memory-failure.c 49.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * This software may be redistributed and/or modified under the terms of
 * the GNU General Public License ("GPL") version 2 only as published by the
 * Free Software Foundation.
 *
 * High level machine check handler. Handles pages reported by the
10
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11
 * failure.
12 13 14
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
15 16
 *
 * Handles page cache pages in various states.	The tricky part
17 18 19 20 21 22
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
23 24 25 26 27 28 29 30
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
31 32 33 34 35 36 37
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
38 39 40 41 42 43 44 45 46 47 48
 */

/*
 * Notebook:
 * - hugetlb needs more code
 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
 * - pass bad pages to kdump next kernel
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
49
#include <linux/kernel-page-flags.h>
50
#include <linux/sched.h>
H
Hugh Dickins 已提交
51
#include <linux/ksm.h>
52
#include <linux/rmap.h>
53
#include <linux/export.h>
54 55 56
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
57 58 59
#include <linux/migrate.h>
#include <linux/page-isolation.h>
#include <linux/suspend.h>
60
#include <linux/slab.h>
61
#include <linux/swapops.h>
62
#include <linux/hugetlb.h>
63
#include <linux/memory_hotplug.h>
64
#include <linux/mm_inline.h>
65
#include <linux/kfifo.h>
66 67 68 69 70 71
#include "internal.h"

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

72
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
73

74 75
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

76
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
77 78
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
79 80
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
81
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
82 83
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
84 85
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
86 87 88 89 90 91 92 93 94 95 96

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
97
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
117 118 119 120 121 122 123 124 125 126 127 128
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
129 130 131 132 133 134 135 136 137 138
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
A
Andrew Morton 已提交
139
#ifdef	CONFIG_MEMCG_SWAP
A
Andi Kleen 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	struct mem_cgroup *mem;
	struct cgroup_subsys_state *css;
	unsigned long ino;

	if (!hwpoison_filter_memcg)
		return 0;

	mem = try_get_mem_cgroup_from_page(p);
	if (!mem)
		return -EINVAL;

	css = mem_cgroup_css(mem);
T
Tejun Heo 已提交
156
	ino = cgroup_ino(css->cgroup);
A
Andi Kleen 已提交
157 158
	css_put(css);

159
	if (ino != hwpoison_filter_memcg)
A
Andi Kleen 已提交
160 161 162 163 164 165 166 167
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
168 169
int hwpoison_filter(struct page *p)
{
170 171 172
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
173 174 175
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
176 177 178
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
179 180 181
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
182 183
	return 0;
}
184 185 186 187 188 189 190
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
191 192
EXPORT_SYMBOL_GPL(hwpoison_filter);

193
/*
194 195 196
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
197
 */
198 199
static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
			unsigned long pfn, struct page *page, int flags)
200 201 202 203 204
{
	struct siginfo si;
	int ret;

	printk(KERN_ERR
205
		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
206 207 208 209 210 211 212
		pfn, t->comm, t->pid);
	si.si_signo = SIGBUS;
	si.si_errno = 0;
	si.si_addr = (void *)addr;
#ifdef __ARCH_SI_TRAPNO
	si.si_trapno = trapno;
#endif
213
	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
214

215
	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
216
		si.si_code = BUS_MCEERR_AR;
217
		ret = force_sig_info(SIGBUS, &si, current);
218 219 220 221 222 223 224 225 226 227
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
		si.si_code = BUS_MCEERR_AO;
		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
	}
228 229 230 231 232 233
	if (ret < 0)
		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
		       t->comm, t->pid, ret);
	return ret;
}

234 235 236 237
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
238
void shake_page(struct page *p, int access)
239 240 241 242 243
{
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
244
		drain_all_pages(page_zone(p));
245 246 247
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
248

249
	/*
250 251
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
252
	 */
253 254
	if (access)
		drop_slab_node(page_to_nid(p));
255 256 257
}
EXPORT_SYMBOL_GPL(shake_page);

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
284
	char addr_valid;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
};

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 * TBD would GFP_NOIO be enough?
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
		       struct list_head *to_kill,
		       struct to_kill **tkc)
{
	struct to_kill *tk;

	if (*tkc) {
		tk = *tkc;
		*tkc = NULL;
	} else {
		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
		if (!tk) {
			printk(KERN_ERR
		"MCE: Out of memory while machine check handling\n");
			return;
		}
	}
	tk->addr = page_address_in_vma(p, vma);
	tk->addr_valid = 1;

	/*
	 * In theory we don't have to kill when the page was
	 * munmaped. But it could be also a mremap. Since that's
	 * likely very rare kill anyways just out of paranoia, but use
	 * a SIGKILL because the error is not contained anymore.
	 */
	if (tk->addr == -EFAULT) {
325
		pr_info("MCE: Unable to find user space address %lx in %s\n",
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
			page_to_pfn(p), tsk->comm);
		tk->addr_valid = 0;
	}
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
342
static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
343 344
			  int fail, struct page *page, unsigned long pfn,
			  int flags)
345 346 347 348
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
349
		if (forcekill) {
350
			/*
351
			 * In case something went wrong with munmapping
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
			if (fail || tk->addr_valid == 0) {
				printk(KERN_ERR
		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
					pfn, tk->tsk->comm, tk->tsk->pid);
				force_sig(SIGKILL, tk->tsk);
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
368 369
			else if (kill_proc(tk->tsk, tk->addr, trapno,
					      pfn, page, flags) < 0)
370 371 372 373 374 375 376 377 378
				printk(KERN_ERR
		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
					pfn, tk->tsk->comm, tk->tsk->pid);
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

379 380 381 382 383 384 385 386 387
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
388
{
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
407
	if (!tsk->mm)
408
		return NULL;
409
	if (force_early)
410 411 412 413 414 415 416
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
417 418 419 420 421 422
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
423
			      struct to_kill **tkc, int force_early)
424 425 426 427
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
428
	pgoff_t pgoff;
429

430
	av = page_lock_anon_vma_read(page);
431
	if (av == NULL)	/* Not actually mapped anymore */
432 433
		return;

434
	pgoff = page_to_pgoff(page);
435
	read_lock(&tasklist_lock);
436
	for_each_process (tsk) {
437
		struct anon_vma_chain *vmac;
438
		struct task_struct *t = task_early_kill(tsk, force_early);
439

440
		if (!t)
441
			continue;
442 443
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
444
			vma = vmac->vma;
445 446
			if (!page_mapped_in_vma(page, vma))
				continue;
447 448
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
449 450 451
		}
	}
	read_unlock(&tasklist_lock);
452
	page_unlock_anon_vma_read(av);
453 454 455 456 457 458
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
459
			      struct to_kill **tkc, int force_early)
460 461 462 463 464
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

465
	i_mmap_lock_read(mapping);
466
	read_lock(&tasklist_lock);
467
	for_each_process(tsk) {
468
		pgoff_t pgoff = page_to_pgoff(page);
469
		struct task_struct *t = task_early_kill(tsk, force_early);
470

471
		if (!t)
472
			continue;
473
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
474 475 476 477 478 479 480 481
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
482 483
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
484 485 486
		}
	}
	read_unlock(&tasklist_lock);
487
	i_mmap_unlock_read(mapping);
488 489 490 491 492 493 494 495
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 * This is done in two steps for locking reasons.
 * First preallocate one tokill structure outside the spin locks,
 * so that we can kill at least one process reasonably reliable.
 */
496 497
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
498 499 500 501 502 503 504 505 506 507
{
	struct to_kill *tk;

	if (!page->mapping)
		return;

	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
	if (!tk)
		return;
	if (PageAnon(page))
508
		collect_procs_anon(page, tokill, &tk, force_early);
509
	else
510
		collect_procs_file(page, tokill, &tk, force_early);
511 512 513 514 515 516 517 518
	kfree(tk);
}

/*
 * Error handlers for various types of pages.
 */

enum outcome {
519 520
	IGNORED,	/* Error: cannot be handled */
	FAILED,		/* Error: handling failed */
521 522 523 524 525
	DELAYED,	/* Will be handled later */
	RECOVERED,	/* Successfully recovered */
};

static const char *action_name[] = {
526
	[IGNORED] = "Ignored",
527 528 529 530 531
	[FAILED] = "Failed",
	[DELAYED] = "Delayed",
	[RECOVERED] = "Recovered",
};

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
enum action_page_type {
	MSG_KERNEL,
	MSG_KERNEL_HIGH_ORDER,
	MSG_SLAB,
	MSG_DIFFERENT_COMPOUND,
	MSG_POISONED_HUGE,
	MSG_HUGE,
	MSG_FREE_HUGE,
	MSG_UNMAP_FAILED,
	MSG_DIRTY_SWAPCACHE,
	MSG_CLEAN_SWAPCACHE,
	MSG_DIRTY_MLOCKED_LRU,
	MSG_CLEAN_MLOCKED_LRU,
	MSG_DIRTY_UNEVICTABLE_LRU,
	MSG_CLEAN_UNEVICTABLE_LRU,
	MSG_DIRTY_LRU,
	MSG_CLEAN_LRU,
	MSG_TRUNCATED_LRU,
	MSG_BUDDY,
	MSG_BUDDY_2ND,
	MSG_UNKNOWN,
};

static const char * const action_page_types[] = {
	[MSG_KERNEL]			= "reserved kernel page",
	[MSG_KERNEL_HIGH_ORDER]		= "high-order kernel page",
	[MSG_SLAB]			= "kernel slab page",
	[MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MSG_HUGE]			= "huge page",
	[MSG_FREE_HUGE]			= "free huge page",
	[MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MSG_DIRTY_SWAPCACHE]		= "dirty swapcache page",
	[MSG_CLEAN_SWAPCACHE]		= "clean swapcache page",
	[MSG_DIRTY_MLOCKED_LRU]		= "dirty mlocked LRU page",
	[MSG_CLEAN_MLOCKED_LRU]		= "clean mlocked LRU page",
	[MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MSG_DIRTY_LRU]			= "dirty LRU page",
	[MSG_CLEAN_LRU]			= "clean LRU page",
	[MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MSG_BUDDY]			= "free buddy page",
	[MSG_BUDDY_2ND]			= "free buddy page (2nd try)",
	[MSG_UNKNOWN]			= "unknown page",
};

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
		page_cache_release(p);
		return 0;
	}
	return -EIO;
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
	return IGNORED;
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
	return FAILED;
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	int err;
	int ret = FAILED;
	struct address_space *mapping;

630 631
	delete_from_lru_cache(p);

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
		return RECOVERED;

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
		return FAILED;
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
	if (mapping->a_ops->error_remove_page) {
		err = mapping->a_ops->error_remove_page(mapping, p);
		if (err != 0) {
			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
					pfn, err);
		} else if (page_has_private(p) &&
				!try_to_release_page(p, GFP_NOIO)) {
666
			pr_info("MCE %#lx: failed to release buffers\n", pfn);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
		} else {
			ret = RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = RECOVERED;
		else
			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
				pfn);
	}
	return ret;
}

/*
685
 * Dirty pagecache page
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
718
		 * and the page is dropped between then the error
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
		mapping_set_error(mapping, EIO);
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

761 762 763 764
	if (!delete_from_lru_cache(p))
		return DELAYED;
	else
		return FAILED;
765 766 767 768 769
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
770

771 772 773 774
	if (!delete_from_lru_cache(p))
		return RECOVERED;
	else
		return FAILED;
775 776 777 778 779
}

/*
 * Huge pages. Needs work.
 * Issues:
780 781
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
782 783 784
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
785
	int res = 0;
786 787 788 789 790 791 792 793 794 795 796 797
	struct page *hpage = compound_head(p);
	/*
	 * We can safely recover from error on free or reserved (i.e.
	 * not in-use) hugepage by dequeuing it from freelist.
	 * To check whether a hugepage is in-use or not, we can't use
	 * page->lru because it can be used in other hugepage operations,
	 * such as __unmap_hugepage_range() and gather_surplus_pages().
	 * So instead we use page_mapping() and PageAnon().
	 * We assume that this function is called with page lock held,
	 * so there is no race between isolation and mapping/unmapping.
	 */
	if (!(page_mapping(hpage) || PageAnon(hpage))) {
798 799 800
		res = dequeue_hwpoisoned_huge_page(hpage);
		if (!res)
			return RECOVERED;
801 802
	}
	return DELAYED;
803 804 805 806 807 808 809 810 811
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
812
 * in its live cycle, so all accesses have to be extremely careful.
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
#define sc		(1UL << PG_swapcache)
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define swapbacked	(1UL << PG_swapbacked)
#define head		(1UL << PG_head)
#define tail		(1UL << PG_tail)
#define compound	(1UL << PG_compound)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
834
	enum action_page_type type;
835 836
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
837
	{ reserved,	reserved,	MSG_KERNEL,	me_kernel },
838 839 840 841
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
842 843 844 845 846 847

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
848
	{ slab,		slab,		MSG_SLAB,	me_kernel },
849 850

#ifdef CONFIG_PAGEFLAGS_EXTENDED
851 852
	{ head,		head,		MSG_HUGE,		me_huge_page },
	{ tail,		tail,		MSG_HUGE,		me_huge_page },
853
#else
854
	{ compound,	compound,	MSG_HUGE,		me_huge_page },
855 856
#endif

857 858
	{ sc|dirty,	sc|dirty,	MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
859

860 861
	{ mlock|dirty,	mlock|dirty,	MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
862

863 864
	{ unevict|dirty, unevict|dirty,	MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
865

866 867
	{ lru|dirty,	lru|dirty,	MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MSG_CLEAN_LRU,	me_pagecache_clean },
868 869 870 871

	/*
	 * Catchall entry: must be at end.
	 */
872
	{ 0,		0,		MSG_UNKNOWN,	me_unknown },
873 874
};

875 876 877 878 879 880 881 882 883 884 885 886 887
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef swapbacked
#undef head
#undef tail
#undef compound
#undef slab
#undef reserved

888 889 890 891
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
892
static void action_result(unsigned long pfn, enum action_page_type type, int result)
893
{
894 895
	pr_err("MCE %#lx: recovery action for %s: %s\n",
		pfn, action_page_types[type], action_name[result]);
896 897 898
}

static int page_action(struct page_state *ps, struct page *p,
899
			unsigned long pfn)
900 901
{
	int result;
902
	int count;
903 904

	result = ps->action(p, pfn);
905

906
	count = page_count(p) - 1;
907 908 909
	if (ps->action == me_swapcache_dirty && result == DELAYED)
		count--;
	if (count != 0) {
910
		printk(KERN_ERR
911 912
		       "MCE %#lx: %s still referenced by %d users\n",
		       pfn, action_page_types[ps->type], count);
913 914
		result = FAILED;
	}
915
	action_result(pfn, ps->type, result);
916 917 918 919 920 921

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

922
	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
923 924 925 926 927 928
}

/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
W
Wu Fengguang 已提交
929
static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
930
				  int trapno, int flags, struct page **hpagep)
931 932 933 934 935
{
	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	struct address_space *mapping;
	LIST_HEAD(tokill);
	int ret;
936
	int kill = 1, forcekill;
937
	struct page *hpage = *hpagep;
938
	struct page *ppage;
939

940 941 942 943 944 945 946
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
		return SWAP_SUCCESS;
	if (!(PageLRU(hpage) || PageHuge(p)))
W
Wu Fengguang 已提交
947
		return SWAP_SUCCESS;
948 949 950 951 952

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
953
	if (!page_mapped(hpage))
W
Wu Fengguang 已提交
954 955
		return SWAP_SUCCESS;

956 957
	if (PageKsm(p)) {
		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
W
Wu Fengguang 已提交
958
		return SWAP_FAIL;
959
	}
960 961 962 963 964 965 966 967 968 969

	if (PageSwapCache(p)) {
		printk(KERN_ERR
		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
970 971
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
972
	 */
973
	mapping = page_mapping(hpage);
974
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
975 976 977
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
978 979 980 981 982 983 984 985 986
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
			printk(KERN_INFO
	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
				pfn);
		}
	}

987 988 989 990 991 992 993 994
	/*
	 * ppage: poisoned page
	 *   if p is regular page(4k page)
	 *        ppage == real poisoned page;
	 *   else p is hugetlb or THP, ppage == head page.
	 */
	ppage = hpage;

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	if (PageTransHuge(hpage)) {
		/*
		 * Verify that this isn't a hugetlbfs head page, the check for
		 * PageAnon is just for avoid tripping a split_huge_page
		 * internal debug check, as split_huge_page refuses to deal with
		 * anything that isn't an anon page. PageAnon can't go away fro
		 * under us because we hold a refcount on the hpage, without a
		 * refcount on the hpage. split_huge_page can't be safely called
		 * in the first place, having a refcount on the tail isn't
		 * enough * to be safe.
		 */
		if (!PageHuge(hpage) && PageAnon(hpage)) {
			if (unlikely(split_huge_page(hpage))) {
				/*
				 * FIXME: if splitting THP is failed, it is
				 * better to stop the following operation rather
				 * than causing panic by unmapping. System might
				 * survive if the page is freed later.
				 */
				printk(KERN_INFO
					"MCE %#lx: failed to split THP\n", pfn);

				BUG_ON(!PageHWPoison(p));
				return SWAP_FAIL;
			}
1020 1021 1022 1023
			/*
			 * We pinned the head page for hwpoison handling,
			 * now we split the thp and we are interested in
			 * the hwpoisoned raw page, so move the refcount
1024
			 * to it. Similarly, page lock is shifted.
1025 1026
			 */
			if (hpage != p) {
1027 1028 1029 1030
				if (!(flags & MF_COUNT_INCREASED)) {
					put_page(hpage);
					get_page(p);
				}
1031 1032 1033
				lock_page(p);
				unlock_page(hpage);
				*hpagep = p;
1034
			}
1035 1036
			/* THP is split, so ppage should be the real poisoned page. */
			ppage = p;
1037 1038 1039
		}
	}

1040 1041 1042 1043 1044 1045 1046 1047 1048
	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1049
		collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1050

1051
	ret = try_to_unmap(ppage, ttu);
1052 1053
	if (ret != SWAP_SUCCESS)
		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1054 1055
				pfn, page_mapcount(ppage));

1056 1057 1058 1059
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1060 1061
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1062 1063 1064 1065
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1066 1067
	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
	kill_procs(&tokill, forcekill, trapno,
1068
		      ret != SWAP_SUCCESS, p, pfn, flags);
W
Wu Fengguang 已提交
1069 1070

	return ret;
1071 1072
}

1073 1074 1075
static void set_page_hwpoison_huge_page(struct page *hpage)
{
	int i;
1076
	int nr_pages = 1 << compound_order(hpage);
1077 1078 1079 1080 1081 1082 1083
	for (i = 0; i < nr_pages; i++)
		SetPageHWPoison(hpage + i);
}

static void clear_page_hwpoison_huge_page(struct page *hpage)
{
	int i;
1084
	int nr_pages = 1 << compound_order(hpage);
1085 1086 1087 1088
	for (i = 0; i < nr_pages; i++)
		ClearPageHWPoison(hpage + i);
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
int memory_failure(unsigned long pfn, int trapno, int flags)
1108 1109 1110
{
	struct page_state *ps;
	struct page *p;
1111
	struct page *hpage;
1112
	int res;
1113
	unsigned int nr_pages;
1114
	unsigned long page_flags;
1115 1116 1117 1118 1119

	if (!sysctl_memory_failure_recovery)
		panic("Memory failure from trap %d on page %lx", trapno, pfn);

	if (!pfn_valid(pfn)) {
1120 1121 1122 1123
		printk(KERN_ERR
		       "MCE %#lx: memory outside kernel control\n",
		       pfn);
		return -ENXIO;
1124 1125 1126
	}

	p = pfn_to_page(pfn);
1127
	hpage = compound_head(p);
1128
	if (TestSetPageHWPoison(p)) {
1129
		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1130 1131 1132
		return 0;
	}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	/*
	 * Currently errors on hugetlbfs pages are measured in hugepage units,
	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
	 * transparent hugepages, they are supposed to be split and error
	 * measurement is done in normal page units.  So nr_pages should be one
	 * in this case.
	 */
	if (PageHuge(p))
		nr_pages = 1 << compound_order(hpage);
	else /* normal page or thp */
		nr_pages = 1;
1144
	atomic_long_add(nr_pages, &num_poisoned_pages);
1145 1146 1147 1148 1149

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1150 1151 1152 1153
	 * 2) it's a free hugepage, which is also safe:
	 *    an affected hugepage will be dequeued from hugepage freelist,
	 *    so there's no concern about reusing it ever after.
	 * 3) it's part of a non-compound high order page.
1154 1155 1156 1157 1158 1159
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
	 */
1160
	if (!(flags & MF_COUNT_INCREASED) &&
1161
		!get_page_unless_zero(hpage)) {
1162
		if (is_free_buddy_page(p)) {
1163
			action_result(pfn, MSG_BUDDY, DELAYED);
1164
			return 0;
1165 1166
		} else if (PageHuge(hpage)) {
			/*
1167
			 * Check "filter hit" and "race with other subpage."
1168
			 */
J
Jens Axboe 已提交
1169
			lock_page(hpage);
1170 1171 1172 1173 1174 1175 1176
			if (PageHWPoison(hpage)) {
				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
				    || (p != hpage && TestSetPageHWPoison(hpage))) {
					atomic_long_sub(nr_pages, &num_poisoned_pages);
					unlock_page(hpage);
					return 0;
				}
1177 1178 1179
			}
			set_page_hwpoison_huge_page(hpage);
			res = dequeue_hwpoisoned_huge_page(hpage);
1180
			action_result(pfn, MSG_FREE_HUGE,
1181 1182 1183
				      res ? IGNORED : DELAYED);
			unlock_page(hpage);
			return res;
1184
		} else {
1185
			action_result(pfn, MSG_KERNEL_HIGH_ORDER, IGNORED);
1186 1187
			return -EBUSY;
		}
1188 1189
	}

1190 1191 1192 1193 1194 1195 1196 1197
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
	 * - to avoid races with __set_page_locked()
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1198 1199 1200 1201
	if (!PageHuge(p)) {
		if (!PageLRU(hpage))
			shake_page(hpage, 0);
		if (!PageLRU(hpage)) {
1202 1203 1204 1205
			/*
			 * shake_page could have turned it free.
			 */
			if (is_free_buddy_page(p)) {
1206
				if (flags & MF_COUNT_INCREASED)
1207
					action_result(pfn, MSG_BUDDY, DELAYED);
1208
				else
1209 1210
					action_result(pfn, MSG_BUDDY_2ND,
						      DELAYED);
1211 1212
				return 0;
			}
1213
		}
1214 1215
	}

J
Jens Axboe 已提交
1216
	lock_page(hpage);
W
Wu Fengguang 已提交
1217

1218 1219 1220 1221 1222
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
	if (compound_head(p) != hpage) {
1223
		action_result(pfn, MSG_DIFFERENT_COMPOUND, IGNORED);
1224 1225 1226 1227
		res = -EBUSY;
		goto out;
	}

1228 1229 1230 1231 1232 1233 1234 1235 1236
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
	page_flags = p->flags;

W
Wu Fengguang 已提交
1237 1238 1239 1240
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1241
		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1242 1243
		atomic_long_sub(nr_pages, &num_poisoned_pages);
		put_page(hpage);
W
Wu Fengguang 已提交
1244 1245 1246
		res = 0;
		goto out;
	}
W
Wu Fengguang 已提交
1247 1248
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1249
			atomic_long_sub(nr_pages, &num_poisoned_pages);
1250 1251
		unlock_page(hpage);
		put_page(hpage);
W
Wu Fengguang 已提交
1252 1253
		return 0;
	}
W
Wu Fengguang 已提交
1254

1255 1256 1257
	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
		goto identify_page_state;

1258 1259 1260 1261
	/*
	 * For error on the tail page, we should set PG_hwpoison
	 * on the head page to show that the hugepage is hwpoisoned
	 */
1262
	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1263
		action_result(pfn, MSG_POISONED_HUGE, IGNORED);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		unlock_page(hpage);
		put_page(hpage);
		return 0;
	}
	/*
	 * Set PG_hwpoison on all pages in an error hugepage,
	 * because containment is done in hugepage unit for now.
	 * Since we have done TestSetPageHWPoison() for the head page with
	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
	 */
	if (PageHuge(p))
		set_page_hwpoison_huge_page(hpage);

1277 1278 1279 1280
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1281 1282 1283 1284
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1285
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1286 1287 1288
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1289
	 */
1290 1291
	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
	    != SWAP_SUCCESS) {
1292
		action_result(pfn, MSG_UNMAP_FAILED, IGNORED);
W
Wu Fengguang 已提交
1293 1294 1295
		res = -EBUSY;
		goto out;
	}
1296 1297 1298 1299

	/*
	 * Torn down by someone else?
	 */
1300
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1301
		action_result(pfn, MSG_TRUNCATED_LRU, IGNORED);
1302
		res = -EBUSY;
1303 1304 1305
		goto out;
	}

1306
identify_page_state:
1307
	res = -EBUSY;
1308 1309 1310 1311 1312 1313 1314
	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flagss is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
1315
			break;
1316 1317 1318

	page_flags |= (p->flags & (1UL << PG_dirty));

1319 1320 1321 1322 1323
	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	res = page_action(ps, p, pfn);
1324
out:
1325
	unlock_page(hpage);
1326 1327
	return res;
}
1328
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int trapno;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
void memory_failure_queue(unsigned long pfn, int trapno, int flags)
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.trapno =	trapno,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1377
	if (kfifo_put(&mf_cpu->fifo, entry))
1378 1379
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1380
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1394
	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1395 1396 1397 1398 1399 1400
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1401 1402 1403 1404
		if (entry.flags & MF_SOFT_OFFLINE)
			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
		else
			memory_failure(entry.pfn, entry.trapno, entry.flags);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	}
}

static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

W
Wu Fengguang 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1441
	unsigned int nr_pages;
W
Wu Fengguang 已提交
1442 1443 1444 1445 1446 1447 1448 1449

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1450
		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
W
Wu Fengguang 已提交
1451 1452 1453
		return 0;
	}

1454 1455 1456 1457 1458
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1459
	if (!PageHuge(page) && PageTransHuge(page)) {
1460 1461 1462 1463
		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
			return 0;
	}

1464
	nr_pages = 1 << compound_order(page);
1465

W
Wu Fengguang 已提交
1466
	if (!get_page_unless_zero(page)) {
1467 1468 1469 1470 1471 1472 1473
		/*
		 * Since HWPoisoned hugepage should have non-zero refcount,
		 * race between memory failure and unpoison seems to happen.
		 * In such case unpoison fails and memory failure runs
		 * to the end.
		 */
		if (PageHuge(page)) {
1474
			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1475 1476
			return 0;
		}
W
Wu Fengguang 已提交
1477
		if (TestClearPageHWPoison(p))
1478
			atomic_long_dec(&num_poisoned_pages);
1479
		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
W
Wu Fengguang 已提交
1480 1481 1482
		return 0;
	}

J
Jens Axboe 已提交
1483
	lock_page(page);
W
Wu Fengguang 已提交
1484 1485 1486 1487 1488 1489
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1490
	if (TestClearPageHWPoison(page)) {
1491
		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1492
		atomic_long_sub(nr_pages, &num_poisoned_pages);
W
Wu Fengguang 已提交
1493
		freeit = 1;
1494 1495
		if (PageHuge(page))
			clear_page_hwpoison_huge_page(page);
W
Wu Fengguang 已提交
1496 1497 1498 1499
	}
	unlock_page(page);

	put_page(page);
1500
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
W
Wu Fengguang 已提交
1501 1502 1503 1504 1505
		put_page(page);

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1506 1507 1508

static struct page *new_page(struct page *p, unsigned long private, int **x)
{
1509
	int nid = page_to_nid(p);
1510 1511 1512 1513 1514
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
						   nid);
	else
		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1515 1516 1517 1518 1519 1520 1521 1522
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1523
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1524 1525 1526 1527 1528 1529
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1530 1531 1532 1533
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1534
	if (!get_page_unless_zero(compound_head(p))) {
1535
		if (PageHuge(p)) {
1536
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1537
			ret = 0;
1538
		} else if (is_free_buddy_page(p)) {
1539
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1540 1541
			ret = 0;
		} else {
1542 1543
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1544 1545 1546 1547 1548 1549 1550 1551 1552
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
		/*
		 * Try to free it.
		 */
		put_page(page);
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
		if (!PageLRU(page)) {
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
				pfn, page->flags);
			return -EIO;
		}
	}
	return ret;
}

1577 1578 1579 1580 1581
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1582
	LIST_HEAD(pagelist);
1583

1584 1585 1586 1587 1588
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1589
	if (PageHWPoison(hpage)) {
1590 1591
		unlock_page(hpage);
		put_page(hpage);
1592
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1593
		return -EBUSY;
1594
	}
1595
	unlock_page(hpage);
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	ret = isolate_huge_page(hpage, &pagelist);
	if (ret) {
		/*
		 * get_any_page() and isolate_huge_page() takes a refcount each,
		 * so need to drop one here.
		 */
		put_page(hpage);
	} else {
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1609
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1610
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1611
	if (ret) {
1612 1613
		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
			pfn, ret, page->flags);
1614 1615 1616 1617 1618 1619 1620 1621
		/*
		 * We know that soft_offline_huge_page() tries to migrate
		 * only one hugepage pointed to by hpage, so we need not
		 * run through the pagelist here.
		 */
		putback_active_hugepage(hpage);
		if (ret > 0)
			ret = -EIO;
1622
	} else {
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
		/* overcommit hugetlb page will be freed to buddy */
		if (PageHuge(page)) {
			set_page_hwpoison_huge_page(hpage);
			dequeue_hwpoisoned_huge_page(hpage);
			atomic_long_add(1 << compound_order(hpage),
					&num_poisoned_pages);
		} else {
			SetPageHWPoison(page);
			atomic_long_inc(&num_poisoned_pages);
		}
1633 1634 1635 1636
	}
	return ret;
}

1637 1638 1639 1640
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1641 1642

	/*
1643 1644 1645 1646
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1647
	 */
1648 1649
	lock_page(page);
	wait_on_page_writeback(page);
1650 1651 1652 1653 1654 1655
	if (PageHWPoison(page)) {
		unlock_page(page);
		put_page(page);
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1667
		put_page(page);
1668
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1669 1670 1671
		SetPageHWPoison(page);
		atomic_long_inc(&num_poisoned_pages);
		return 0;
1672 1673 1674 1675 1676 1677 1678 1679
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
	ret = isolate_lru_page(page);
1680 1681 1682 1683 1684
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
	put_page(page);
1685 1686
	if (!ret) {
		LIST_HEAD(pagelist);
1687
		inc_zone_page_state(page, NR_ISOLATED_ANON +
1688
					page_is_file_cache(page));
1689
		list_add(&page->lru, &pagelist);
1690
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1691
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1692
		if (ret) {
1693 1694 1695 1696 1697 1698 1699
			if (!list_empty(&pagelist)) {
				list_del(&page->lru);
				dec_zone_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
				putback_lru_page(page);
			}

1700
			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1701 1702 1703
				pfn, ret, page->flags);
			if (ret > 0)
				ret = -EIO;
1704
		} else {
1705 1706 1707 1708 1709 1710 1711 1712 1713
			/*
			 * After page migration succeeds, the source page can
			 * be trapped in pagevec and actual freeing is delayed.
			 * Freeing code works differently based on PG_hwpoison,
			 * so there's a race. We need to make sure that the
			 * source page should be freed back to buddy before
			 * setting PG_hwpoison.
			 */
			if (!is_free_buddy_page(page))
1714
				drain_all_pages(page_zone(page));
1715
			SetPageHWPoison(page);
1716 1717 1718
			if (!is_free_buddy_page(page))
				pr_info("soft offline: %#lx: page leaked\n",
					pfn);
1719
			atomic_long_inc(&num_poisoned_pages);
1720 1721
		}
	} else {
1722
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1723
			pfn, ret, page_count(page), page->flags);
1724 1725 1726
	}
	return ret;
}
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

/**
 * soft_offline_page - Soft offline a page.
 * @page: page to offline
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
int soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
D
David Rientjes 已提交
1754
	struct page *hpage = compound_head(page);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
	if (!PageHuge(page) && PageTransHuge(hpage)) {
		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
			pr_info("soft offline: %#lx: failed to split THP\n",
				pfn);
			return -EBUSY;
		}
	}

1768
	get_online_mems();
1769 1770 1771 1772 1773 1774 1775 1776 1777

	/*
	 * Isolate the page, so that it doesn't get reallocated if it
	 * was free. This flag should be kept set until the source page
	 * is freed and PG_hwpoison on it is set.
	 */
	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
		set_migratetype_isolate(page, true);

1778
	ret = get_any_page(page, pfn, flags);
1779
	put_online_mems();
1780
	if (ret > 0) { /* for in-use pages */
1781 1782 1783 1784
		if (PageHuge(page))
			ret = soft_offline_huge_page(page, flags);
		else
			ret = __soft_offline_page(page, flags);
1785
	} else if (ret == 0) { /* for free pages */
1786 1787
		if (PageHuge(page)) {
			set_page_hwpoison_huge_page(hpage);
1788 1789
			if (!dequeue_hwpoisoned_huge_page(hpage))
				atomic_long_add(1 << compound_order(hpage),
1790 1791
					&num_poisoned_pages);
		} else {
1792 1793
			if (!TestSetPageHWPoison(page))
				atomic_long_inc(&num_poisoned_pages);
1794 1795 1796 1797 1798
		}
	}
	unset_migratetype_isolate(page, MIGRATE_MOVABLE);
	return ret;
}