tlb-radix.c 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * TLB flush routines for radix kernels.
 *
 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/memblock.h>

16
#include <asm/ppc-opcode.h>
17 18
#include <asm/tlb.h>
#include <asm/tlbflush.h>
19
#include <asm/trace.h>
20
#include <asm/cputhreads.h>
21

22 23 24 25 26 27
#define RIC_FLUSH_TLB 0
#define RIC_FLUSH_PWC 1
#define RIC_FLUSH_ALL 2

static inline void __tlbiel_pid(unsigned long pid, int set,
				unsigned long ric)
28
{
29
	unsigned long rb,rs,prs,r;
30 31 32 33 34 35 36

	rb = PPC_BIT(53); /* IS = 1 */
	rb |= set << PPC_BITLSHIFT(51);
	rs = ((unsigned long)pid) << PPC_BITLSHIFT(31);
	prs = 1; /* process scoped */
	r = 1;   /* raidx format */

37
	asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
38
		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
39
	trace_tlbie(0, 1, rb, rs, ric, prs, r);
40 41 42 43 44
}

/*
 * We use 128 set in radix mode and 256 set in hpt mode.
 */
45
static inline void _tlbiel_pid(unsigned long pid, unsigned long ric)
46 47 48
{
	int set;

49
	asm volatile("ptesync": : :"memory");
50 51 52 53 54 55 56

	/*
	 * Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL,
	 * also flush the entire Page Walk Cache.
	 */
	__tlbiel_pid(pid, 0, ric);

57 58 59 60 61
	/* For PWC, only one flush is needed */
	if (ric == RIC_FLUSH_PWC) {
		asm volatile("ptesync": : :"memory");
		return;
	}
62

63
	/* For the remaining sets, just flush the TLB */
64
	for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
65
		__tlbiel_pid(pid, set, RIC_FLUSH_TLB);
66

67
	asm volatile("ptesync": : :"memory");
68
	asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
69 70
}

71
static inline void _tlbie_pid(unsigned long pid, unsigned long ric)
72
{
73
	unsigned long rb,rs,prs,r;
74 75 76 77 78 79 80

	rb = PPC_BIT(53); /* IS = 1 */
	rs = pid << PPC_BITLSHIFT(31);
	prs = 1; /* process scoped */
	r = 1;   /* raidx format */

	asm volatile("ptesync": : :"memory");
81
	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
82 83
		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
	asm volatile("eieio; tlbsync; ptesync": : :"memory");
84
	trace_tlbie(0, 0, rb, rs, ric, prs, r);
85 86 87
}

static inline void _tlbiel_va(unsigned long va, unsigned long pid,
88
			      unsigned long ap, unsigned long ric)
89
{
90
	unsigned long rb,rs,prs,r;
91 92 93 94 95 96 97 98

	rb = va & ~(PPC_BITMASK(52, 63));
	rb |= ap << PPC_BITLSHIFT(58);
	rs = pid << PPC_BITLSHIFT(31);
	prs = 1; /* process scoped */
	r = 1;   /* raidx format */

	asm volatile("ptesync": : :"memory");
99
	asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
100 101
		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
	asm volatile("ptesync": : :"memory");
102
	trace_tlbie(0, 1, rb, rs, ric, prs, r);
103 104 105
}

static inline void _tlbie_va(unsigned long va, unsigned long pid,
106
			     unsigned long ap, unsigned long ric)
107
{
108
	unsigned long rb,rs,prs,r;
109 110 111 112 113 114 115 116

	rb = va & ~(PPC_BITMASK(52, 63));
	rb |= ap << PPC_BITLSHIFT(58);
	rs = pid << PPC_BITLSHIFT(31);
	prs = 1; /* process scoped */
	r = 1;   /* raidx format */

	asm volatile("ptesync": : :"memory");
117
	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
118 119
		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
	asm volatile("eieio; tlbsync; ptesync": : :"memory");
120
	trace_tlbie(0, 0, rb, rs, ric, prs, r);
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

/*
 * Base TLB flushing operations:
 *
 *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
 *  - flush_tlb_page(vma, vmaddr) flushes one page
 *  - flush_tlb_range(vma, start, end) flushes a range of pages
 *  - flush_tlb_kernel_range(start, end) flushes kernel pages
 *
 *  - local_* variants of page and mm only apply to the current
 *    processor
 */
void radix__local_flush_tlb_mm(struct mm_struct *mm)
{
136
	unsigned long pid;
137 138 139 140

	preempt_disable();
	pid = mm->context.id;
	if (pid != MMU_NO_CONTEXT)
141
		_tlbiel_pid(pid, RIC_FLUSH_TLB);
142 143 144 145
	preempt_enable();
}
EXPORT_SYMBOL(radix__local_flush_tlb_mm);

146
#ifndef CONFIG_SMP
147
void radix__local_flush_all_mm(struct mm_struct *mm)
148 149 150 151 152 153
{
	unsigned long pid;

	preempt_disable();
	pid = mm->context.id;
	if (pid != MMU_NO_CONTEXT)
154
		_tlbiel_pid(pid, RIC_FLUSH_ALL);
155 156
	preempt_enable();
}
157
EXPORT_SYMBOL(radix__local_flush_all_mm);
158
#endif /* CONFIG_SMP */
159

160
void radix__local_flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
161
				       int psize)
162
{
163
	unsigned long pid;
164
	unsigned long ap = mmu_get_ap(psize);
165 166

	preempt_disable();
167
	pid = mm->context.id;
168
	if (pid != MMU_NO_CONTEXT)
169
		_tlbiel_va(vmaddr, pid, ap, RIC_FLUSH_TLB);
170 171 172 173 174
	preempt_enable();
}

void radix__local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
{
175 176
#ifdef CONFIG_HUGETLB_PAGE
	/* need the return fix for nohash.c */
177 178
	if (is_vm_hugetlb_page(vma))
		return radix__local_flush_hugetlb_page(vma, vmaddr);
179
#endif
180
	radix__local_flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
181 182 183 184 185 186
}
EXPORT_SYMBOL(radix__local_flush_tlb_page);

#ifdef CONFIG_SMP
void radix__flush_tlb_mm(struct mm_struct *mm)
{
187
	unsigned long pid;
188 189 190

	pid = mm->context.id;
	if (unlikely(pid == MMU_NO_CONTEXT))
191
		return;
192

193
	preempt_disable();
194
	if (!mm_is_thread_local(mm))
195
		_tlbie_pid(pid, RIC_FLUSH_TLB);
196
	else
197
		_tlbiel_pid(pid, RIC_FLUSH_TLB);
198 199 200 201
	preempt_enable();
}
EXPORT_SYMBOL(radix__flush_tlb_mm);

202
void radix__flush_all_mm(struct mm_struct *mm)
203 204 205 206 207
{
	unsigned long pid;

	pid = mm->context.id;
	if (unlikely(pid == MMU_NO_CONTEXT))
208
		return;
209

210
	preempt_disable();
211
	if (!mm_is_thread_local(mm))
212
		_tlbie_pid(pid, RIC_FLUSH_ALL);
213
	else
214
		_tlbiel_pid(pid, RIC_FLUSH_ALL);
215 216
	preempt_enable();
}
217
EXPORT_SYMBOL(radix__flush_all_mm);
218 219 220 221 222

void radix__flush_tlb_pwc(struct mmu_gather *tlb, unsigned long addr)
{
	tlb->need_flush_all = 1;
}
223 224
EXPORT_SYMBOL(radix__flush_tlb_pwc);

225
void radix__flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
226
				 int psize)
227
{
228
	unsigned long pid;
229
	unsigned long ap = mmu_get_ap(psize);
230

231
	pid = mm->context.id;
232
	if (unlikely(pid == MMU_NO_CONTEXT))
233 234 235
		return;

	preempt_disable();
236
	if (!mm_is_thread_local(mm))
237
		_tlbie_va(vmaddr, pid, ap, RIC_FLUSH_TLB);
238
	else
239
		_tlbiel_va(vmaddr, pid, ap, RIC_FLUSH_TLB);
240 241 242 243 244
	preempt_enable();
}

void radix__flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
{
245
#ifdef CONFIG_HUGETLB_PAGE
246 247
	if (is_vm_hugetlb_page(vma))
		return radix__flush_hugetlb_page(vma, vmaddr);
248
#endif
249
	radix__flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
250 251 252
}
EXPORT_SYMBOL(radix__flush_tlb_page);

253 254
#else /* CONFIG_SMP */
#define radix__flush_all_mm radix__local_flush_all_mm
255 256 257 258
#endif /* CONFIG_SMP */

void radix__flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
259
	_tlbie_pid(0, RIC_FLUSH_ALL);
260 261 262 263 264 265 266 267 268 269 270 271
}
EXPORT_SYMBOL(radix__flush_tlb_kernel_range);

/*
 * Currently, for range flushing, we just do a full mm flush. Because
 * we use this in code path where we don' track the page size.
 */
void radix__flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
		     unsigned long end)

{
	struct mm_struct *mm = vma->vm_mm;
272

273
	radix__flush_tlb_mm(mm);
274 275 276
}
EXPORT_SYMBOL(radix__flush_tlb_range);

277 278 279 280 281 282 283 284 285 286 287 288 289 290
static int radix_get_mmu_psize(int page_size)
{
	int psize;

	if (page_size == (1UL << mmu_psize_defs[mmu_virtual_psize].shift))
		psize = mmu_virtual_psize;
	else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_2M].shift))
		psize = MMU_PAGE_2M;
	else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_1G].shift))
		psize = MMU_PAGE_1G;
	else
		return -1;
	return psize;
}
291 292 293

void radix__tlb_flush(struct mmu_gather *tlb)
{
294
	int psize = 0;
295
	struct mm_struct *mm = tlb->mm;
296 297 298 299 300 301 302 303
	int page_size = tlb->page_size;

	psize = radix_get_mmu_psize(page_size);
	/*
	 * if page size is not something we understand, do a full mm flush
	 */
	if (psize != -1 && !tlb->fullmm && !tlb->need_flush_all)
		radix__flush_tlb_range_psize(mm, tlb->start, tlb->end, psize);
304 305 306 307
	else if (tlb->need_flush_all) {
		tlb->need_flush_all = 0;
		radix__flush_all_mm(mm);
	} else
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
		radix__flush_tlb_mm(mm);
}

#define TLB_FLUSH_ALL -1UL
/*
 * Number of pages above which we will do a bcast tlbie. Just a
 * number at this point copied from x86
 */
static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;

void radix__flush_tlb_range_psize(struct mm_struct *mm, unsigned long start,
				  unsigned long end, int psize)
{
	unsigned long pid;
	unsigned long addr;
323
	bool local;
324 325 326
	unsigned long ap = mmu_get_ap(psize);
	unsigned long page_size = 1UL << mmu_psize_defs[psize].shift;

327
	pid = mm->context.id;
328
	if (unlikely(pid == MMU_NO_CONTEXT))
329
		return;
330

331 332
	preempt_disable();
	local = mm_is_thread_local(mm);
333 334 335 336 337 338
	if (end == TLB_FLUSH_ALL ||
	    (end - start) > tlb_single_page_flush_ceiling * page_size) {
		if (local)
			_tlbiel_pid(pid, RIC_FLUSH_TLB);
		else
			_tlbie_pid(pid, RIC_FLUSH_TLB);
339 340 341 342 343 344 345 346
	} else {
		for (addr = start; addr < end; addr += page_size) {

			if (local)
				_tlbiel_va(addr, pid, ap, RIC_FLUSH_TLB);
			else
				_tlbie_va(addr, pid, ap, RIC_FLUSH_TLB);
		}
347 348
	}
	preempt_enable();
349
}
350

351 352 353 354 355
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
void radix__flush_tlb_collapsed_pmd(struct mm_struct *mm, unsigned long addr)
{
	unsigned long ap = mmu_get_ap(mmu_virtual_psize);
	unsigned long pid, end;
356
	bool local;
357

358
	pid = mm->context.id;
359
	if (unlikely(pid == MMU_NO_CONTEXT))
360
		return;
361 362 363 364 365 366 367

	/* 4k page size, just blow the world */
	if (PAGE_SIZE == 0x1000) {
		radix__flush_all_mm(mm);
		return;
	}

368 369
	preempt_disable();
	local = mm_is_thread_local(mm);
370 371 372 373 374 375 376 377 378 379 380 381 382 383
	/* Otherwise first do the PWC */
	if (local)
		_tlbiel_pid(pid, RIC_FLUSH_PWC);
	else
		_tlbie_pid(pid, RIC_FLUSH_PWC);

	/* Then iterate the pages */
	end = addr + HPAGE_PMD_SIZE;
	for (; addr < end; addr += PAGE_SIZE) {
		if (local)
			_tlbiel_va(addr, pid, ap, RIC_FLUSH_TLB);
		else
			_tlbie_va(addr, pid, ap, RIC_FLUSH_TLB);
	}
384

385 386 387 388
	preempt_enable();
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
void radix__flush_tlb_lpid_va(unsigned long lpid, unsigned long gpa,
			      unsigned long page_size)
{
	unsigned long rb,rs,prs,r;
	unsigned long ap;
	unsigned long ric = RIC_FLUSH_TLB;

	ap = mmu_get_ap(radix_get_mmu_psize(page_size));
	rb = gpa & ~(PPC_BITMASK(52, 63));
	rb |= ap << PPC_BITLSHIFT(58);
	rs = lpid & ((1UL << 32) - 1);
	prs = 0; /* process scoped */
	r = 1;   /* raidx format */

	asm volatile("ptesync": : :"memory");
	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
	asm volatile("eieio; tlbsync; ptesync": : :"memory");
407
	trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
}
EXPORT_SYMBOL(radix__flush_tlb_lpid_va);

void radix__flush_tlb_lpid(unsigned long lpid)
{
	unsigned long rb,rs,prs,r;
	unsigned long ric = RIC_FLUSH_ALL;

	rb = 0x2 << PPC_BITLSHIFT(53); /* IS = 2 */
	rs = lpid & ((1UL << 32) - 1);
	prs = 0; /* partition scoped */
	r = 1;   /* raidx format */

	asm volatile("ptesync": : :"memory");
	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
	asm volatile("eieio; tlbsync; ptesync": : :"memory");
425
	trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
426 427
}
EXPORT_SYMBOL(radix__flush_tlb_lpid);
428 429 430 431 432 433 434

void radix__flush_pmd_tlb_range(struct vm_area_struct *vma,
				unsigned long start, unsigned long end)
{
	radix__flush_tlb_range_psize(vma->vm_mm, start, end, MMU_PAGE_2M);
}
EXPORT_SYMBOL(radix__flush_pmd_tlb_range);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

void radix__flush_tlb_all(void)
{
	unsigned long rb,prs,r,rs;
	unsigned long ric = RIC_FLUSH_ALL;

	rb = 0x3 << PPC_BITLSHIFT(53); /* IS = 3 */
	prs = 0; /* partition scoped */
	r = 1;   /* raidx format */
	rs = 1 & ((1UL << 32) - 1); /* any LPID value to flush guest mappings */

	asm volatile("ptesync": : :"memory");
	/*
	 * now flush guest entries by passing PRS = 1 and LPID != 0
	 */
	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
		     : : "r"(rb), "i"(r), "i"(1), "i"(ric), "r"(rs) : "memory");
452
	trace_tlbie(0, 0, rb, rs, ric, prs, r);
453 454 455 456 457 458
	/*
	 * now flush host entires by passing PRS = 0 and LPID == 0
	 */
	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(0) : "memory");
	asm volatile("eieio; tlbsync; ptesync": : :"memory");
459
	trace_tlbie(0, 0, rb, 0, ric, prs, r);
460
}
461 462 463 464 465 466 467 468 469 470 471 472 473

void radix__flush_tlb_pte_p9_dd1(unsigned long old_pte, struct mm_struct *mm,
				 unsigned long address)
{
	/*
	 * We track page size in pte only for DD1, So we can
	 * call this only on DD1.
	 */
	if (!cpu_has_feature(CPU_FTR_POWER9_DD1)) {
		VM_WARN_ON(1);
		return;
	}

474
	if (old_pte & R_PAGE_LARGE)
475 476 477 478
		radix__flush_tlb_page_psize(mm, address, MMU_PAGE_2M);
	else
		radix__flush_tlb_page_psize(mm, address, mmu_virtual_psize);
}
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
extern void radix_kvm_prefetch_workaround(struct mm_struct *mm)
{
	unsigned int pid = mm->context.id;

	if (unlikely(pid == MMU_NO_CONTEXT))
		return;

	/*
	 * If this context hasn't run on that CPU before and KVM is
	 * around, there's a slim chance that the guest on another
	 * CPU just brought in obsolete translation into the TLB of
	 * this CPU due to a bad prefetch using the guest PID on
	 * the way into the hypervisor.
	 *
	 * We work around this here. If KVM is possible, we check if
	 * any sibling thread is in KVM. If it is, the window may exist
	 * and thus we flush that PID from the core.
	 *
	 * A potential future improvement would be to mark which PIDs
	 * have never been used on the system and avoid it if the PID
	 * is new and the process has no other cpumask bit set.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE) && radix_enabled()) {
		int cpu = smp_processor_id();
		int sib = cpu_first_thread_sibling(cpu);
		bool flush = false;

		for (; sib <= cpu_last_thread_sibling(cpu) && !flush; sib++) {
			if (sib == cpu)
				continue;
			if (paca[sib].kvm_hstate.kvm_vcpu)
				flush = true;
		}
		if (flush)
			_tlbiel_pid(pid, RIC_FLUSH_ALL);
	}
}
EXPORT_SYMBOL_GPL(radix_kvm_prefetch_workaround);
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */