}

540 541 542 543 544
	/*
	 * Use the locked version, as we're called from the CPU
	 * hotplug framework. Otherwise, we end-up in deadlock-land.
	 */
	static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
545 546 547 548 549 550 551 552 553 554 555

	/*
	 * Don't use the vdso fastpath if errata require using the
	 * out-of-line counter accessor. We may change our mind pretty
	 * late in the game (with a per-CPU erratum, for example), so
	 * change both the default value and the vdso itself.
	 */
	if (wa->read_cntvct_el0) {
		clocksource_counter.archdata.vdso_direct = false;
		vdso_default = false;
	}
556 557 558 559 560 561 562
}

static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
					    void *arg)
{
	const struct arch_timer_erratum_workaround *wa;
	ate_match_fn_t match_fn = NULL;
563
	bool local = false;
564 565 566 567 568

	switch (type) {
	case ate_match_dt:
		match_fn = arch_timer_check_dt_erratum;
		break;
569 570 571 572
	case ate_match_local_cap_id:
		match_fn = arch_timer_check_local_cap_erratum;
		local = true;
		break;
573 574 575
	case ate_match_acpi_oem_info:
		match_fn = arch_timer_check_acpi_oem_erratum;
		break;
576 577 578 579 580 581 582 583 584
	default:
		WARN_ON(1);
		return;
	}

	wa = arch_timer_iterate_errata(type, match_fn, arg);
	if (!wa)
		return;

585
	if (needs_unstable_timer_counter_workaround()) {
586 587 588
		const struct arch_timer_erratum_workaround *__wa;
		__wa = __this_cpu_read(timer_unstable_counter_workaround);
		if (__wa && wa != __wa)
589
			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
590 591 592 593
				wa->desc, __wa->desc);

		if (__wa)
			return;
594 595
	}

596
	arch_timer_enable_workaround(wa, local);
597 598
	pr_info("Enabling %s workaround for %s\n",
		local ? "local" : "global", wa->desc);
599 600
}

601 602 603
#define erratum_handler(fn, r, ...)					\
({									\
	bool __val;							\
604 605 606 607 608 609 610 611 612
	if (needs_unstable_timer_counter_workaround()) {		\
		const struct arch_timer_erratum_workaround *__wa;	\
		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
		if (__wa && __wa->fn) {					\
			r = __wa->fn(__VA_ARGS__);			\
			__val = true;					\
		} else {						\
			__val = false;					\
		}							\
613 614 615 616 617 618
	} else {							\
		__val = false;						\
	}								\
	__val;								\
})

619 620 621 622 623 624 625
static bool arch_timer_this_cpu_has_cntvct_wa(void)
{
	const struct arch_timer_erratum_workaround *wa;

	wa = __this_cpu_read(timer_unstable_counter_workaround);
	return wa && wa->read_cntvct_el0;
}
626 627
#else
#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
628 629
#define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
#define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
630
#define erratum_handler(fn, r, ...)			({false;})
631
#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
632
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
633

634
static __always_inline irqreturn_t timer_handler(const int access,
635 636 637
					struct clock_event_device *evt)
{
	unsigned long ctrl;
638

639
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
640 641
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
642
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

678 679
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
680 681
{
	unsigned long ctrl;
682 683 684 685 686 687

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
688 689
}

690
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
691
{
692
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
693 694
}

695
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
696
{
697
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
698 699
}

700
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
701
{
702
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
703 704
}

705
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
706
{
707
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
708 709
}

710
static __always_inline void set_next_event(const int access, unsigned long evt,
711
					   struct clock_event_device *clk)
712 713
{
	unsigned long ctrl;
714
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
715 716
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
717 718
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
719 720 721
}

static int arch_timer_set_next_event_virt(unsigned long evt,
722
					  struct clock_event_device *clk)
723
{
724 725 726 727
	int ret;

	if (erratum_handler(set_next_event_virt, ret, evt, clk))
		return ret;
728

729
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
730 731 732 733
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
734
					  struct clock_event_device *clk)
735
{
736 737 738 739
	int ret;

	if (erratum_handler(set_next_event_phys, ret, evt, clk))
		return ret;
740

741
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
742 743 744
	return 0;
}

745 746
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
747
{
748 749 750 751 752 753 754 755 756 757 758
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

759 760
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
761 762 763
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

764
	if (type == ARCH_TIMER_TYPE_CP15) {
765 766
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
767 768 769
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
770 771
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
772
		case ARCH_TIMER_VIRT_PPI:
773
			clk->set_state_shutdown = arch_timer_shutdown_virt;
774
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
775
			clk->set_next_event = arch_timer_set_next_event_virt;
776
			break;
777 778 779
		case ARCH_TIMER_PHYS_SECURE_PPI:
		case ARCH_TIMER_PHYS_NONSECURE_PPI:
		case ARCH_TIMER_HYP_PPI:
780
			clk->set_state_shutdown = arch_timer_shutdown_phys;
781
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
782
			clk->set_next_event = arch_timer_set_next_event_phys;
783 784 785
			break;
		default:
			BUG();
786
		}
787

788
		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
789
	} else {
790
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
791 792
		clk->name = "arch_mem_timer";
		clk->rating = 400;
793
		clk->cpumask = cpu_possible_mask;
794
		if (arch_timer_mem_use_virtual) {
795
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
796
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
797 798 799
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
800
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
801
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
802 803 804
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
805 806
	}

807
	clk->set_state_shutdown(clk);
808

809 810
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
811

812 813 814 815 816 817 818 819 820 821 822 823 824
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
825
	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
826 827
}

828 829 830 831 832 833 834 835 836 837 838 839 840
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

841 842 843 844
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

845
	/* Disable user access to the timers and both counters */
846 847 848
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
849
		        | ARCH_TIMER_USR_VCT_ACCESS_EN
850 851 852
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

853 854 855 856 857 858 859 860 861
	/*
	 * Enable user access to the virtual counter if it doesn't
	 * need to be workaround. The vdso may have been already
	 * disabled though.
	 */
	if (arch_timer_this_cpu_has_cntvct_wa())
		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
	else
		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
862 863 864 865

	arch_timer_set_cntkctl(cntkctl);
}

866 867
static bool arch_timer_has_nonsecure_ppi(void)
{
868 869
	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
870 871
}

872 873 874 875 876 877 878 879 880 881 882 883 884
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

885
static int arch_timer_starting_cpu(unsigned int cpu)
886
{
887
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
888
	u32 flags;
889

890
	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
891

892 893
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
894

895
	if (arch_timer_has_nonsecure_ppi()) {
896 897 898
		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
				  flags);
899
	}
900 901

	arch_counter_set_user_access();
902
	if (evtstrm_enable)
903
		arch_timer_configure_evtstream();
904 905 906 907

	return 0;
}

908 909 910 911 912 913
/*
 * For historical reasons, when probing with DT we use whichever (non-zero)
 * rate was probed first, and don't verify that others match. If the first node
 * probed has a clock-frequency property, this overrides the HW register.
 */
static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
914
{
915 916 917
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
918

919 920
	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
		arch_timer_rate = rate;
921

922 923
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
924
		pr_warn("frequency not available\n");
925 926 927 928
}

static void arch_timer_banner(unsigned type)
{
929
	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
930 931 932 933
		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
			" and " : "",
		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
934 935
		(unsigned long)arch_timer_rate / 1000000,
		(unsigned long)(arch_timer_rate / 10000) % 100,
936
		type & ARCH_TIMER_TYPE_CP15 ?
937
			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
938
			"",
939 940
		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
		type & ARCH_TIMER_TYPE_MEM ?
941 942
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
943 944 945 946 947 948 949
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

950 951 952 953 954 955 956 957 958 959
bool arch_timer_evtstrm_available(void)
{
	/*
	 * We might get called from a preemptible context. This is fine
	 * because availability of the event stream should be always the same
	 * for a preemptible context and context where we might resume a task.
	 */
	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
}

960
static u64 arch_counter_get_cntvct_mem(void)
961
{
962 963 964 965 966 967 968 969 970
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
971 972
}

973 974 975 976 977 978
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
979

980 981 982 983 984
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
985
	if (type & ARCH_TIMER_TYPE_CP15) {
986
		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
987
		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
988 989 990
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
991

992
		clocksource_counter.archdata.vdso_direct = vdso_default;
993
	} else {
994
		arch_timer_read_counter = arch_counter_get_cntvct_mem;
995 996
	}

997 998
	if (!arch_counter_suspend_stop)
		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
999 1000 1001 1002
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
1003 1004
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
1005 1006 1007

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1008 1009
}

1010
static void arch_timer_stop(struct clock_event_device *clk)
1011
{
1012
	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1013

1014 1015
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
1016
		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1017

1018
	clk->set_state_shutdown(clk);
1019 1020
}

1021
static int arch_timer_dying_cpu(unsigned int cpu)
1022
{
1023
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1024

1025 1026
	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);

1027 1028
	arch_timer_stop(clk);
	return 0;
1029 1030
}

1031
#ifdef CONFIG_CPU_PM
1032
static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1033 1034 1035
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
1036
	if (action == CPU_PM_ENTER) {
1037
		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1038 1039 1040

		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1041
		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1042 1043 1044 1045

		if (elf_hwcap & HWCAP_EVTSTRM)
			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
	}
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
1057 1058 1059 1060 1061 1062

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

1063 1064 1065 1066 1067
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
1068 1069 1070 1071

static void __init arch_timer_cpu_pm_deinit(void)
{
}
1072 1073
#endif

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

1085 1086
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
1087
	case ARCH_TIMER_VIRT_PPI:
1088 1089
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
1090
		break;
1091 1092
	case ARCH_TIMER_PHYS_SECURE_PPI:
	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1093 1094
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
1095
		if (!err && arch_timer_has_nonsecure_ppi()) {
1096
			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1097 1098 1099
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
1100
				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1101 1102
						arch_timer_evt);
		}
1103
		break;
1104
	case ARCH_TIMER_HYP_PPI:
1105 1106 1107 1108 1109
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
1110 1111 1112
	}

	if (err) {
1113
		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1114 1115 1116
		goto out_free;
	}

1117 1118 1119 1120
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

1121 1122
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
T
Thomas Gleixner 已提交
1123
				"clockevents/arm/arch_timer:starting",
1124 1125 1126
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
1127 1128
	return 0;

1129 1130 1131
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

1132
out_unreg_notify:
1133 1134
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
1135
		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1136 1137 1138 1139 1140 1141 1142 1143
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
1156
	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1157 1158 1159 1160 1161 1162 1163 1164

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
1165
		pr_err("Failed to request mem timer irq\n");
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

1183
static bool __init arch_timer_needs_of_probing(void)
1184 1185
{
	struct device_node *dn;
1186
	bool needs_probing = false;
1187
	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	/* We have two timers, and both device-tree nodes are probed. */
	if ((arch_timers_present & mask) == mask)
		return false;

	/*
	 * Only one type of timer is probed,
	 * check if we have another type of timer node in device-tree.
	 */
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
	else
		dn = of_find_matching_node(NULL, arch_timer_of_match);

	if (dn && of_device_is_available(dn))
1203
		needs_probing = true;
1204

1205 1206
	of_node_put(dn);

1207
	return needs_probing;
1208 1209
}

1210
static int __init arch_timer_common_init(void)
1211 1212 1213
{
	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
1214
	return arch_timer_arch_init();
1215 1216
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
/**
 * arch_timer_select_ppi() - Select suitable PPI for the current system.
 *
 * If HYP mode is available, we know that the physical timer
 * has been configured to be accessible from PL1. Use it, so
 * that a guest can use the virtual timer instead.
 *
 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
 * accesses to CNTP_*_EL1 registers are silently redirected to
 * their CNTHP_*_EL2 counterparts, and use a different PPI
 * number.
 *
 * If no interrupt provided for virtual timer, we'll have to
 * stick to the physical timer. It'd better be accessible...
 * For arm64 we never use the secure interrupt.
 *
 * Return: a suitable PPI type for the current system.
 */
static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1236
{
1237 1238
	if (is_kernel_in_hyp_mode())
		return ARCH_TIMER_HYP_PPI;
1239

1240 1241
	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
		return ARCH_TIMER_VIRT_PPI;
1242

1243 1244 1245 1246 1247 1248
	if (IS_ENABLED(CONFIG_ARM64))
		return ARCH_TIMER_PHYS_NONSECURE_PPI;

	return ARCH_TIMER_PHYS_SECURE_PPI;
}

1249
static int __init arch_timer_of_init(struct device_node *np)
1250
{
1251
	int i, ret;
1252
	u32 rate;
1253

1254
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1255
		pr_warn("multiple nodes in dt, skipping\n");
1256
		return 0;
1257 1258
	}

1259
	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1260
	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1261 1262
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

1263 1264
	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];

1265
	rate = arch_timer_get_cntfrq();
1266
	arch_timer_of_configure_rate(rate, np);
1267 1268 1269

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

1270 1271
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_dt, np);
1272

1273 1274 1275 1276 1277 1278
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1279
		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1280 1281 1282 1283 1284 1285 1286
	else
		arch_timer_uses_ppi = arch_timer_select_ppi();

	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
		pr_err("No interrupt available, giving up\n");
		return -EINVAL;
	}
1287

1288 1289 1290 1291
	/* On some systems, the counter stops ticking when in suspend. */
	arch_counter_suspend_stop = of_property_read_bool(np,
							 "arm,no-tick-in-suspend");

1292 1293 1294 1295 1296 1297 1298 1299
	ret = arch_timer_register();
	if (ret)
		return ret;

	if (arch_timer_needs_of_probing())
		return 0;

	return arch_timer_common_init();
1300
}
1301 1302
TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1303

1304 1305
static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1306
{
1307 1308
	void __iomem *base;
	u32 rate;
1309

1310 1311 1312 1313 1314 1315
	base = ioremap(frame->cntbase, frame->size);
	if (!base) {
		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
		return 0;
	}

1316
	rate = readl_relaxed(base + CNTFRQ);
1317

1318
	iounmap(base);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

	return rate;
}

static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
{
	struct arch_timer_mem_frame *frame, *best_frame = NULL;
	void __iomem *cntctlbase;
	u32 cnttidr;
	int i;

	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1332
	if (!cntctlbase) {
1333 1334 1335
		pr_err("Can't map CNTCTLBase @ %pa\n",
			&timer_mem->cntctlbase);
		return NULL;
1336 1337 1338 1339 1340 1341 1342 1343
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
1344 1345 1346
	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1347

1348 1349 1350
		frame = &timer_mem->frame[i];
		if (!frame->valid)
			continue;
1351

1352
		/* Try enabling everything, and see what sticks */
1353 1354
		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1355

1356
		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1357
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1358 1359 1360 1361
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
1362 1363 1364 1365

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

1366
		best_frame = frame;
1367 1368
	}

1369 1370
	iounmap(cntctlbase);

1371
	return best_frame;
1372 1373 1374 1375 1376 1377 1378
}

static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
{
	void __iomem *base;
	int ret, irq = 0;
1379 1380

	if (arch_timer_mem_use_virtual)
1381
		irq = frame->virt_irq;
1382
	else
1383
		irq = frame->phys_irq;
1384

1385
	if (!irq) {
1386
		pr_err("Frame missing %s irq.\n",
1387
		       arch_timer_mem_use_virtual ? "virt" : "phys");
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		return -EINVAL;
	}

	if (!request_mem_region(frame->cntbase, frame->size,
				"arch_mem_timer"))
		return -EBUSY;

	base = ioremap(frame->cntbase, frame->size);
	if (!base) {
		pr_err("Can't map frame's registers\n");
		return -ENXIO;
1399 1400
	}

1401
	ret = arch_timer_mem_register(base, irq);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	if (ret) {
		iounmap(base);
		return ret;
	}

	arch_counter_base = base;
	arch_timers_present |= ARCH_TIMER_TYPE_MEM;

	return 0;
}

static int __init arch_timer_mem_of_init(struct device_node *np)
{
	struct arch_timer_mem *timer_mem;
	struct arch_timer_mem_frame *frame;
	struct device_node *frame_node;
	struct resource res;
	int ret = -EINVAL;
	u32 rate;

	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
	if (!timer_mem)
		return -ENOMEM;

	if (of_address_to_resource(np, 0, &res))
1427
		goto out;
1428 1429
	timer_mem->cntctlbase = res.start;
	timer_mem->size = resource_size(&res);
1430

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	for_each_available_child_of_node(np, frame_node) {
		u32 n;
		struct arch_timer_mem_frame *frame;

		if (of_property_read_u32(frame_node, "frame-number", &n)) {
			pr_err(FW_BUG "Missing frame-number.\n");
			of_node_put(frame_node);
			goto out;
		}
		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
			of_node_put(frame_node);
			goto out;
		}
		frame = &timer_mem->frame[n];

		if (frame->valid) {
			pr_err(FW_BUG "Duplicated frame-number.\n");
			of_node_put(frame_node);
			goto out;
		}

		if (of_address_to_resource(frame_node, 0, &res)) {
			of_node_put(frame_node);
			goto out;
		}
		frame->cntbase = res.start;
		frame->size = resource_size(&res);

		frame->virt_irq = irq_of_parse_and_map(frame_node,
						       ARCH_TIMER_VIRT_SPI);
		frame->phys_irq = irq_of_parse_and_map(frame_node,
						       ARCH_TIMER_PHYS_SPI);

		frame->valid = true;
	}

	frame = arch_timer_mem_find_best_frame(timer_mem);
	if (!frame) {
1471 1472
		pr_err("Unable to find a suitable frame in timer @ %pa\n",
			&timer_mem->cntctlbase);
1473 1474 1475 1476 1477 1478 1479 1480 1481
		ret = -EINVAL;
		goto out;
	}

	rate = arch_timer_mem_frame_get_cntfrq(frame);
	arch_timer_of_configure_rate(rate, np);

	ret = arch_timer_mem_frame_register(frame);
	if (!ret && !arch_timer_needs_of_probing())
1482
		ret = arch_timer_common_init();
1483
out:
1484
	kfree(timer_mem);
1485
	return ret;
1486
}
1487
TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1488
		       arch_timer_mem_of_init);
1489

1490
#ifdef CONFIG_ACPI_GTDT
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
{
	struct arch_timer_mem_frame *frame;
	u32 rate;
	int i;

	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
		frame = &timer_mem->frame[i];

		if (!frame->valid)
			continue;

		rate = arch_timer_mem_frame_get_cntfrq(frame);
		if (rate == arch_timer_rate)
			continue;

		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
			&frame->cntbase,
			(unsigned long)rate, (unsigned long)arch_timer_rate);

		return -EINVAL;
	}

	return 0;
}

static int __init arch_timer_mem_acpi_init(int platform_timer_count)
{
	struct arch_timer_mem *timers, *timer;
1521
	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	int timer_count, i, ret = 0;

	timers = kcalloc(platform_timer_count, sizeof(*timers),
			    GFP_KERNEL);
	if (!timers)
		return -ENOMEM;

	ret = acpi_arch_timer_mem_init(timers, &timer_count);
	if (ret || !timer_count)
		goto out;

	/*
	 * While unlikely, it's theoretically possible that none of the frames
	 * in a timer expose the combination of feature we want.
	 */
1537
	for (i = 0; i < timer_count; i++) {
1538 1539 1540
		timer = &timers[i];

		frame = arch_timer_mem_find_best_frame(timer);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		if (!best_frame)
			best_frame = frame;

		ret = arch_timer_mem_verify_cntfrq(timer);
		if (ret) {
			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
			goto out;
		}

		if (!best_frame) /* implies !frame */
			/*
			 * Only complain about missing suitable frames if we
			 * haven't already found one in a previous iteration.
			 */
			pr_err("Unable to find a suitable frame in timer @ %pa\n",
				&timer->cntctlbase);
1557 1558
	}

1559 1560
	if (best_frame)
		ret = arch_timer_mem_frame_register(best_frame);
1561 1562 1563 1564 1565 1566
out:
	kfree(timers);
	return ret;
}

/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1567 1568
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
1569
	int ret, platform_timer_count;
1570

1571
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1572
		pr_warn("already initialized, skipping\n");
1573 1574 1575
		return -EINVAL;
	}

1576
	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1577

1578
	ret = acpi_gtdt_init(table, &platform_timer_count);
1579 1580 1581 1582
	if (ret) {
		pr_err("Failed to init GTDT table.\n");
		return ret;
	}
1583

1584
	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1585
		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1586

1587
	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1588
		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1589

1590
	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1591
		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1592

1593 1594
	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];

1595 1596 1597 1598 1599 1600 1601 1602 1603
	/*
	 * When probing via ACPI, we have no mechanism to override the sysreg
	 * CNTFRQ value. This *must* be correct.
	 */
	arch_timer_rate = arch_timer_get_cntfrq();
	if (!arch_timer_rate) {
		pr_err(FW_BUG "frequency not available.\n");
		return -EINVAL;
	}
1604

1605 1606 1607 1608 1609 1610
	arch_timer_uses_ppi = arch_timer_select_ppi();
	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
		pr_err("No interrupt available, giving up\n");
		return -EINVAL;
	}

1611
	/* Always-on capability */
1612
	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1613

1614 1615 1616
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);

1617 1618 1619 1620
	ret = arch_timer_register();
	if (ret)
		return ret;

1621 1622 1623 1624
	if (platform_timer_count &&
	    arch_timer_mem_acpi_init(platform_timer_count))
		pr_err("Failed to initialize memory-mapped timer.\n");

1625
	return arch_timer_common_init();
1626
}
1627
TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1628
#endif