omap-smp.c 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * OMAP4 SMP source file. It contains platform specific fucntions
 * needed for the linux smp kernel.
 *
 * Copyright (C) 2009 Texas Instruments, Inc.
 *
 * Author:
 *      Santosh Shilimkar <santosh.shilimkar@ti.com>
 *
 * Platform file needed for the OMAP4 SMP. This file is based on arm
 * realview smp platform.
 * * Copyright (c) 2002 ARM Limited.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/io.h>

23
#include <asm/cacheflush.h>
24
#include <asm/hardware/gic.h>
25
#include <asm/smp_scu.h>
26

27
#include <mach/hardware.h>
28
#include <mach/omap-secure.h>
29

30
#include "iomap.h"
31
#include "common.h"
32 33
#include "clockdomain.h"

34
/* SCU base address */
35
static void __iomem *scu_base;
36 37 38

static DEFINE_SPINLOCK(boot_lock);

39 40 41 42 43
void __iomem *omap4_get_scu_base(void)
{
	return scu_base;
}

44 45
void __cpuinit platform_secondary_init(unsigned int cpu)
{
46 47 48 49 50 51 52 53 54 55 56 57
	/*
	 * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device.
	 * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA
	 * init and for CPU1, a secure PPA API provided. CPU0 must be ON
	 * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+.
	 * OMAP443X GP devices- SMP bit isn't accessible.
	 * OMAP446X GP devices - SMP bit access is enabled on both CPUs.
	 */
	if (cpu_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP))
		omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX,
							4, 0, 0, 0, 0, 0);

58 59 60 61 62
	/*
	 * If any interrupts are already enabled for the primary
	 * core (e.g. timer irq), then they will not have been enabled
	 * for us: do so
	 */
63
	gic_secondary_init(0);
64 65 66 67 68 69 70 71 72 73

	/*
	 * Synchronise with the boot thread.
	 */
	spin_lock(&boot_lock);
	spin_unlock(&boot_lock);
}

int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
{
74 75
	static struct clockdomain *cpu1_clkdm;
	static bool booted;
76 77 78 79 80 81 82
	/*
	 * Set synchronisation state between this boot processor
	 * and the secondary one
	 */
	spin_lock(&boot_lock);

	/*
83
	 * Update the AuxCoreBoot0 with boot state for secondary core.
84 85 86 87
	 * omap_secondary_startup() routine will hold the secondary core till
	 * the AuxCoreBoot1 register is updated with cpu state
	 * A barrier is added to ensure that write buffer is drained
	 */
88
	omap_modify_auxcoreboot0(0x200, 0xfffffdff);
89
	flush_cache_all();
90
	smp_wmb();
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

	if (!cpu1_clkdm)
		cpu1_clkdm = clkdm_lookup("mpu1_clkdm");

	/*
	 * The SGI(Software Generated Interrupts) are not wakeup capable
	 * from low power states. This is known limitation on OMAP4 and
	 * needs to be worked around by using software forced clockdomain
	 * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to
	 * software force wakeup. The clockdomain is then put back to
	 * hardware supervised mode.
	 * More details can be found in OMAP4430 TRM - Version J
	 * Section :
	 *	4.3.4.2 Power States of CPU0 and CPU1
	 */
	if (booted) {
		clkdm_wakeup(cpu1_clkdm);
		clkdm_allow_idle(cpu1_clkdm);
	} else {
		dsb_sev();
		booted = true;
	}

114
	gic_raise_softirq(cpumask_of(cpu), 1);
115 116 117 118 119 120 121 122 123 124 125 126 127 128

	/*
	 * Now the secondary core is starting up let it run its
	 * calibrations, then wait for it to finish
	 */
	spin_unlock(&boot_lock);

	return 0;
}

static void __init wakeup_secondary(void)
{
	/*
	 * Write the address of secondary startup routine into the
129
	 * AuxCoreBoot1 where ROM code will jump and start executing
130 131 132
	 * on secondary core once out of WFE
	 * A barrier is added to ensure that write buffer is drained
	 */
133
	omap_auxcoreboot_addr(virt_to_phys(omap_secondary_startup));
134 135 136 137
	smp_wmb();

	/*
	 * Send a 'sev' to wake the secondary core from WFE.
138
	 * Drain the outstanding writes to memory
139
	 */
140
	dsb_sev();
141 142 143 144 145 146 147 148 149
	mb();
}

/*
 * Initialise the CPU possible map early - this describes the CPUs
 * which may be present or become present in the system.
 */
void __init smp_init_cpus(void)
{
150 151
	unsigned int i, ncores;

152 153 154 155 156
	/*
	 * Currently we can't call ioremap here because
	 * SoC detection won't work until after init_early.
	 */
	scu_base =  OMAP2_L4_IO_ADDRESS(OMAP44XX_SCU_BASE);
157 158
	BUG_ON(!scu_base);

159
	ncores = scu_get_core_count(scu_base);
160 161

	/* sanity check */
162 163 164 165
	if (ncores > nr_cpu_ids) {
		pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
			ncores, nr_cpu_ids);
		ncores = nr_cpu_ids;
166 167
	}

168 169
	for (i = 0; i < ncores; i++)
		set_cpu_possible(i, true);
170 171

	set_smp_cross_call(gic_raise_softirq);
172 173
}

174
void __init platform_smp_prepare_cpus(unsigned int max_cpus)
175
{
176

177 178 179 180 181 182
	/*
	 * Initialise the SCU and wake up the secondary core using
	 * wakeup_secondary().
	 */
	scu_enable(scu_base);
	wakeup_secondary();
183
}