keystore.c 75.3 KB
Newer Older
1 2 3 4 5 6 7 8 9
/**
 * eCryptfs: Linux filesystem encryption layer
 * In-kernel key management code.  Includes functions to parse and
 * write authentication token-related packets with the underlying
 * file.
 *
 * Copyright (C) 2004-2006 International Business Machines Corp.
 *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
 *              Michael C. Thompson <mcthomps@us.ibm.com>
10
 *              Trevor S. Highland <trevor.highland@gmail.com>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/string.h>
#include <linux/syscalls.h>
#include <linux/pagemap.h>
#include <linux/key.h>
#include <linux/random.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include "ecryptfs_kernel.h"

/**
 * request_key returned an error instead of a valid key address;
 * determine the type of error, make appropriate log entries, and
 * return an error code.
 */
42
static int process_request_key_err(long err_code)
43 44 45 46
{
	int rc = 0;

	switch (err_code) {
47
	case -ENOKEY:
48 49 50
		ecryptfs_printk(KERN_WARNING, "No key\n");
		rc = -ENOENT;
		break;
51
	case -EKEYEXPIRED:
52 53 54
		ecryptfs_printk(KERN_WARNING, "Key expired\n");
		rc = -ETIME;
		break;
55
	case -EKEYREVOKED:
56 57 58 59 60 61 62 63 64 65 66 67
		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
		rc = -EINVAL;
		break;
	default:
		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
				"[0x%.16x]\n", err_code);
		rc = -EINVAL;
	}
	return rc;
}

/**
68
 * ecryptfs_parse_packet_length
69 70 71 72 73
 * @data: Pointer to memory containing length at offset
 * @size: This function writes the decoded size to this memory
 *        address; zero on error
 * @length_size: The number of bytes occupied by the encoded length
 *
74
 * Returns zero on success; non-zero on error
75
 */
76 77
int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
				 size_t *length_size)
78 79 80 81 82 83 84
{
	int rc = 0;

	(*length_size) = 0;
	(*size) = 0;
	if (data[0] < 192) {
		/* One-byte length */
85
		(*size) = (unsigned char)data[0];
86 87 88
		(*length_size) = 1;
	} else if (data[0] < 224) {
		/* Two-byte length */
89 90
		(*size) = (((unsigned char)(data[0]) - 192) * 256);
		(*size) += ((unsigned char)(data[1]) + 192);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
		(*length_size) = 2;
	} else if (data[0] == 255) {
		/* Five-byte length; we're not supposed to see this */
		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
				"supported\n");
		rc = -EINVAL;
		goto out;
	} else {
		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

/**
108
 * ecryptfs_write_packet_length
109 110
 * @dest: The byte array target into which to write the length. Must
 *        have at least 5 bytes allocated.
111
 * @size: The length to write.
112 113
 * @packet_size_length: The number of bytes used to encode the packet
 *                      length is written to this address.
114 115 116
 *
 * Returns zero on success; non-zero on error.
 */
117 118
int ecryptfs_write_packet_length(char *dest, size_t size,
				 size_t *packet_size_length)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
{
	int rc = 0;

	if (size < 192) {
		dest[0] = size;
		(*packet_size_length) = 1;
	} else if (size < 65536) {
		dest[0] = (((size - 192) / 256) + 192);
		dest[1] = ((size - 192) % 256);
		(*packet_size_length) = 2;
	} else {
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING,
				"Unsupported packet size: [%d]\n", size);
	}
	return rc;
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
static int
write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
		    char **packet, size_t *packet_len)
{
	size_t i = 0;
	size_t data_len;
	size_t packet_size_len;
	char *message;
	int rc;

	/*
	 *              ***** TAG 64 Packet Format *****
	 *    | Content Type                       | 1 byte       |
	 *    | Key Identifier Size                | 1 or 2 bytes |
	 *    | Key Identifier                     | arbitrary    |
	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
	 *    | Encrypted File Encryption Key      | arbitrary    |
	 */
	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
		    + session_key->encrypted_key_size);
	*packet = kmalloc(data_len, GFP_KERNEL);
	message = *packet;
	if (!message) {
		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
		rc = -ENOMEM;
		goto out;
	}
	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165 166
	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
					  &packet_size_len);
167 168 169 170 171 172 173 174
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
				"header; cannot generate packet length\n");
		goto out;
	}
	i += packet_size_len;
	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
	i += ECRYPTFS_SIG_SIZE_HEX;
175 176 177
	rc = ecryptfs_write_packet_length(&message[i],
					  session_key->encrypted_key_size,
					  &packet_size_len);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
				"header; cannot generate packet length\n");
		goto out;
	}
	i += packet_size_len;
	memcpy(&message[i], session_key->encrypted_key,
	       session_key->encrypted_key_size);
	i += session_key->encrypted_key_size;
	*packet_len = i;
out:
	return rc;
}

static int
193
parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
		    struct ecryptfs_message *msg)
{
	size_t i = 0;
	char *data;
	size_t data_len;
	size_t m_size;
	size_t message_len;
	u16 checksum = 0;
	u16 expected_checksum = 0;
	int rc;

	/*
	 *              ***** TAG 65 Packet Format *****
	 *         | Content Type             | 1 byte       |
	 *         | Status Indicator         | 1 byte       |
	 *         | File Encryption Key Size | 1 or 2 bytes |
	 *         | File Encryption Key      | arbitrary    |
	 */
	message_len = msg->data_len;
	data = msg->data;
	if (message_len < 4) {
		rc = -EIO;
		goto out;
	}
	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
		rc = -EIO;
		goto out;
	}
	if (data[i++]) {
		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
				"[%d]\n", data[i-1]);
		rc = -EIO;
		goto out;
	}
229
	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
230 231 232 233 234 235 236
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
				"rc = [%d]\n", rc);
		goto out;
	}
	i += data_len;
	if (message_len < (i + m_size)) {
T
Tyler Hicks 已提交
237 238
		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
				"is shorter than expected\n");
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
		rc = -EIO;
		goto out;
	}
	if (m_size < 3) {
		ecryptfs_printk(KERN_ERR,
				"The decrypted key is not long enough to "
				"include a cipher code and checksum\n");
		rc = -EIO;
		goto out;
	}
	*cipher_code = data[i++];
	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
	session_key->decrypted_key_size = m_size - 3;
	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
				"the maximum key size [%d]\n",
				session_key->decrypted_key_size,
				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
		rc = -EIO;
		goto out;
	}
	memcpy(session_key->decrypted_key, &data[i],
	       session_key->decrypted_key_size);
	i += session_key->decrypted_key_size;
	expected_checksum += (unsigned char)(data[i++]) << 8;
	expected_checksum += (unsigned char)(data[i++]);
	for (i = 0; i < session_key->decrypted_key_size; i++)
		checksum += session_key->decrypted_key[i];
	if (expected_checksum != checksum) {
		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
				"encryption  key; expected [%x]; calculated "
				"[%x]\n", expected_checksum, checksum);
		rc = -EIO;
	}
out:
	return rc;
}


static int
279
write_tag_66_packet(char *signature, u8 cipher_code,
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
		    size_t *packet_len)
{
	size_t i = 0;
	size_t j;
	size_t data_len;
	size_t checksum = 0;
	size_t packet_size_len;
	char *message;
	int rc;

	/*
	 *              ***** TAG 66 Packet Format *****
	 *         | Content Type             | 1 byte       |
	 *         | Key Identifier Size      | 1 or 2 bytes |
	 *         | Key Identifier           | arbitrary    |
	 *         | File Encryption Key Size | 1 or 2 bytes |
	 *         | File Encryption Key      | arbitrary    |
	 */
	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
	*packet = kmalloc(data_len, GFP_KERNEL);
	message = *packet;
	if (!message) {
		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
		rc = -ENOMEM;
		goto out;
	}
	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
308 309
	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
					  &packet_size_len);
310 311 312 313 314 315 316 317 318
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
				"header; cannot generate packet length\n");
		goto out;
	}
	i += packet_size_len;
	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
	i += ECRYPTFS_SIG_SIZE_HEX;
	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
319 320
	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
					  &packet_size_len);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
				"header; cannot generate packet length\n");
		goto out;
	}
	i += packet_size_len;
	message[i++] = cipher_code;
	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
	i += crypt_stat->key_size;
	for (j = 0; j < crypt_stat->key_size; j++)
		checksum += crypt_stat->key[j];
	message[i++] = (checksum / 256) % 256;
	message[i++] = (checksum % 256);
	*packet_len = i;
out:
	return rc;
}

static int
parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
		    struct ecryptfs_message *msg)
{
	size_t i = 0;
	char *data;
	size_t data_len;
	size_t message_len;
	int rc;

	/*
	 *              ***** TAG 65 Packet Format *****
	 *    | Content Type                       | 1 byte       |
	 *    | Status Indicator                   | 1 byte       |
	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
	 *    | Encrypted File Encryption Key      | arbitrary    |
	 */
	message_len = msg->data_len;
	data = msg->data;
	/* verify that everything through the encrypted FEK size is present */
	if (message_len < 4) {
		rc = -EIO;
M
Michael Halcrow 已提交
361
		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
362
		       "message length is [%d]\n", __func__, message_len, 4);
363 364 365 366
		goto out;
	}
	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
		rc = -EIO;
367 368
		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
		       __func__);
369 370 371 372
		goto out;
	}
	if (data[i++]) {
		rc = -EIO;
373 374 375
		printk(KERN_ERR "%s: Status indicator has non zero "
		       "value [%d]\n", __func__, data[i-1]);

376 377
		goto out;
	}
378 379
	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
					  &data_len);
380 381 382 383 384 385 386 387
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
				"rc = [%d]\n", rc);
		goto out;
	}
	i += data_len;
	if (message_len < (i + key_rec->enc_key_size)) {
		rc = -EIO;
M
Michael Halcrow 已提交
388
		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
389
		       __func__, message_len, (i + key_rec->enc_key_size));
390 391 392 393
		goto out;
	}
	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
		rc = -EIO;
M
Michael Halcrow 已提交
394
		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
395 396 397
		       "the maximum key size [%d]\n", __func__,
		       key_rec->enc_key_size,
		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
398 399 400 401 402 403 404
		goto out;
	}
	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
out:
	return rc;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static int
ecryptfs_find_global_auth_tok_for_sig(
	struct ecryptfs_global_auth_tok **global_auth_tok,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
{
	struct ecryptfs_global_auth_tok *walker;
	int rc = 0;

	(*global_auth_tok) = NULL;
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry(walker,
			    &mount_crypt_stat->global_auth_tok_list,
			    mount_crypt_stat_list) {
		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
			(*global_auth_tok) = walker;
			goto out;
		}
	}
	rc = -EINVAL;
out:
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
	return rc;
}

/**
 * ecryptfs_find_auth_tok_for_sig
 * @auth_tok: Set to the matching auth_tok; NULL if not found
 * @crypt_stat: inode crypt_stat crypto context
 * @sig: Sig of auth_tok to find
 *
 * For now, this function simply looks at the registered auth_tok's
 * linked off the mount_crypt_stat, so all the auth_toks that can be
 * used must be registered at mount time. This function could
 * potentially try a lot harder to find auth_tok's (e.g., by calling
 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
 * that static registration of auth_tok's will no longer be necessary.
 *
 * Returns zero on no error; non-zero on error
 */
static int
ecryptfs_find_auth_tok_for_sig(
	struct ecryptfs_auth_tok **auth_tok,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
	char *sig)
{
	struct ecryptfs_global_auth_tok *global_auth_tok;
	int rc = 0;

	(*auth_tok) = NULL;
	if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
						  mount_crypt_stat, sig)) {
		struct key *auth_tok_key;

		rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
						       sig);
	} else
		(*auth_tok) = global_auth_tok->global_auth_tok;
	return rc;
}

/**
 * write_tag_70_packet can gobble a lot of stack space. We stuff most
 * of the function's parameters in a kmalloc'd struct to help reduce
 * eCryptfs' overall stack usage.
 */
struct ecryptfs_write_tag_70_packet_silly_stack {
	u8 cipher_code;
	size_t max_packet_size;
	size_t packet_size_len;
	size_t block_aligned_filename_size;
	size_t block_size;
	size_t i;
	size_t j;
	size_t num_rand_bytes;
	struct mutex *tfm_mutex;
	char *block_aligned_filename;
	struct ecryptfs_auth_tok *auth_tok;
	struct scatterlist src_sg;
	struct scatterlist dst_sg;
	struct blkcipher_desc desc;
	char iv[ECRYPTFS_MAX_IV_BYTES];
	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
	struct hash_desc hash_desc;
	struct scatterlist hash_sg;
};

/**
 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
 * @filename: NULL-terminated filename string
 *
 * This is the simplest mechanism for achieving filename encryption in
 * eCryptfs. It encrypts the given filename with the mount-wide
 * filename encryption key (FNEK) and stores it in a packet to @dest,
 * which the callee will encode and write directly into the dentry
 * name.
 */
int
ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
			     size_t *packet_size,
			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
			     char *filename, size_t filename_size)
{
	struct ecryptfs_write_tag_70_packet_silly_stack *s;
	int rc = 0;

	s = kmalloc(sizeof(*s), GFP_KERNEL);
	if (!s) {
		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
M
Michael Halcrow 已提交
514
		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
		goto out;
	}
	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
	(*packet_size) = 0;
	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
		&s->desc.tfm,
		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
	if (unlikely(rc)) {
		printk(KERN_ERR "Internal error whilst attempting to get "
		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
		       mount_crypt_stat->global_default_fn_cipher_name, rc);
		goto out;
	}
	mutex_lock(s->tfm_mutex);
	s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
	/* Plus one for the \0 separator between the random prefix
	 * and the plaintext filename */
	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
	if ((s->block_aligned_filename_size % s->block_size) != 0) {
		s->num_rand_bytes += (s->block_size
				      - (s->block_aligned_filename_size
					 % s->block_size));
		s->block_aligned_filename_size = (s->num_rand_bytes
						  + filename_size);
	}
	/* Octet 0: Tag 70 identifier
	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
	 *              and block-aligned encrypted filename size)
	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
	 * Octet N2-N3: Cipher identifier (1 octet)
	 * Octets N3-N4: Block-aligned encrypted filename
	 *  - Consists of a minimum number of random characters, a \0
	 *    separator, and then the filename */
	s->max_packet_size = (1                   /* Tag 70 identifier */
			      + 3                 /* Max Tag 70 packet size */
			      + ECRYPTFS_SIG_SIZE /* FNEK sig */
			      + 1                 /* Cipher identifier */
			      + s->block_aligned_filename_size);
	if (dest == NULL) {
		(*packet_size) = s->max_packet_size;
		goto out_unlock;
	}
	if (s->max_packet_size > (*remaining_bytes)) {
		printk(KERN_WARNING "%s: Require [%d] bytes to write; only "
		       "[%d] available\n", __func__, s->max_packet_size,
		       (*remaining_bytes));
		rc = -EINVAL;
		goto out_unlock;
	}
	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
					    GFP_KERNEL);
	if (!s->block_aligned_filename) {
		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
M
Michael Halcrow 已提交
569
		       "kzalloc [%zd] bytes\n", __func__,
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
		       s->block_aligned_filename_size);
		rc = -ENOMEM;
		goto out_unlock;
	}
	s->i = 0;
	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
	rc = ecryptfs_write_packet_length(&dest[s->i],
					  (ECRYPTFS_SIG_SIZE
					   + 1 /* Cipher code */
					   + s->block_aligned_filename_size),
					  &s->packet_size_len);
	if (rc) {
		printk(KERN_ERR "%s: Error generating tag 70 packet "
		       "header; cannot generate packet length; rc = [%d]\n",
		       __func__, rc);
		goto out_free_unlock;
	}
	s->i += s->packet_size_len;
	ecryptfs_from_hex(&dest[s->i],
			  mount_crypt_stat->global_default_fnek_sig,
			  ECRYPTFS_SIG_SIZE);
	s->i += ECRYPTFS_SIG_SIZE;
	s->cipher_code = ecryptfs_code_for_cipher_string(
		mount_crypt_stat->global_default_fn_cipher_name,
		mount_crypt_stat->global_default_fn_cipher_key_bytes);
	if (s->cipher_code == 0) {
		printk(KERN_WARNING "%s: Unable to generate code for "
		       "cipher [%s] with key bytes [%d]\n", __func__,
		       mount_crypt_stat->global_default_fn_cipher_name,
		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
		rc = -EINVAL;
		goto out_free_unlock;
	}
	dest[s->i++] = s->cipher_code;
	rc = ecryptfs_find_auth_tok_for_sig(
		&s->auth_tok, mount_crypt_stat,
		mount_crypt_stat->global_default_fnek_sig);
	if (rc) {
		printk(KERN_ERR "%s: Error attempting to find auth tok for "
		       "fnek sig [%s]; rc = [%d]\n", __func__,
		       mount_crypt_stat->global_default_fnek_sig, rc);
		goto out_free_unlock;
	}
	/* TODO: Support other key modules than passphrase for
	 * filename encryption */
	BUG_ON(s->auth_tok->token_type != ECRYPTFS_PASSWORD);
	sg_init_one(
		&s->hash_sg,
		(u8 *)s->auth_tok->token.password.session_key_encryption_key,
		s->auth_tok->token.password.session_key_encryption_key_bytes);
	s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
	s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
					     CRYPTO_ALG_ASYNC);
	if (IS_ERR(s->hash_desc.tfm)) {
			rc = PTR_ERR(s->hash_desc.tfm);
			printk(KERN_ERR "%s: Error attempting to "
			       "allocate hash crypto context; rc = [%d]\n",
			       __func__, rc);
			goto out_free_unlock;
	}
	rc = crypto_hash_init(&s->hash_desc);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error initializing crypto hash; rc = [%d]\n",
		       __func__, rc);
		goto out_release_free_unlock;
	}
	rc = crypto_hash_update(
		&s->hash_desc, &s->hash_sg,
		s->auth_tok->token.password.session_key_encryption_key_bytes);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error updating crypto hash; rc = [%d]\n",
		       __func__, rc);
		goto out_release_free_unlock;
	}
	rc = crypto_hash_final(&s->hash_desc, s->hash);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error finalizing crypto hash; rc = [%d]\n",
		       __func__, rc);
		goto out_release_free_unlock;
	}
	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
		s->block_aligned_filename[s->j] =
			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
			sg_init_one(&s->hash_sg, (u8 *)s->hash,
				    ECRYPTFS_TAG_70_DIGEST_SIZE);
			rc = crypto_hash_init(&s->hash_desc);
			if (rc) {
				printk(KERN_ERR
				       "%s: Error initializing crypto hash; "
				       "rc = [%d]\n", __func__, rc);
				goto out_release_free_unlock;
			}
			rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
						ECRYPTFS_TAG_70_DIGEST_SIZE);
			if (rc) {
				printk(KERN_ERR
				       "%s: Error updating crypto hash; "
				       "rc = [%d]\n", __func__, rc);
				goto out_release_free_unlock;
			}
			rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
			if (rc) {
				printk(KERN_ERR
				       "%s: Error finalizing crypto hash; "
				       "rc = [%d]\n", __func__, rc);
				goto out_release_free_unlock;
			}
			memcpy(s->hash, s->tmp_hash,
			       ECRYPTFS_TAG_70_DIGEST_SIZE);
		}
		if (s->block_aligned_filename[s->j] == '\0')
			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
	}
	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
	       filename_size);
	rc = virt_to_scatterlist(s->block_aligned_filename,
				 s->block_aligned_filename_size, &s->src_sg, 1);
	if (rc != 1) {
		printk(KERN_ERR "%s: Internal error whilst attempting to "
		       "convert filename memory to scatterlist; "
		       "expected rc = 1; got rc = [%d]. "
		       "block_aligned_filename_size = [%d]\n", __func__, rc,
		       s->block_aligned_filename_size);
		goto out_release_free_unlock;
	}
	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
				 &s->dst_sg, 1);
	if (rc != 1) {
		printk(KERN_ERR "%s: Internal error whilst attempting to "
		       "convert encrypted filename memory to scatterlist; "
		       "expected rc = 1; got rc = [%d]. "
		       "block_aligned_filename_size = [%d]\n", __func__, rc,
		       s->block_aligned_filename_size);
		goto out_release_free_unlock;
	}
	/* The characters in the first block effectively do the job
	 * of the IV here, so we just use 0's for the IV. Note the
	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
	 * >= ECRYPTFS_MAX_IV_BYTES. */
	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
	s->desc.info = s->iv;
	rc = crypto_blkcipher_setkey(
		s->desc.tfm,
		s->auth_tok->token.password.session_key_encryption_key,
		mount_crypt_stat->global_default_fn_cipher_key_bytes);
	if (rc < 0) {
		printk(KERN_ERR "%s: Error setting key for crypto context; "
		       "rc = [%d]. s->auth_tok->token.password.session_key_"
		       "encryption_key = [0x%p]; mount_crypt_stat->"
M
Michael Halcrow 已提交
724
		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
		       rc,
		       s->auth_tok->token.password.session_key_encryption_key,
		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
		goto out_release_free_unlock;
	}
	rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
					 s->block_aligned_filename_size);
	if (rc) {
		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
		       "rc = [%d]\n", __func__, rc);
		goto out_release_free_unlock;
	}
	s->i += s->block_aligned_filename_size;
	(*packet_size) = s->i;
	(*remaining_bytes) -= (*packet_size);
out_release_free_unlock:
	crypto_free_hash(s->hash_desc.tfm);
out_free_unlock:
	memset(s->block_aligned_filename, 0, s->block_aligned_filename_size);
	kfree(s->block_aligned_filename);
out_unlock:
	mutex_unlock(s->tfm_mutex);
out:
	kfree(s);
	return rc;
}

struct ecryptfs_parse_tag_70_packet_silly_stack {
	u8 cipher_code;
	size_t max_packet_size;
	size_t packet_size_len;
	size_t parsed_tag_70_packet_size;
	size_t block_aligned_filename_size;
	size_t block_size;
	size_t i;
	struct mutex *tfm_mutex;
	char *decrypted_filename;
	struct ecryptfs_auth_tok *auth_tok;
	struct scatterlist src_sg;
	struct scatterlist dst_sg;
	struct blkcipher_desc desc;
	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
	char iv[ECRYPTFS_MAX_IV_BYTES];
	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
};

/**
 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
 * @filename: This function kmalloc's the memory for the filename
 */
int
ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
			     size_t *packet_size,
			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
			     char *data, size_t max_packet_size)
{
	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
	int rc = 0;

	(*packet_size) = 0;
	(*filename_size) = 0;
	(*filename) = NULL;
	s = kmalloc(sizeof(*s), GFP_KERNEL);
	if (!s) {
		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
		       "[%d] bytes of kernel memory\n", __func__, sizeof(*s));
		goto out;
	}
	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
	if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
M
Michael Halcrow 已提交
795
		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
		       "at least [%d]\n", __func__, max_packet_size,
			(1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
		rc = -EINVAL;
		goto out;
	}
	/* Octet 0: Tag 70 identifier
	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
	 *              and block-aligned encrypted filename size)
	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
	 * Octet N2-N3: Cipher identifier (1 octet)
	 * Octets N3-N4: Block-aligned encrypted filename
	 *  - Consists of a minimum number of random numbers, a \0
	 *    separator, and then the filename */
	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
		       "tag [0x%.2x]\n", __func__,
		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
		rc = -EINVAL;
		goto out;
	}
	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
					  &s->parsed_tag_70_packet_size,
					  &s->packet_size_len);
	if (rc) {
		printk(KERN_WARNING "%s: Error parsing packet length; "
		       "rc = [%d]\n", __func__, rc);
		goto out;
	}
	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
					  - ECRYPTFS_SIG_SIZE - 1);
	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
	    > max_packet_size) {
		printk(KERN_WARNING "%s: max_packet_size is [%d]; real packet "
		       "size is [%d]\n", __func__, max_packet_size,
		       (1 + s->packet_size_len + 1
			+ s->block_aligned_filename_size));
		rc = -EINVAL;
		goto out;
	}
	(*packet_size) += s->packet_size_len;
	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
			ECRYPTFS_SIG_SIZE);
	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
	(*packet_size) += ECRYPTFS_SIG_SIZE;
	s->cipher_code = data[(*packet_size)++];
	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
	if (rc) {
		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
		       __func__, s->cipher_code);
		goto out;
	}
	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
							&s->tfm_mutex,
							s->cipher_string);
	if (unlikely(rc)) {
		printk(KERN_ERR "Internal error whilst attempting to get "
		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
		       s->cipher_string, rc);
		goto out;
	}
	mutex_lock(s->tfm_mutex);
	rc = virt_to_scatterlist(&data[(*packet_size)],
				 s->block_aligned_filename_size, &s->src_sg, 1);
	if (rc != 1) {
		printk(KERN_ERR "%s: Internal error whilst attempting to "
		       "convert encrypted filename memory to scatterlist; "
		       "expected rc = 1; got rc = [%d]. "
		       "block_aligned_filename_size = [%d]\n", __func__, rc,
		       s->block_aligned_filename_size);
		goto out_unlock;
	}
	(*packet_size) += s->block_aligned_filename_size;
	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
					GFP_KERNEL);
	if (!s->decrypted_filename) {
		printk(KERN_ERR "%s: Out of memory whilst attempting to "
		       "kmalloc [%d] bytes\n", __func__,
		       s->block_aligned_filename_size);
		rc = -ENOMEM;
		goto out_unlock;
	}
	rc = virt_to_scatterlist(s->decrypted_filename,
				 s->block_aligned_filename_size, &s->dst_sg, 1);
	if (rc != 1) {
		printk(KERN_ERR "%s: Internal error whilst attempting to "
		       "convert decrypted filename memory to scatterlist; "
		       "expected rc = 1; got rc = [%d]. "
		       "block_aligned_filename_size = [%d]\n", __func__, rc,
		       s->block_aligned_filename_size);
		goto out_free_unlock;
	}
	/* The characters in the first block effectively do the job of
	 * the IV here, so we just use 0's for the IV. Note the
	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
	 * >= ECRYPTFS_MAX_IV_BYTES. */
	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
	s->desc.info = s->iv;
	rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
					    s->fnek_sig_hex);
	if (rc) {
		printk(KERN_ERR "%s: Error attempting to find auth tok for "
		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
		       rc);
		goto out_free_unlock;
	}
	/* TODO: Support other key modules than passphrase for
	 * filename encryption */
	BUG_ON(s->auth_tok->token_type != ECRYPTFS_PASSWORD);
	rc = crypto_blkcipher_setkey(
		s->desc.tfm,
		s->auth_tok->token.password.session_key_encryption_key,
		mount_crypt_stat->global_default_fn_cipher_key_bytes);
	if (rc < 0) {
		printk(KERN_ERR "%s: Error setting key for crypto context; "
		       "rc = [%d]. s->auth_tok->token.password.session_key_"
		       "encryption_key = [0x%p]; mount_crypt_stat->"
M
Michael Halcrow 已提交
912
		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
		       rc,
		       s->auth_tok->token.password.session_key_encryption_key,
		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
		goto out_free_unlock;
	}
	rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
					 s->block_aligned_filename_size);
	if (rc) {
		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
		       "rc = [%d]\n", __func__, rc);
		goto out_free_unlock;
	}
	s->i = 0;
	while (s->decrypted_filename[s->i] != '\0'
	       && s->i < s->block_aligned_filename_size)
		s->i++;
	if (s->i == s->block_aligned_filename_size) {
		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
		       "find valid separator between random characters and "
		       "the filename\n", __func__);
		rc = -EINVAL;
		goto out_free_unlock;
	}
	s->i++;
	(*filename_size) = (s->block_aligned_filename_size - s->i);
	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
M
Michael Halcrow 已提交
939
		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
		       "invalid\n", __func__, (*filename_size));
		rc = -EINVAL;
		goto out_free_unlock;
	}
	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
	if (!(*filename)) {
		printk(KERN_ERR "%s: Out of memory whilst attempting to "
		       "kmalloc [%d] bytes\n", __func__,
		       ((*filename_size) + 1));
		rc = -ENOMEM;
		goto out_free_unlock;
	}
	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
	(*filename)[(*filename_size)] = '\0';
out_free_unlock:
	kfree(s->decrypted_filename);
out_unlock:
	mutex_unlock(s->tfm_mutex);
out:
	if (rc) {
		(*packet_size) = 0;
		(*filename_size) = 0;
		(*filename) = NULL;
	}
	kfree(s);
	return rc;
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
static int
ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
{
	int rc = 0;

	(*sig) = NULL;
	switch (auth_tok->token_type) {
	case ECRYPTFS_PASSWORD:
		(*sig) = auth_tok->token.password.signature;
		break;
	case ECRYPTFS_PRIVATE_KEY:
		(*sig) = auth_tok->token.private_key.signature;
		break;
	default:
		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
		       auth_tok->token_type);
		rc = -EINVAL;
	}
	return rc;
}

989
/**
990 991 992
 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
 * @auth_tok: The key authentication token used to decrypt the session key
 * @crypt_stat: The cryptographic context
993
 *
994
 * Returns zero on success; non-zero error otherwise.
995
 */
996 997 998
static int
decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
				  struct ecryptfs_crypt_stat *crypt_stat)
999
{
1000
	u8 cipher_code = 0;
1001 1002
	struct ecryptfs_msg_ctx *msg_ctx;
	struct ecryptfs_message *msg = NULL;
1003
	char *auth_tok_sig;
T
Tyler Hicks 已提交
1004 1005
	char *payload;
	size_t payload_len;
1006 1007
	int rc;

1008 1009
	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
	if (rc) {
1010 1011 1012 1013 1014
		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
		       auth_tok->token_type);
		goto out;
	}
	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
T
Tyler Hicks 已提交
1015
				 &payload, &payload_len);
1016
	if (rc) {
1017
		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1018 1019
		goto out;
	}
T
Tyler Hicks 已提交
1020
	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1021
	if (rc) {
T
Tyler Hicks 已提交
1022 1023
		ecryptfs_printk(KERN_ERR, "Error sending message to "
				"ecryptfsd\n");
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		goto out;
	}
	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
				"from the user space daemon\n");
		rc = -EIO;
		goto out;
	}
	rc = parse_tag_65_packet(&(auth_tok->session_key),
				 &cipher_code, msg);
	if (rc) {
		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
		       rc);
		goto out;
	}
	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
	       auth_tok->session_key.decrypted_key_size);
	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
				cipher_code)
		goto out;
	}
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
	if (ecryptfs_verbosity > 0) {
		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
out:
	if (msg)
		kfree(msg);
	return rc;
}

static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
{
	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1065
	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1066

1067 1068 1069
	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
				 auth_tok_list_head, list) {
		list_del(&auth_tok_list_item->list);
1070 1071 1072 1073 1074 1075 1076 1077 1078
		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
				auth_tok_list_item);
	}
}

struct kmem_cache *ecryptfs_auth_tok_list_item_cache;

/**
 * parse_tag_1_packet
1079
 * @crypt_stat: The cryptographic context to modify based on packet contents
1080 1081
 * @data: The raw bytes of the packet.
 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1082 1083
 *                 a new authentication token will be placed at the
 *                 end of this list for this packet.
1084 1085 1086 1087 1088 1089
 * @new_auth_tok: Pointer to a pointer to memory that this function
 *                allocates; sets the memory address of the pointer to
 *                NULL on error. This object is added to the
 *                auth_tok_list.
 * @packet_size: This function writes the size of the parsed packet
 *               into this memory location; zero on error.
1090
 * @max_packet_size: The maximum allowable packet size
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
 *
 * Returns zero on success; non-zero on error.
 */
static int
parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
		   unsigned char *data, struct list_head *auth_tok_list,
		   struct ecryptfs_auth_tok **new_auth_tok,
		   size_t *packet_size, size_t max_packet_size)
{
	size_t body_size;
	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
	size_t length_size;
	int rc = 0;

	(*packet_size) = 0;
	(*new_auth_tok) = NULL;
M
Michael Halcrow 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	/**
	 * This format is inspired by OpenPGP; see RFC 2440
	 * packet tag 1
	 *
	 * Tag 1 identifier (1 byte)
	 * Max Tag 1 packet size (max 3 bytes)
	 * Version (1 byte)
	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
	 * Cipher identifier (1 byte)
	 * Encrypted key size (arbitrary)
	 *
	 * 12 bytes minimum packet size
1119
	 */
M
Michael Halcrow 已提交
1120 1121
	if (unlikely(max_packet_size < 12)) {
		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1122 1123 1124 1125
		rc = -EINVAL;
		goto out;
	}
	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
M
Michael Halcrow 已提交
1126 1127
		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
		       ECRYPTFS_TAG_1_PACKET_TYPE);
1128 1129 1130 1131 1132 1133
		rc = -EINVAL;
		goto out;
	}
	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
	 * at end of function upon failure */
	auth_tok_list_item =
M
Michael Halcrow 已提交
1134 1135
		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
				  GFP_KERNEL);
1136
	if (!auth_tok_list_item) {
M
Michael Halcrow 已提交
1137
		printk(KERN_ERR "Unable to allocate memory\n");
1138 1139 1140 1141
		rc = -ENOMEM;
		goto out;
	}
	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1142 1143
	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
					  &length_size);
1144
	if (rc) {
M
Michael Halcrow 已提交
1145 1146
		printk(KERN_WARNING "Error parsing packet length; "
		       "rc = [%d]\n", rc);
1147 1148
		goto out_free;
	}
M
Michael Halcrow 已提交
1149
	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
A
Andrew Morton 已提交
1150
		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1151 1152 1153 1154 1155
		rc = -EINVAL;
		goto out_free;
	}
	(*packet_size) += length_size;
	if (unlikely((*packet_size) + body_size > max_packet_size)) {
M
Michael Halcrow 已提交
1156
		printk(KERN_WARNING "Packet size exceeds max\n");
1157 1158 1159 1160
		rc = -EINVAL;
		goto out_free;
	}
	if (unlikely(data[(*packet_size)++] != 0x03)) {
M
Michael Halcrow 已提交
1161 1162
		printk(KERN_WARNING "Unknown version number [%d]\n",
		       data[(*packet_size) - 1]);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		rc = -EINVAL;
		goto out_free;
	}
	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
	*packet_size += ECRYPTFS_SIG_SIZE;
	/* This byte is skipped because the kernel does not need to
	 * know which public key encryption algorithm was used */
	(*packet_size)++;
	(*new_auth_tok)->session_key.encrypted_key_size =
M
Michael Halcrow 已提交
1173
		body_size - (ECRYPTFS_SIG_SIZE + 2);
1174 1175
	if ((*new_auth_tok)->session_key.encrypted_key_size
	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
M
Michael Halcrow 已提交
1176 1177
		printk(KERN_WARNING "Tag 1 packet contains key larger "
		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1178 1179 1180 1181
		rc = -EINVAL;
		goto out;
	}
	memcpy((*new_auth_tok)->session_key.encrypted_key,
M
Michael Halcrow 已提交
1182
	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1183 1184 1185 1186 1187 1188
	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
	(*new_auth_tok)->session_key.flags &=
		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
	(*new_auth_tok)->session_key.flags |=
		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
M
Michael Halcrow 已提交
1189
	(*new_auth_tok)->flags = 0;
1190 1191 1192 1193
	(*new_auth_tok)->session_key.flags &=
		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
	(*new_auth_tok)->session_key.flags &=
		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	list_add(&auth_tok_list_item->list, auth_tok_list);
	goto out;
out_free:
	(*new_auth_tok) = NULL;
	memset(auth_tok_list_item, 0,
	       sizeof(struct ecryptfs_auth_tok_list_item));
	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
			auth_tok_list_item);
out:
	if (rc)
		(*packet_size) = 0;
	return rc;
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/**
 * parse_tag_3_packet
 * @crypt_stat: The cryptographic context to modify based on packet
 *              contents.
 * @data: The raw bytes of the packet.
 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
 *                 a new authentication token will be placed at the end
 *                 of this list for this packet.
 * @new_auth_tok: Pointer to a pointer to memory that this function
 *                allocates; sets the memory address of the pointer to
 *                NULL on error. This object is added to the
 *                auth_tok_list.
 * @packet_size: This function writes the size of the parsed packet
 *               into this memory location; zero on error.
 * @max_packet_size: maximum number of bytes to parse
 *
 * Returns zero on success; non-zero on error.
 */
static int
parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
		   unsigned char *data, struct list_head *auth_tok_list,
		   struct ecryptfs_auth_tok **new_auth_tok,
		   size_t *packet_size, size_t max_packet_size)
{
	size_t body_size;
	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
	size_t length_size;
1235
	int rc = 0;
1236 1237 1238

	(*packet_size) = 0;
	(*new_auth_tok) = NULL;
M
Michael Halcrow 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	/**
	 *This format is inspired by OpenPGP; see RFC 2440
	 * packet tag 3
	 *
	 * Tag 3 identifier (1 byte)
	 * Max Tag 3 packet size (max 3 bytes)
	 * Version (1 byte)
	 * Cipher code (1 byte)
	 * S2K specifier (1 byte)
	 * Hash identifier (1 byte)
	 * Salt (ECRYPTFS_SALT_SIZE)
	 * Hash iterations (1 byte)
	 * Encrypted key (arbitrary)
	 *
	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1254
	 */
M
Michael Halcrow 已提交
1255 1256
	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
		printk(KERN_ERR "Max packet size too large\n");
1257 1258 1259 1260
		rc = -EINVAL;
		goto out;
	}
	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
M
Michael Halcrow 已提交
1261 1262
		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
		       ECRYPTFS_TAG_3_PACKET_TYPE);
1263 1264 1265 1266 1267 1268
		rc = -EINVAL;
		goto out;
	}
	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
	 * at end of function upon failure */
	auth_tok_list_item =
1269
	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1270
	if (!auth_tok_list_item) {
M
Michael Halcrow 已提交
1271
		printk(KERN_ERR "Unable to allocate memory\n");
1272 1273 1274 1275
		rc = -ENOMEM;
		goto out;
	}
	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1276 1277
	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
					  &length_size);
1278
	if (rc) {
M
Michael Halcrow 已提交
1279 1280
		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
		       rc);
1281 1282
		goto out_free;
	}
M
Michael Halcrow 已提交
1283
	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
A
Andrew Morton 已提交
1284
		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1285 1286 1287 1288 1289
		rc = -EINVAL;
		goto out_free;
	}
	(*packet_size) += length_size;
	if (unlikely((*packet_size) + body_size > max_packet_size)) {
M
Michael Halcrow 已提交
1290
		printk(KERN_ERR "Packet size exceeds max\n");
1291 1292 1293 1294
		rc = -EINVAL;
		goto out_free;
	}
	(*new_auth_tok)->session_key.encrypted_key_size =
M
Michael Halcrow 已提交
1295
		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1296
	if (unlikely(data[(*packet_size)++] != 0x04)) {
M
Michael Halcrow 已提交
1297 1298
		printk(KERN_WARNING "Unknown version number [%d]\n",
		       data[(*packet_size) - 1]);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
		rc = -EINVAL;
		goto out_free;
	}
	ecryptfs_cipher_code_to_string(crypt_stat->cipher,
				       (u16)data[(*packet_size)]);
	/* A little extra work to differentiate among the AES key
	 * sizes; see RFC2440 */
	switch(data[(*packet_size)++]) {
	case RFC2440_CIPHER_AES_192:
		crypt_stat->key_size = 24;
		break;
	default:
		crypt_stat->key_size =
			(*new_auth_tok)->session_key.encrypted_key_size;
	}
	ecryptfs_init_crypt_ctx(crypt_stat);
	if (unlikely(data[(*packet_size)++] != 0x03)) {
M
Michael Halcrow 已提交
1316
		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		rc = -ENOSYS;
		goto out_free;
	}
	/* TODO: finish the hash mapping */
	switch (data[(*packet_size)++]) {
	case 0x01: /* See RFC2440 for these numbers and their mappings */
		/* Choose MD5 */
		memcpy((*new_auth_tok)->token.password.salt,
		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
		(*packet_size) += ECRYPTFS_SALT_SIZE;
		/* This conversion was taken straight from RFC2440 */
		(*new_auth_tok)->token.password.hash_iterations =
			((u32) 16 + (data[(*packet_size)] & 15))
				<< ((data[(*packet_size)] >> 4) + 6);
		(*packet_size)++;
M
Michael Halcrow 已提交
1332 1333 1334
		/* Friendly reminder:
		 * (*new_auth_tok)->session_key.encrypted_key_size =
		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1335 1336 1337 1338 1339 1340 1341 1342 1343
		memcpy((*new_auth_tok)->session_key.encrypted_key,
		       &data[(*packet_size)],
		       (*new_auth_tok)->session_key.encrypted_key_size);
		(*packet_size) +=
			(*new_auth_tok)->session_key.encrypted_key_size;
		(*new_auth_tok)->session_key.flags &=
			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
		(*new_auth_tok)->session_key.flags |=
			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
M
Michael Halcrow 已提交
1344
		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
		break;
	default:
		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
				"[%d]\n", data[(*packet_size) - 1]);
		rc = -ENOSYS;
		goto out_free;
	}
	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
	/* TODO: Parametarize; we might actually want userspace to
	 * decrypt the session key. */
1355 1356 1357 1358
	(*new_auth_tok)->session_key.flags &=
			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
	(*new_auth_tok)->session_key.flags &=
			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	list_add(&auth_tok_list_item->list, auth_tok_list);
	goto out;
out_free:
	(*new_auth_tok) = NULL;
	memset(auth_tok_list_item, 0,
	       sizeof(struct ecryptfs_auth_tok_list_item));
	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
			auth_tok_list_item);
out:
	if (rc)
		(*packet_size) = 0;
	return rc;
}

/**
 * parse_tag_11_packet
 * @data: The raw bytes of the packet
 * @contents: This function writes the data contents of the literal
 *            packet into this memory location
 * @max_contents_bytes: The maximum number of bytes that this function
 *                      is allowed to write into contents
 * @tag_11_contents_size: This function writes the size of the parsed
 *                        contents into this memory location; zero on
 *                        error
 * @packet_size: This function writes the size of the parsed packet
 *               into this memory location; zero on error
 * @max_packet_size: maximum number of bytes to parse
 *
 * Returns zero on success; non-zero on error.
 */
static int
parse_tag_11_packet(unsigned char *data, unsigned char *contents,
		    size_t max_contents_bytes, size_t *tag_11_contents_size,
		    size_t *packet_size, size_t max_packet_size)
{
	size_t body_size;
	size_t length_size;
1396
	int rc = 0;
1397 1398 1399

	(*packet_size) = 0;
	(*tag_11_contents_size) = 0;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	/* This format is inspired by OpenPGP; see RFC 2440
	 * packet tag 11
	 *
	 * Tag 11 identifier (1 byte)
	 * Max Tag 11 packet size (max 3 bytes)
	 * Binary format specifier (1 byte)
	 * Filename length (1 byte)
	 * Filename ("_CONSOLE") (8 bytes)
	 * Modification date (4 bytes)
	 * Literal data (arbitrary)
	 *
	 * We need at least 16 bytes of data for the packet to even be
	 * valid.
1413
	 */
1414 1415
	if (max_packet_size < 16) {
		printk(KERN_ERR "Maximum packet size too small\n");
1416 1417 1418 1419
		rc = -EINVAL;
		goto out;
	}
	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1420
		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1421 1422 1423
		rc = -EINVAL;
		goto out;
	}
1424 1425
	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
					  &length_size);
1426
	if (rc) {
1427
		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1428 1429
		goto out;
	}
1430
	if (body_size < 14) {
A
Andrew Morton 已提交
1431
		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1432 1433 1434
		rc = -EINVAL;
		goto out;
	}
1435 1436
	(*packet_size) += length_size;
	(*tag_11_contents_size) = (body_size - 14);
1437
	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1438
		printk(KERN_ERR "Packet size exceeds max\n");
1439 1440 1441 1442
		rc = -EINVAL;
		goto out;
	}
	if (data[(*packet_size)++] != 0x62) {
1443
		printk(KERN_WARNING "Unrecognizable packet\n");
1444 1445 1446 1447
		rc = -EINVAL;
		goto out;
	}
	if (data[(*packet_size)++] != 0x08) {
1448
		printk(KERN_WARNING "Unrecognizable packet\n");
1449 1450 1451
		rc = -EINVAL;
		goto out;
	}
1452
	(*packet_size) += 12; /* Ignore filename and modification date */
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
	(*packet_size) += (*tag_11_contents_size);
out:
	if (rc) {
		(*packet_size) = 0;
		(*tag_11_contents_size) = 0;
	}
	return rc;
}

/**
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
 * ecryptfs_verify_version
 * @version: The version number to confirm
 *
 * Returns zero on good version; non-zero otherwise
 */
static int ecryptfs_verify_version(u16 version)
{
	int rc = 0;
	unsigned char major;
	unsigned char minor;

	major = ((version >> 8) & 0xFF);
	minor = (version & 0xFF);
	if (major != ECRYPTFS_VERSION_MAJOR) {
		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
				"Expected [%d]; got [%d]\n",
				ECRYPTFS_VERSION_MAJOR, major);
		rc = -EINVAL;
		goto out;
	}
	if (minor != ECRYPTFS_VERSION_MINOR) {
		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
				"Expected [%d]; got [%d]\n",
				ECRYPTFS_VERSION_MINOR, minor);
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
				      struct ecryptfs_auth_tok **auth_tok,
				      char *sig)
{
	int rc = 0;

	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
		printk(KERN_ERR "Could not find key with description: [%s]\n",
		       sig);
1505
		rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		goto out;
	}
	(*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
	if (ecryptfs_verify_version((*auth_tok)->version)) {
		printk(KERN_ERR
		       "Data structure version mismatch. "
		       "Userspace tools must match eCryptfs "
		       "kernel module with major version [%d] "
		       "and minor version [%d]\n",
		       ECRYPTFS_VERSION_MAJOR,
		       ECRYPTFS_VERSION_MINOR);
		rc = -EINVAL;
		goto out;
	}
	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
		printk(KERN_ERR "Invalid auth_tok structure "
		       "returned from key query\n");
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

/**
1532 1533 1534
 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
 * @crypt_stat: The cryptographic context
1535
 *
1536
 * Returns zero on success; non-zero error otherwise
1537
 */
1538 1539 1540
static int
decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
					 struct ecryptfs_crypt_stat *crypt_stat)
1541
{
1542 1543
	struct scatterlist dst_sg[2];
	struct scatterlist src_sg[2];
1544
	struct mutex *tfm_mutex;
1545 1546 1547 1548
	struct blkcipher_desc desc = {
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(
			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
			auth_tok->token.password.session_key_encryption_key_bytes);
		ecryptfs_dump_hex(
			auth_tok->token.password.session_key_encryption_key,
			auth_tok->token.password.session_key_encryption_key_bytes);
	}
	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
							crypt_stat->cipher);
	if (unlikely(rc)) {
		printk(KERN_ERR "Internal error whilst attempting to get "
		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
		       crypt_stat->cipher, rc);
		goto out;
1565
	}
1566 1567
	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
				 auth_tok->session_key.encrypted_key_size,
1568 1569
				 src_sg, 2);
	if (rc < 1 || rc > 2) {
1570 1571 1572 1573 1574 1575 1576 1577 1578
		printk(KERN_ERR "Internal error whilst attempting to convert "
			"auth_tok->session_key.encrypted_key to scatterlist; "
			"expected rc = 1; got rc = [%d]. "
		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
			auth_tok->session_key.encrypted_key_size);
		goto out;
	}
	auth_tok->session_key.decrypted_key_size =
		auth_tok->session_key.encrypted_key_size;
1579 1580
	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
				 auth_tok->session_key.decrypted_key_size,
1581 1582
				 dst_sg, 2);
	if (rc < 1 || rc > 2) {
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
		printk(KERN_ERR "Internal error whilst attempting to convert "
			"auth_tok->session_key.decrypted_key to scatterlist; "
			"expected rc = 1; got rc = [%d]\n", rc);
		goto out;
	}
	mutex_lock(tfm_mutex);
	rc = crypto_blkcipher_setkey(
		desc.tfm, auth_tok->token.password.session_key_encryption_key,
		crypt_stat->key_size);
	if (unlikely(rc < 0)) {
		mutex_unlock(tfm_mutex);
1594 1595
		printk(KERN_ERR "Error setting key for crypto context\n");
		rc = -EINVAL;
1596
		goto out;
1597
	}
1598
	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1599
				      auth_tok->session_key.encrypted_key_size);
1600 1601
	mutex_unlock(tfm_mutex);
	if (unlikely(rc)) {
1602
		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1603
		goto out;
1604
	}
1605 1606 1607
	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
	       auth_tok->session_key.decrypted_key_size);
1608
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1609 1610 1611
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
				crypt_stat->key_size);
1612 1613
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
1614
	}
1615 1616 1617 1618 1619 1620
out:
	return rc;
}

/**
 * ecryptfs_parse_packet_set
1621 1622 1623
 * @crypt_stat: The cryptographic context
 * @src: Virtual address of region of memory containing the packets
 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
 *
 * Get crypt_stat to have the file's session key if the requisite key
 * is available to decrypt the session key.
 *
 * Returns Zero if a valid authentication token was retrieved and
 * processed; negative value for file not encrypted or for error
 * conditions.
 */
int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
			      unsigned char *src,
			      struct dentry *ecryptfs_dentry)
{
	size_t i = 0;
1637
	size_t found_auth_tok;
1638 1639
	size_t next_packet_is_auth_tok_packet;
	struct list_head auth_tok_list;
1640 1641
	struct ecryptfs_auth_tok *matching_auth_tok;
	struct ecryptfs_auth_tok *candidate_auth_tok;
1642
	char *candidate_auth_tok_sig;
1643 1644 1645
	size_t packet_size;
	struct ecryptfs_auth_tok *new_auth_tok;
	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1646
	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1647 1648
	size_t tag_11_contents_size;
	size_t tag_11_packet_size;
1649
	int rc = 0;
1650 1651

	INIT_LIST_HEAD(&auth_tok_list);
1652
	/* Parse the header to find as many packets as we can; these will be
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	 * added the our &auth_tok_list */
	next_packet_is_auth_tok_packet = 1;
	while (next_packet_is_auth_tok_packet) {
		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);

		switch (src[i]) {
		case ECRYPTFS_TAG_3_PACKET_TYPE:
			rc = parse_tag_3_packet(crypt_stat,
						(unsigned char *)&src[i],
						&auth_tok_list, &new_auth_tok,
						&packet_size, max_packet_size);
			if (rc) {
				ecryptfs_printk(KERN_ERR, "Error parsing "
						"tag 3 packet\n");
				rc = -EIO;
				goto out_wipe_list;
			}
			i += packet_size;
			rc = parse_tag_11_packet((unsigned char *)&src[i],
						 sig_tmp_space,
						 ECRYPTFS_SIG_SIZE,
						 &tag_11_contents_size,
						 &tag_11_packet_size,
						 max_packet_size);
			if (rc) {
				ecryptfs_printk(KERN_ERR, "No valid "
						"(ecryptfs-specific) literal "
						"packet containing "
						"authentication token "
						"signature found after "
						"tag 3 packet\n");
				rc = -EIO;
				goto out_wipe_list;
			}
			i += tag_11_packet_size;
			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
				ecryptfs_printk(KERN_ERR, "Expected "
						"signature of size [%d]; "
						"read size [%d]\n",
						ECRYPTFS_SIG_SIZE,
						tag_11_contents_size);
				rc = -EIO;
				goto out_wipe_list;
			}
			ecryptfs_to_hex(new_auth_tok->token.password.signature,
					sig_tmp_space, tag_11_contents_size);
			new_auth_tok->token.password.signature[
				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1701
			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1702
			break;
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
		case ECRYPTFS_TAG_1_PACKET_TYPE:
			rc = parse_tag_1_packet(crypt_stat,
						(unsigned char *)&src[i],
						&auth_tok_list, &new_auth_tok,
						&packet_size, max_packet_size);
			if (rc) {
				ecryptfs_printk(KERN_ERR, "Error parsing "
						"tag 1 packet\n");
				rc = -EIO;
				goto out_wipe_list;
			}
			i += packet_size;
1715
			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1716
			break;
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
		case ECRYPTFS_TAG_11_PACKET_TYPE:
			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
					"(Tag 11 not allowed by itself)\n");
			rc = -EIO;
			goto out_wipe_list;
			break;
		default:
			ecryptfs_printk(KERN_DEBUG, "No packet at offset "
					"[%d] of the file header; hex value of "
					"character is [0x%.2x]\n", i, src[i]);
			next_packet_is_auth_tok_packet = 0;
		}
	}
	if (list_empty(&auth_tok_list)) {
1731 1732 1733 1734
		printk(KERN_ERR "The lower file appears to be a non-encrypted "
		       "eCryptfs file; this is not supported in this version "
		       "of the eCryptfs kernel module\n");
		rc = -EINVAL;
1735 1736
		goto out;
	}
1737 1738 1739 1740 1741 1742 1743 1744 1745
	/* auth_tok_list contains the set of authentication tokens
	 * parsed from the metadata. We need to find a matching
	 * authentication token that has the secret component(s)
	 * necessary to decrypt the EFEK in the auth_tok parsed from
	 * the metadata. There may be several potential matches, but
	 * just one will be sufficient to decrypt to get the FEK. */
find_next_matching_auth_tok:
	found_auth_tok = 0;
	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1746 1747 1748 1749 1750 1751
		candidate_auth_tok = &auth_tok_list_item->auth_tok;
		if (unlikely(ecryptfs_verbosity > 0)) {
			ecryptfs_printk(KERN_DEBUG,
					"Considering cadidate auth tok:\n");
			ecryptfs_dump_auth_tok(candidate_auth_tok);
		}
1752 1753 1754
		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
					       candidate_auth_tok);
		if (rc) {
1755 1756 1757 1758 1759 1760
			printk(KERN_ERR
			       "Unrecognized candidate auth tok type: [%d]\n",
			       candidate_auth_tok->token_type);
			rc = -EINVAL;
			goto out_wipe_list;
		}
1761 1762
		ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
					       crypt_stat->mount_crypt_stat,
1763
					       candidate_auth_tok_sig);
1764
		if (matching_auth_tok) {
1765
			found_auth_tok = 1;
1766
			goto found_matching_auth_tok;
1767 1768 1769
		}
	}
	if (!found_auth_tok) {
1770 1771
		ecryptfs_printk(KERN_ERR, "Could not find a usable "
				"authentication token\n");
1772 1773
		rc = -EIO;
		goto out_wipe_list;
1774
	}
1775
found_matching_auth_tok:
1776
	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1777
		memcpy(&(candidate_auth_tok->token.private_key),
1778
		       &(matching_auth_tok->token.private_key),
1779
		       sizeof(struct ecryptfs_private_key));
1780
		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1781 1782
						       crypt_stat);
	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1783
		memcpy(&(candidate_auth_tok->token.password),
1784
		       &(matching_auth_tok->token.password),
1785
		       sizeof(struct ecryptfs_password));
1786 1787
		rc = decrypt_passphrase_encrypted_session_key(
			candidate_auth_tok, crypt_stat);
1788 1789
	}
	if (rc) {
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;

		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
				"session key for authentication token with sig "
				"[%.*s]; rc = [%d]. Removing auth tok "
				"candidate from the list and searching for "
				"the next match.\n", candidate_auth_tok_sig,
				ECRYPTFS_SIG_SIZE_HEX, rc);
		list_for_each_entry_safe(auth_tok_list_item,
					 auth_tok_list_item_tmp,
					 &auth_tok_list, list) {
			if (candidate_auth_tok
			    == &auth_tok_list_item->auth_tok) {
				list_del(&auth_tok_list_item->list);
				kmem_cache_free(
					ecryptfs_auth_tok_list_item_cache,
					auth_tok_list_item);
				goto find_next_matching_auth_tok;
			}
		}
		BUG();
1811 1812 1813 1814 1815 1816
	}
	rc = ecryptfs_compute_root_iv(crypt_stat);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error computing "
				"the root IV\n");
		goto out_wipe_list;
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	}
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
				"context for cipher [%s]; rc = [%d]\n",
				crypt_stat->cipher, rc);
	}
out_wipe_list:
	wipe_auth_tok_list(&auth_tok_list);
out:
	return rc;
}
1829

1830 1831 1832 1833 1834 1835
static int
pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
			struct ecryptfs_crypt_stat *crypt_stat,
			struct ecryptfs_key_record *key_rec)
{
	struct ecryptfs_msg_ctx *msg_ctx = NULL;
T
Tyler Hicks 已提交
1836 1837
	char *payload = NULL;
	size_t payload_len;
1838 1839 1840 1841
	struct ecryptfs_message *msg;
	int rc;

	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1842 1843 1844
				 ecryptfs_code_for_cipher_string(
					 crypt_stat->cipher,
					 crypt_stat->key_size),
T
Tyler Hicks 已提交
1845
				 crypt_stat, &payload, &payload_len);
1846 1847 1848 1849
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
		goto out;
	}
T
Tyler Hicks 已提交
1850
	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1851
	if (rc) {
T
Tyler Hicks 已提交
1852 1853
		ecryptfs_printk(KERN_ERR, "Error sending message to "
				"ecryptfsd\n");
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		goto out;
	}
	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
				"from the user space daemon\n");
		rc = -EIO;
		goto out;
	}
	rc = parse_tag_67_packet(key_rec, msg);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
	kfree(msg);
out:
T
Tyler Hicks 已提交
1868
	kfree(payload);
1869 1870 1871 1872 1873
	return rc;
}
/**
 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
 * @dest: Buffer into which to write the packet
1874 1875 1876 1877
 * @remaining_bytes: Maximum number of bytes that can be writtn
 * @auth_tok: The authentication token used for generating the tag 1 packet
 * @crypt_stat: The cryptographic context
 * @key_rec: The key record struct for the tag 1 packet
1878 1879 1880 1881 1882 1883
 * @packet_size: This function will write the number of bytes that end
 *               up constituting the packet; set to zero on error
 *
 * Returns zero on success; non-zero on error.
 */
static int
1884 1885
write_tag_1_packet(char *dest, size_t *remaining_bytes,
		   struct ecryptfs_auth_tok *auth_tok,
1886 1887 1888 1889 1890 1891
		   struct ecryptfs_crypt_stat *crypt_stat,
		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
{
	size_t i;
	size_t encrypted_session_key_valid = 0;
	size_t packet_size_length;
1892
	size_t max_packet_size;
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	int rc = 0;

	(*packet_size) = 0;
	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
			  ECRYPTFS_SIG_SIZE);
	encrypted_session_key_valid = 0;
	for (i = 0; i < crypt_stat->key_size; i++)
		encrypted_session_key_valid |=
			auth_tok->session_key.encrypted_key[i];
	if (encrypted_session_key_valid) {
		memcpy(key_rec->enc_key,
		       auth_tok->session_key.encrypted_key,
		       auth_tok->session_key.encrypted_key_size);
		goto encrypted_session_key_set;
	}
	if (auth_tok->session_key.encrypted_key_size == 0)
		auth_tok->session_key.encrypted_key_size =
			auth_tok->token.private_key.key_size;
	rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
	if (rc) {
1913 1914
		printk(KERN_ERR "Failed to encrypt session key via a key "
		       "module; rc = [%d]\n", rc);
1915 1916 1917 1918 1919 1920 1921
		goto out;
	}
	if (ecryptfs_verbosity > 0) {
		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
	}
encrypted_session_key_set:
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	/* This format is inspired by OpenPGP; see RFC 2440
	 * packet tag 1 */
	max_packet_size = (1                         /* Tag 1 identifier */
			   + 3                       /* Max Tag 1 packet size */
			   + 1                       /* Version */
			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
			   + 1                       /* Cipher identifier */
			   + key_rec->enc_key_size); /* Encrypted key size */
	if (max_packet_size > (*remaining_bytes)) {
		printk(KERN_ERR "Packet length larger than maximum allowable; "
A
Andrew Morton 已提交
1932
		       "need up to [%td] bytes, but there are only [%td] "
1933
		       "available\n", max_packet_size, (*remaining_bytes));
1934 1935 1936 1937
		rc = -EINVAL;
		goto out;
	}
	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1938 1939 1940
	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
					  (max_packet_size - 4),
					  &packet_size_length);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
				"header; cannot generate packet length\n");
		goto out;
	}
	(*packet_size) += packet_size_length;
	dest[(*packet_size)++] = 0x03; /* version 3 */
	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
	(*packet_size) += ECRYPTFS_SIG_SIZE;
	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
	memcpy(&dest[(*packet_size)], key_rec->enc_key,
	       key_rec->enc_key_size);
	(*packet_size) += key_rec->enc_key_size;
out:
	if (rc)
		(*packet_size) = 0;
1957 1958
	else
		(*remaining_bytes) -= (*packet_size);
1959 1960
	return rc;
}
1961 1962 1963 1964

/**
 * write_tag_11_packet
 * @dest: Target into which Tag 11 packet is to be written
1965
 * @remaining_bytes: Maximum packet length
1966 1967 1968 1969 1970 1971 1972
 * @contents: Byte array of contents to copy in
 * @contents_length: Number of bytes in contents
 * @packet_length: Length of the Tag 11 packet written; zero on error
 *
 * Returns zero on success; non-zero on error.
 */
static int
A
Andrew Morton 已提交
1973
write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
1974
		    size_t contents_length, size_t *packet_length)
1975 1976
{
	size_t packet_size_length;
1977
	size_t max_packet_size;
1978
	int rc = 0;
1979 1980

	(*packet_length) = 0;
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	/* This format is inspired by OpenPGP; see RFC 2440
	 * packet tag 11 */
	max_packet_size = (1                   /* Tag 11 identifier */
			   + 3                 /* Max Tag 11 packet size */
			   + 1                 /* Binary format specifier */
			   + 1                 /* Filename length */
			   + 8                 /* Filename ("_CONSOLE") */
			   + 4                 /* Modification date */
			   + contents_length); /* Literal data */
	if (max_packet_size > (*remaining_bytes)) {
		printk(KERN_ERR "Packet length larger than maximum allowable; "
A
Andrew Morton 已提交
1992
		       "need up to [%td] bytes, but there are only [%td] "
1993
		       "available\n", max_packet_size, (*remaining_bytes));
1994 1995 1996 1997
		rc = -EINVAL;
		goto out;
	}
	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
1998 1999 2000
	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
					  (max_packet_size - 4),
					  &packet_size_length);
2001
	if (rc) {
2002 2003
		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
		       "generate packet length. rc = [%d]\n", rc);
2004 2005 2006
		goto out;
	}
	(*packet_length) += packet_size_length;
2007
	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	dest[(*packet_length)++] = 8;
	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
	(*packet_length) += 8;
	memset(&dest[(*packet_length)], 0x00, 4);
	(*packet_length) += 4;
	memcpy(&dest[(*packet_length)], contents, contents_length);
	(*packet_length) += contents_length;
 out:
	if (rc)
		(*packet_length) = 0;
2018 2019
	else
		(*remaining_bytes) -= (*packet_length);
2020 2021 2022 2023 2024 2025
	return rc;
}

/**
 * write_tag_3_packet
 * @dest: Buffer into which to write the packet
2026
 * @remaining_bytes: Maximum number of bytes that can be written
2027 2028 2029 2030 2031 2032 2033 2034 2035
 * @auth_tok: Authentication token
 * @crypt_stat: The cryptographic context
 * @key_rec: encrypted key
 * @packet_size: This function will write the number of bytes that end
 *               up constituting the packet; set to zero on error
 *
 * Returns zero on success; non-zero on error.
 */
static int
2036 2037
write_tag_3_packet(char *dest, size_t *remaining_bytes,
		   struct ecryptfs_auth_tok *auth_tok,
2038 2039 2040 2041 2042 2043
		   struct ecryptfs_crypt_stat *crypt_stat,
		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
{
	size_t i;
	size_t encrypted_session_key_valid = 0;
	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2044 2045
	struct scatterlist dst_sg[2];
	struct scatterlist src_sg[2];
2046
	struct mutex *tfm_mutex = NULL;
2047
	u8 cipher_code;
2048 2049 2050 2051
	size_t packet_size_length;
	size_t max_packet_size;
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		crypt_stat->mount_crypt_stat;
2052 2053 2054 2055 2056
	struct blkcipher_desc desc = {
		.tfm = NULL,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
2057 2058

	(*packet_size) = 0;
2059
	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2060
			  ECRYPTFS_SIG_SIZE);
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
							crypt_stat->cipher);
	if (unlikely(rc)) {
		printk(KERN_ERR "Internal error whilst attempting to get "
		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
		       crypt_stat->cipher, rc);
		goto out;
	}
	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);

		printk(KERN_WARNING "No key size specified at mount; "
		       "defaulting to [%d]\n", alg->max_keysize);
		mount_crypt_stat->global_default_cipher_key_size =
			alg->max_keysize;
2076
	}
2077 2078 2079
	if (crypt_stat->key_size == 0)
		crypt_stat->key_size =
			mount_crypt_stat->global_default_cipher_key_size;
2080 2081 2082 2083 2084 2085 2086
	if (auth_tok->session_key.encrypted_key_size == 0)
		auth_tok->session_key.encrypted_key_size =
			crypt_stat->key_size;
	if (crypt_stat->key_size == 24
	    && strcmp("aes", crypt_stat->cipher) == 0) {
		memset((crypt_stat->key + 24), 0, 8);
		auth_tok->session_key.encrypted_key_size = 32;
2087 2088
	} else
		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2089
	key_rec->enc_key_size =
2090
		auth_tok->session_key.encrypted_key_size;
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	encrypted_session_key_valid = 0;
	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
		encrypted_session_key_valid |=
			auth_tok->session_key.encrypted_key[i];
	if (encrypted_session_key_valid) {
		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
				"using auth_tok->session_key.encrypted_key, "
				"where key_rec->enc_key_size = [%d]\n",
				key_rec->enc_key_size);
		memcpy(key_rec->enc_key,
		       auth_tok->session_key.encrypted_key,
		       key_rec->enc_key_size);
		goto encrypted_session_key_set;
	}
2105 2106
	if (auth_tok->token.password.flags &
	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
				"session key encryption key of size [%d]\n",
				auth_tok->token.password.
				session_key_encryption_key_bytes);
		memcpy(session_key_encryption_key,
		       auth_tok->token.password.session_key_encryption_key,
		       crypt_stat->key_size);
		ecryptfs_printk(KERN_DEBUG,
				"Cached session key " "encryption key: \n");
		if (ecryptfs_verbosity > 0)
			ecryptfs_dump_hex(session_key_encryption_key, 16);
	}
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
		ecryptfs_dump_hex(session_key_encryption_key, 16);
	}
2123
	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2124 2125
				 src_sg, 2);
	if (rc < 1 || rc > 2) {
2126
		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2127 2128 2129
				"for crypt_stat session key; expected rc = 1; "
				"got rc = [%d]. key_rec->enc_key_size = [%d]\n",
				rc, key_rec->enc_key_size);
2130 2131 2132
		rc = -ENOMEM;
		goto out;
	}
2133
	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2134 2135
				 dst_sg, 2);
	if (rc < 1 || rc > 2) {
2136
		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2137 2138 2139 2140
				"for crypt_stat encrypted session key; "
				"expected rc = 1; got rc = [%d]. "
				"key_rec->enc_key_size = [%d]\n", rc,
				key_rec->enc_key_size);
2141 2142 2143
		rc = -ENOMEM;
		goto out;
	}
2144
	mutex_lock(tfm_mutex);
2145 2146
	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
				     crypt_stat->key_size);
2147
	if (rc < 0) {
2148
		mutex_unlock(tfm_mutex);
2149
		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2150
				"context; rc = [%d]\n", rc);
2151 2152 2153 2154 2155
		goto out;
	}
	rc = 0;
	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
			crypt_stat->key_size);
2156
	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2157
				      (*key_rec).enc_key_size);
2158
	mutex_unlock(tfm_mutex);
2159 2160 2161 2162
	if (rc) {
		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
		goto out;
	}
2163
	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2164 2165 2166
	if (ecryptfs_verbosity > 0) {
		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
				key_rec->enc_key_size);
2167 2168
		ecryptfs_dump_hex(key_rec->enc_key,
				  key_rec->enc_key_size);
2169
	}
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
encrypted_session_key_set:
	/* This format is inspired by OpenPGP; see RFC 2440
	 * packet tag 3 */
	max_packet_size = (1                         /* Tag 3 identifier */
			   + 3                       /* Max Tag 3 packet size */
			   + 1                       /* Version */
			   + 1                       /* Cipher code */
			   + 1                       /* S2K specifier */
			   + 1                       /* Hash identifier */
			   + ECRYPTFS_SALT_SIZE      /* Salt */
			   + 1                       /* Hash iterations */
			   + key_rec->enc_key_size); /* Encrypted key size */
	if (max_packet_size > (*remaining_bytes)) {
A
Andrew Morton 已提交
2183 2184
		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
		       "there are only [%td] available\n", max_packet_size,
2185
		       (*remaining_bytes));
2186 2187 2188 2189
		rc = -EINVAL;
		goto out;
	}
	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2190 2191
	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
	 * to get the number of octets in the actual Tag 3 packet */
2192 2193 2194
	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
					  (max_packet_size - 4),
					  &packet_size_length);
2195
	if (rc) {
2196 2197
		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
		       "generate packet length. rc = [%d]\n", rc);
2198 2199 2200 2201
		goto out;
	}
	(*packet_size) += packet_size_length;
	dest[(*packet_size)++] = 0x04; /* version 4 */
2202 2203
	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
	 * specified with strings */
2204 2205
	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
						      crypt_stat->key_size);
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	if (cipher_code == 0) {
		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
				"cipher [%s]\n", crypt_stat->cipher);
		rc = -EINVAL;
		goto out;
	}
	dest[(*packet_size)++] = cipher_code;
	dest[(*packet_size)++] = 0x03;	/* S2K */
	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
	       ECRYPTFS_SALT_SIZE);
	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2219 2220 2221
	memcpy(&dest[(*packet_size)], key_rec->enc_key,
	       key_rec->enc_key_size);
	(*packet_size) += key_rec->enc_key_size;
2222 2223 2224
out:
	if (rc)
		(*packet_size) = 0;
2225 2226
	else
		(*remaining_bytes) -= (*packet_size);
2227 2228 2229
	return rc;
}

2230 2231
struct kmem_cache *ecryptfs_key_record_cache;

2232 2233
/**
 * ecryptfs_generate_key_packet_set
2234
 * @dest_base: Virtual address from which to write the key record set
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
 * @crypt_stat: The cryptographic context from which the
 *              authentication tokens will be retrieved
 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
 *                   for the global parameters
 * @len: The amount written
 * @max: The maximum amount of data allowed to be written
 *
 * Generates a key packet set and writes it to the virtual address
 * passed in.
 *
 * Returns zero on success; non-zero on error.
 */
int
ecryptfs_generate_key_packet_set(char *dest_base,
				 struct ecryptfs_crypt_stat *crypt_stat,
				 struct dentry *ecryptfs_dentry, size_t *len,
				 size_t max)
{
	struct ecryptfs_auth_tok *auth_tok;
2254
	struct ecryptfs_global_auth_tok *global_auth_tok;
2255 2256 2257 2258
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dentry->d_sb)->mount_crypt_stat;
	size_t written;
2259
	struct ecryptfs_key_record *key_rec;
2260
	struct ecryptfs_key_sig *key_sig;
2261
	int rc = 0;
2262 2263

	(*len) = 0;
2264
	mutex_lock(&crypt_stat->keysig_list_mutex);
2265 2266 2267 2268 2269
	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
	if (!key_rec) {
		rc = -ENOMEM;
		goto out;
	}
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
			    crypt_stat_list) {
		memset(key_rec, 0, sizeof(*key_rec));
		rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
							   mount_crypt_stat,
							   key_sig->keysig);
		if (rc) {
			printk(KERN_ERR "Error attempting to get the global "
			       "auth_tok; rc = [%d]\n", rc);
			goto out_free;
		}
		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
			printk(KERN_WARNING
			       "Skipping invalid auth tok with sig = [%s]\n",
			       global_auth_tok->sig);
			continue;
		}
		auth_tok = global_auth_tok->global_auth_tok;
2288 2289
		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
			rc = write_tag_3_packet((dest_base + (*len)),
2290
						&max, auth_tok,
2291
						crypt_stat, key_rec,
2292 2293 2294 2295
						&written);
			if (rc) {
				ecryptfs_printk(KERN_WARNING, "Error "
						"writing tag 3 packet\n");
2296
				goto out_free;
2297 2298 2299
			}
			(*len) += written;
			/* Write auth tok signature packet */
2300 2301 2302
			rc = write_tag_11_packet((dest_base + (*len)), &max,
						 key_rec->sig,
						 ECRYPTFS_SIG_SIZE, &written);
2303 2304 2305
			if (rc) {
				ecryptfs_printk(KERN_ERR, "Error writing "
						"auth tok signature packet\n");
2306
				goto out_free;
2307 2308
			}
			(*len) += written;
2309 2310
		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
			rc = write_tag_1_packet(dest_base + (*len),
2311 2312
						&max, auth_tok,
						crypt_stat, key_rec, &written);
2313 2314 2315
			if (rc) {
				ecryptfs_printk(KERN_WARNING, "Error "
						"writing tag 1 packet\n");
2316
				goto out_free;
2317 2318
			}
			(*len) += written;
2319 2320 2321 2322
		} else {
			ecryptfs_printk(KERN_WARNING, "Unsupported "
					"authentication token type\n");
			rc = -EINVAL;
2323
			goto out_free;
2324
		}
2325 2326
	}
	if (likely(max > 0)) {
2327 2328 2329 2330 2331
		dest_base[(*len)] = 0x00;
	} else {
		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
		rc = -EIO;
	}
2332 2333
out_free:
	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2334 2335 2336
out:
	if (rc)
		(*len) = 0;
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	mutex_unlock(&crypt_stat->keysig_list_mutex);
	return rc;
}

struct kmem_cache *ecryptfs_key_sig_cache;

int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
{
	struct ecryptfs_key_sig *new_key_sig;
	int rc = 0;

	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
	if (!new_key_sig) {
		rc = -ENOMEM;
		printk(KERN_ERR
		       "Error allocating from ecryptfs_key_sig_cache\n");
		goto out;
	}
	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
	mutex_lock(&crypt_stat->keysig_list_mutex);
	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
	mutex_unlock(&crypt_stat->keysig_list_mutex);
out:
2360 2361
	return rc;
}
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371

struct kmem_cache *ecryptfs_global_auth_tok_cache;

int
ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
			     char *sig)
{
	struct ecryptfs_global_auth_tok *new_auth_tok;
	int rc = 0;

2372
	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
					GFP_KERNEL);
	if (!new_auth_tok) {
		rc = -ENOMEM;
		printk(KERN_ERR "Error allocating from "
		       "ecryptfs_global_auth_tok_cache\n");
		goto out;
	}
	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_add(&new_auth_tok->mount_crypt_stat_list,
		 &mount_crypt_stat->global_auth_tok_list);
	mount_crypt_stat->num_global_auth_toks++;
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
out:
	return rc;
}