vmbus_drv.c 34.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37
#include <asm/hyperv.h>
38
#include <asm/hypervisor.h>
39
#include <asm/mshyperv.h>
40 41
#include <linux/notifier.h>
#include <linux/ptrace.h>
42
#include <linux/screen_info.h>
43
#include <linux/kdebug.h>
44
#include "hyperv_vmbus.h"
45

46
static struct acpi_device  *hv_acpi_dev;
47

48
static struct completion probe_event;
49

50

51
static void hyperv_report_panic(struct pt_regs *regs)
52
{
53
	static bool panic_reported;
54

55 56 57 58 59 60 61 62
	/*
	 * We prefer to report panic on 'die' chain as we have proper
	 * registers to report, but if we miss it (e.g. on BUG()) we need
	 * to report it on 'panic'.
	 */
	if (panic_reported)
		return;
	panic_reported = true;
63 64 65 66 67 68 69 70 71 72 73

	wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
	wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
	wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
	wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
	wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);

	/*
	 * Let Hyper-V know there is crash data available
	 */
	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
74 75 76 77 78 79 80 81 82 83
}

static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

	hyperv_report_panic(regs);
84 85 86
	return NOTIFY_DONE;
}

87 88 89 90 91 92 93 94 95 96 97 98 99
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

	hyperv_report_panic(regs);
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
100 101 102 103
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

104
struct resource *hyperv_mmio;
105
DEFINE_SEMAPHORE(hyperv_mmio_lock);
106

107 108 109 110 111 112 113 114
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

115 116 117 118 119 120 121 122
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
static u8 channel_monitor_group(struct vmbus_channel *channel)
{
	return (u8)channel->offermsg.monitorid / 32;
}

static u8 channel_monitor_offset(struct vmbus_channel *channel)
{
	return (u8)channel->offermsg.monitorid % 32;
}

static u32 channel_pending(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	return monitor_page->trigger_group[monitor_group].pending;
}

140 141 142 143 144 145 146 147
static u32 channel_latency(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->latency[monitor_group][monitor_offset];
}

148 149 150 151 152 153 154 155
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

156 157 158 159 160 161 162 163 164 165 166
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

167 168 169 170 171 172 173 174 175 176 177
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

178 179 180 181 182 183 184 185 186 187 188
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

189 190 191 192 193 194 195 196 197 198 199 200
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

201 202 203 204 205 206 207 208 209 210 211 212
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

213 214 215 216 217 218 219 220 221 222 223
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

498
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
499 500
static struct attribute *vmbus_attrs[] = {
	&dev_attr_id.attr,
501
	&dev_attr_state.attr,
502
	&dev_attr_monitor_id.attr,
503
	&dev_attr_class_id.attr,
504
	&dev_attr_device_id.attr,
505
	&dev_attr_modalias.attr,
506 507
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
508 509
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
510 511
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
512 513 514 515 516 517 518 519 520 521
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
522
	&dev_attr_channel_vp_mapping.attr,
523 524
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
525 526 527 528
	NULL,
};
ATTRIBUTE_GROUPS(vmbus);

529 530 531 532 533 534
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
535 536 537 538
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
539 540 541 542
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
543 544
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
545

546
	print_alias_name(dev, alias_name);
547 548
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
549 550
}

S
stephen hemminger 已提交
551
static const uuid_le null_guid;
552

553
static inline bool is_null_guid(const uuid_le *guid)
554
{
555
	if (uuid_le_cmp(*guid, null_guid))
556 557 558 559
		return false;
	return true;
}

560 561 562 563 564 565
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(
					const struct hv_vmbus_device_id *id,
566
					const uuid_le *guid)
567
{
568
	for (; !is_null_guid(&id->guid); id++)
569
		if (!uuid_le_cmp(id->guid, *guid))
570 571 572 573 574 575
			return id;

	return NULL;
}


576 577 578 579 580 581 582

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
583
	struct hv_device *hv_dev = device_to_hv_device(device);
584

585 586 587 588
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

589
	if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
590
		return 1;
591

592
	return 0;
593 594
}

595 596 597 598 599 600 601 602
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
603
	struct hv_device *dev = device_to_hv_device(child_device);
604
	const struct hv_vmbus_device_id *dev_id;
605

606
	dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
607
	if (drv->probe) {
608
		ret = drv->probe(dev, dev_id);
609
		if (ret != 0)
610 611
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
612 613

	} else {
614 615
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
616
		ret = -ENODEV;
617 618 619 620
	}
	return ret;
}

621 622 623 624 625
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
626
	struct hv_driver *drv;
627
	struct hv_device *dev = device_to_hv_device(child_device);
628

629 630 631 632 633
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
634 635 636 637

	return 0;
}

638 639 640 641 642 643 644

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
645
	struct hv_device *dev = device_to_hv_device(child_device);
646 647 648 649 650 651 652 653


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

654 655
	if (drv->shutdown)
		drv->shutdown(dev);
656 657 658 659

	return;
}

660 661 662 663 664 665

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
666
	struct hv_device *hv_dev = device_to_hv_device(device);
667
	struct vmbus_channel *channel = hv_dev->channel;
668

669 670
	hv_process_channel_removal(channel,
				   channel->offermsg.child_relid);
671
	kfree(hv_dev);
672 673 674

}

675
/* The one and only one */
676 677 678 679 680 681 682
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
683
	.dev_groups =		vmbus_groups,
684 685
};

686 687 688 689 690 691 692 693 694
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

695 696 697 698
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

699 700 701 702 703 704
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

705
static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
706 707 708 709 710 711
{
	struct clock_event_device *dev = hv_context.clk_evt[cpu];

	if (dev->event_handler)
		dev->event_handler(dev);

712
	vmbus_signal_eom(msg);
713 714
}

715
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
716 717 718 719 720
{
	int cpu = smp_processor_id();
	void *page_addr = hv_context.synic_message_page[cpu];
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
721 722
	struct vmbus_channel_message_header *hdr;
	struct vmbus_channel_message_table_entry *entry;
723
	struct onmessage_work_context *ctx;
G
Greg Kroah-Hartman 已提交
724

725 726 727
	if (msg->header.message_type == HVMSG_NONE)
		/* no msg */
		return;
728

729
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
730

731 732 733 734
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
735

736 737 738 739 740
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
741

742 743
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
744

745 746 747
		queue_work(vmbus_connection.work_queue, &ctx->work);
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
748

749
msg_handled:
750
	vmbus_signal_eom(msg);
G
Greg Kroah-Hartman 已提交
751 752
}

753
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
754 755 756 757 758
{
	int cpu = smp_processor_id();
	void *page_addr;
	struct hv_message *msg;
	union hv_synic_event_flags *event;
759
	bool handled = false;
G
Greg Kroah-Hartman 已提交
760

761 762
	page_addr = hv_context.synic_event_page[cpu];
	if (page_addr == NULL)
763
		return;
764 765 766

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
767 768 769 770 771
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
772

773 774
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
775

776 777 778 779 780 781 782 783 784 785 786 787
		/* Since we are a child, we only need to check bit 0 */
		if (sync_test_and_clear_bit(0,
			(unsigned long *) &event->flags32[0])) {
			handled = true;
		}
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
788 789
		handled = true;
	}
790

791
	if (handled)
792
		tasklet_schedule(hv_context.event_dpc[cpu]);
793 794


795 796 797 798
	page_addr = hv_context.synic_message_page[cpu];
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
799 800 801 802
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
			hv_process_timer_expiration(msg, cpu);
		else
803
			tasklet_schedule(hv_context.msg_dpc[cpu]);
804
	}
805 806
}

807

808
/*
809 810 811
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
812 813 814
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
815
 */
816
static int vmbus_bus_init(void)
817
{
818
	int ret;
819

820 821
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
822
	if (ret != 0) {
823
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
824
		return ret;
825 826
	}

827
	ret = bus_register(&hv_bus);
828
	if (ret)
829
		goto err_cleanup;
830

831
	hv_setup_vmbus_irq(vmbus_isr);
832

833 834 835
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
836
	/*
837
	 * Initialize the per-cpu interrupt state and
838 839
	 * connect to the host.
	 */
840
	on_each_cpu(hv_synic_init, NULL, 1);
841
	ret = vmbus_connect();
842
	if (ret)
843
		goto err_connect;
844

845 846
	if (vmbus_proto_version > VERSION_WIN7)
		cpu_hotplug_disable();
847 848 849 850

	/*
	 * Only register if the crash MSRs are available
	 */
851
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
852
		register_die_notifier(&hyperv_die_block);
853 854 855 856
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

857
	vmbus_request_offers();
858

859
	return 0;
860

861 862
err_connect:
	on_each_cpu(hv_synic_cleanup, NULL, 1);
863 864
err_alloc:
	hv_synic_free();
865
	hv_remove_vmbus_irq();
866 867 868 869 870 871 872

	bus_unregister(&hv_bus);

err_cleanup:
	hv_cleanup();

	return ret;
873 874
}

875
/**
876 877
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
878 879
 * @owner: owner module of the drv
 * @mod_name: module name string
880 881
 *
 * Registers the given driver with Linux through the 'driver_register()' call
882
 * and sets up the hyper-v vmbus handling for this driver.
883 884
 * It will return the state of the 'driver_register()' call.
 *
885
 */
886
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
887
{
888
	int ret;
889

890
	pr_info("registering driver %s\n", hv_driver->name);
891

892 893 894 895
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

896 897 898 899
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
900

901
	ret = driver_register(&hv_driver->driver);
902

903
	return ret;
904
}
905
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
906

907
/**
908
 * vmbus_driver_unregister() - Unregister a vmbus's driver
909 910
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
911
 *
912 913
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
914
 */
915
void vmbus_driver_unregister(struct hv_driver *hv_driver)
916
{
917
	pr_info("unregistering driver %s\n", hv_driver->name);
918

919
	if (!vmbus_exists())
920
		driver_unregister(&hv_driver->driver);
921
}
922
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
923

924
/*
925
 * vmbus_device_create - Creates and registers a new child device
926
 * on the vmbus.
927
 */
S
stephen hemminger 已提交
928 929 930
struct hv_device *vmbus_device_create(const uuid_le *type,
				      const uuid_le *instance,
				      struct vmbus_channel *channel)
931
{
932
	struct hv_device *child_device_obj;
933

934 935
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
936
		pr_err("Unable to allocate device object for child device\n");
937 938 939
		return NULL;
	}

940
	child_device_obj->channel = channel;
941
	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
942
	memcpy(&child_device_obj->dev_instance, instance,
943
	       sizeof(uuid_le));
944
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
945 946 947 948 949


	return child_device_obj;
}

950
/*
951
 * vmbus_device_register - Register the child device
952
 */
953
int vmbus_device_register(struct hv_device *child_device_obj)
954
{
955
	int ret = 0;
956

957 958
	dev_set_name(&child_device_obj->device, "vmbus_%d",
		     child_device_obj->channel->id);
959

960
	child_device_obj->device.bus = &hv_bus;
961
	child_device_obj->device.parent = &hv_acpi_dev->dev;
962
	child_device_obj->device.release = vmbus_device_release;
963

964 965 966 967
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
968
	ret = device_register(&child_device_obj->device);
969 970

	if (ret)
971
		pr_err("Unable to register child device\n");
972
	else
973
		pr_debug("child device %s registered\n",
974
			dev_name(&child_device_obj->device));
975 976 977 978

	return ret;
}

979
/*
980
 * vmbus_device_unregister - Remove the specified child device
981
 * from the vmbus.
982
 */
983
void vmbus_device_unregister(struct hv_device *device_obj)
984
{
985 986 987
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

988 989 990 991
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
992
	device_unregister(&device_obj->device);
993 994 995
}


996
/*
997
 * VMBUS is an acpi enumerated device. Get the information we
998
 * need from DSDT.
999
 */
1000
#define VTPM_BASE_ADDRESS 0xfed40000
1001
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1002
{
1003 1004 1005 1006 1007 1008
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1009
	switch (res->type) {
1010 1011 1012 1013 1014 1015 1016 1017 1018

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1019
		break;
1020

1021
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1022 1023
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1024
		break;
1025 1026 1027 1028 1029

	default:
		/* Unused resource type */
		return AE_OK;

1030
	}
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1051 1052 1053 1054
	/*
	 * Stick ranges from higher in address space at the front of the list.
	 * If two ranges are adjacent, merge them.
	 */
1055 1056 1057 1058 1059 1060
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		if ((*old_res)->end < new_res->start) {
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1085 1086 1087 1088

	return AE_OK;
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
	struct resource *iter;
	resource_size_t range_min, range_max, start, local_min, local_max;
	const char *dev_n = dev_name(&device_obj->device);
	u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1136 1137 1138 1139
	int i, retval;

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;

		/* If this range overlaps the frame buffer, split it into
		   two tries. */
		for (i = 0; i < 2; i++) {
			local_min = range_min;
			local_max = range_max;
			if (fb_overlap_ok || (range_min >= fb_end) ||
			    (range_max <= screen_info.lfb_base)) {
				i++;
			} else {
				if ((range_min <= screen_info.lfb_base) &&
				    (range_max >= screen_info.lfb_base)) {
					/*
					 * The frame buffer is in this window,
					 * so trim this into the part that
					 * preceeds the frame buffer.
					 */
					local_max = screen_info.lfb_base - 1;
					range_min = fb_end;
				} else {
					range_min = fb_end;
					continue;
				}
			}

			start = (local_min + align - 1) & ~(align - 1);
			for (; start + size - 1 <= local_max; start += align) {
				*new = request_mem_region_exclusive(start, size,
								    dev_n);
1176 1177 1178 1179
				if (*new) {
					retval = 0;
					goto exit;
				}
1180 1181 1182 1183
			}
		}
	}

1184 1185 1186
exit:
	up(&hyperv_mmio_lock);
	return retval;
1187 1188 1189
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/**
 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
 * @cpu_number: CPU number in Linux terms
 *
 * This function returns the mapping between the Linux processor
 * number and the hypervisor's virtual processor number, useful
 * in making hypercalls and such that talk about specific
 * processors.
 *
 * Return: Virtual processor number in Hyper-V terms
 */
int vmbus_cpu_number_to_vp_number(int cpu_number)
{
	return hv_context.vp_index[cpu_number];
}
EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);

1207 1208 1209
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1210
	int ret_val = -ENODEV;
1211
	struct acpi_device *ancestor;
1212

1213 1214
	hv_acpi_dev = device;

1215
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1216
					vmbus_walk_resources, NULL);
1217

1218 1219 1220
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
1221 1222
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
1223
	 */
1224 1225 1226
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
1227 1228

		if (ACPI_FAILURE(result))
1229 1230 1231
			continue;
		if (hyperv_mmio)
			break;
1232
	}
1233 1234 1235
	ret_val = 0;

acpi_walk_err:
1236
	complete(&probe_event);
1237 1238
	if (ret_val)
		vmbus_acpi_remove(device);
1239
	return ret_val;
1240 1241 1242 1243
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
1244
	{"VMBus", 0},
1245 1246 1247 1248 1249 1250 1251 1252 1253
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
1254
		.remove = vmbus_acpi_remove,
1255 1256 1257
	},
};

1258 1259 1260 1261 1262
static void hv_kexec_handler(void)
{
	int cpu;

	hv_synic_clockevents_cleanup();
1263
	vmbus_initiate_unload(false);
1264 1265 1266 1267 1268
	for_each_online_cpu(cpu)
		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
	hv_cleanup();
};

1269 1270
static void hv_crash_handler(struct pt_regs *regs)
{
1271
	vmbus_initiate_unload(true);
1272 1273 1274 1275 1276 1277 1278 1279 1280
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
	hv_synic_cleanup(NULL);
	hv_cleanup();
};

1281
static int __init hv_acpi_init(void)
1282
{
1283
	int ret, t;
1284

1285
	if (x86_hyper != &x86_hyper_ms_hyperv)
1286 1287
		return -ENODEV;

1288 1289 1290
	init_completion(&probe_event);

	/*
1291
	 * Get ACPI resources first.
1292
	 */
1293 1294
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

1295 1296 1297
	if (ret)
		return ret;

1298 1299 1300 1301 1302
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
1303

1304
	ret = vmbus_bus_init();
1305
	if (ret)
1306 1307
		goto cleanup;

1308
	hv_setup_kexec_handler(hv_kexec_handler);
1309
	hv_setup_crash_handler(hv_crash_handler);
1310

1311 1312 1313 1314
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1315
	hv_acpi_dev = NULL;
1316
	return ret;
1317 1318
}

1319 1320
static void __exit vmbus_exit(void)
{
1321 1322
	int cpu;

1323
	hv_remove_kexec_handler();
1324
	hv_remove_crash_handler();
1325
	vmbus_connection.conn_state = DISCONNECTED;
1326
	hv_synic_clockevents_cleanup();
1327
	vmbus_disconnect();
1328
	hv_remove_vmbus_irq();
1329 1330
	for_each_online_cpu(cpu)
		tasklet_kill(hv_context.msg_dpc[cpu]);
1331
	vmbus_free_channels();
1332
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1333
		unregister_die_notifier(&hyperv_die_block);
1334 1335 1336
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
1337 1338
	bus_unregister(&hv_bus);
	hv_cleanup();
1339 1340
	for_each_online_cpu(cpu) {
		tasklet_kill(hv_context.event_dpc[cpu]);
1341
		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1342
	}
1343
	hv_synic_free();
1344
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1345 1346
	if (vmbus_proto_version > VERSION_WIN7)
		cpu_hotplug_enable();
1347 1348
}

1349

1350
MODULE_LICENSE("GPL");
1351

1352
subsys_initcall(hv_acpi_init);
1353
module_exit(vmbus_exit);