ethtool.c 55.3 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/* ethtool support for e1000 */

#include <linux/netdevice.h>
32
#include <linux/interrupt.h>
33 34
#include <linux/ethtool.h>
#include <linux/pci.h>
35
#include <linux/slab.h>
36 37 38 39
#include <linux/delay.h>

#include "e1000.h"

40 41
enum {NETDEV_STATS, E1000_STATS};

42 43
struct e1000_stats {
	char stat_string[ETH_GSTRING_LEN];
44
	int type;
45 46 47 48
	int sizeof_stat;
	int stat_offset;
};

49
#define E1000_STAT(str, m) { \
J
Jeff Kirsher 已提交
50 51 52 53
		.stat_string = str, \
		.type = E1000_STATS, \
		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
		.stat_offset = offsetof(struct e1000_adapter, m) }
54
#define E1000_NETDEV_STAT(str, m) { \
J
Jeff Kirsher 已提交
55 56 57 58
		.stat_string = str, \
		.type = NETDEV_STATS, \
		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
59

60
static const struct e1000_stats e1000_gstrings_stats[] = {
61 62 63 64 65 66 67 68
	E1000_STAT("rx_packets", stats.gprc),
	E1000_STAT("tx_packets", stats.gptc),
	E1000_STAT("rx_bytes", stats.gorc),
	E1000_STAT("tx_bytes", stats.gotc),
	E1000_STAT("rx_broadcast", stats.bprc),
	E1000_STAT("tx_broadcast", stats.bptc),
	E1000_STAT("rx_multicast", stats.mprc),
	E1000_STAT("tx_multicast", stats.mptc),
J
Jeff Kirsher 已提交
69 70 71
	E1000_NETDEV_STAT("rx_errors", rx_errors),
	E1000_NETDEV_STAT("tx_errors", tx_errors),
	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
72 73
	E1000_STAT("multicast", stats.mprc),
	E1000_STAT("collisions", stats.colc),
J
Jeff Kirsher 已提交
74 75
	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
76
	E1000_STAT("rx_crc_errors", stats.crcerrs),
J
Jeff Kirsher 已提交
77
	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
78 79 80 81
	E1000_STAT("rx_no_buffer_count", stats.rnbc),
	E1000_STAT("rx_missed_errors", stats.mpc),
	E1000_STAT("tx_aborted_errors", stats.ecol),
	E1000_STAT("tx_carrier_errors", stats.tncrs),
J
Jeff Kirsher 已提交
82 83
	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	E1000_STAT("tx_window_errors", stats.latecol),
	E1000_STAT("tx_abort_late_coll", stats.latecol),
	E1000_STAT("tx_deferred_ok", stats.dc),
	E1000_STAT("tx_single_coll_ok", stats.scc),
	E1000_STAT("tx_multi_coll_ok", stats.mcc),
	E1000_STAT("tx_timeout_count", tx_timeout_count),
	E1000_STAT("tx_restart_queue", restart_queue),
	E1000_STAT("rx_long_length_errors", stats.roc),
	E1000_STAT("rx_short_length_errors", stats.ruc),
	E1000_STAT("rx_align_errors", stats.algnerrc),
	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
	E1000_STAT("tx_flow_control_xon", stats.xontxc),
	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
	E1000_STAT("rx_long_byte_count", stats.gorc),
	E1000_STAT("rx_csum_offload_good", hw_csum_good),
	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
	E1000_STAT("rx_header_split", rx_hdr_split),
	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
	E1000_STAT("tx_smbus", stats.mgptc),
	E1000_STAT("rx_smbus", stats.mgprc),
	E1000_STAT("dropped_smbus", stats.mgpdc),
	E1000_STAT("rx_dma_failed", rx_dma_failed),
	E1000_STAT("tx_dma_failed", tx_dma_failed),
110 111
};

112
#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
113 114 115 116 117 118
#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
	"Register test  (offline)", "Eeprom test    (offline)",
	"Interrupt test (offline)", "Loopback test  (offline)",
	"Link test   (on/offline)"
};
119
#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
120 121 122 123 124 125

static int e1000_get_settings(struct net_device *netdev,
			      struct ethtool_cmd *ecmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
126
	u32 speed;
127

128
	if (hw->phy.media_type == e1000_media_type_copper) {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

		ecmd->supported = (SUPPORTED_10baseT_Half |
				   SUPPORTED_10baseT_Full |
				   SUPPORTED_100baseT_Half |
				   SUPPORTED_100baseT_Full |
				   SUPPORTED_1000baseT_Full |
				   SUPPORTED_Autoneg |
				   SUPPORTED_TP);
		if (hw->phy.type == e1000_phy_ife)
			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
		ecmd->advertising = ADVERTISED_TP;

		if (hw->mac.autoneg == 1) {
			ecmd->advertising |= ADVERTISED_Autoneg;
			/* the e1000 autoneg seems to match ethtool nicely */
			ecmd->advertising |= hw->phy.autoneg_advertised;
		}

		ecmd->port = PORT_TP;
		ecmd->phy_address = hw->phy.addr;
		ecmd->transceiver = XCVR_INTERNAL;

	} else {
		ecmd->supported   = (SUPPORTED_1000baseT_Full |
				     SUPPORTED_FIBRE |
				     SUPPORTED_Autoneg);

		ecmd->advertising = (ADVERTISED_1000baseT_Full |
				     ADVERTISED_FIBRE |
				     ADVERTISED_Autoneg);

		ecmd->port = PORT_FIBRE;
		ecmd->transceiver = XCVR_EXTERNAL;
	}

164
	speed = -1;
165 166 167 168
	ecmd->duplex = -1;

	if (netif_running(netdev)) {
		if (netif_carrier_ok(netdev)) {
169
			speed = adapter->link_speed;
170 171
			ecmd->duplex = adapter->link_duplex - 1;
		}
172
	} else {
173 174 175
		u32 status = er32(STATUS);
		if (status & E1000_STATUS_LU) {
			if (status & E1000_STATUS_SPEED_1000)
176
				speed = SPEED_1000;
177
			else if (status & E1000_STATUS_SPEED_100)
178
				speed = SPEED_100;
179
			else
180
				speed = SPEED_10;
181 182 183 184 185 186

			if (status & E1000_STATUS_FD)
				ecmd->duplex = DUPLEX_FULL;
			else
				ecmd->duplex = DUPLEX_HALF;
		}
187 188
	}

189
	ethtool_cmd_speed_set(ecmd, speed);
190
	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
191
			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
192 193 194

	/* MDI-X => 2; MDI =>1; Invalid =>0 */
	if ((hw->phy.media_type == e1000_media_type_copper) &&
195
	    netif_carrier_ok(netdev))
196 197 198 199 200
		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
		                                      ETH_TP_MDI;
	else
		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;

201 202 203
	return 0;
}

204
static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
205 206 207 208 209
{
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

210 211 212 213 214
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

215
	/* Fiber NICs only allow 1000 gbps Full duplex */
216
	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
217 218 219
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL) {
		goto err_inval;
220 221
	}

222
	switch (spd + dplx) {
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
241
		goto err_inval;
242 243
	}
	return 0;
244 245 246 247

err_inval:
	e_err("Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
248 249 250 251 252 253 254 255
}

static int e1000_set_settings(struct net_device *netdev,
			      struct ethtool_cmd *ecmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

256 257 258 259
	/*
	 * When SoL/IDER sessions are active, autoneg/speed/duplex
	 * cannot be changed
	 */
260
	if (e1000_check_reset_block(hw)) {
261 262
		e_err("Cannot change link characteristics when SoL/IDER is "
		      "active.\n");
263 264 265 266
		return -EINVAL;
	}

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
267
		usleep_range(1000, 2000);
268 269 270

	if (ecmd->autoneg == AUTONEG_ENABLE) {
		hw->mac.autoneg = 1;
271
		if (hw->phy.media_type == e1000_media_type_fiber)
272 273 274 275 276 277 278 279
			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
						     ADVERTISED_FIBRE |
						     ADVERTISED_Autoneg;
		else
			hw->phy.autoneg_advertised = ecmd->advertising |
						     ADVERTISED_TP |
						     ADVERTISED_Autoneg;
		ecmd->advertising = hw->phy.autoneg_advertised;
280
		if (adapter->fc_autoneg)
281
			hw->fc.requested_mode = e1000_fc_default;
282
	} else {
283
		u32 speed = ethtool_cmd_speed(ecmd);
284
		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
			clear_bit(__E1000_RESETTING, &adapter->state);
			return -EINVAL;
		}
	}

	/* reset the link */

	if (netif_running(adapter->netdev)) {
		e1000e_down(adapter);
		e1000e_up(adapter);
	} else {
		e1000e_reset(adapter);
	}

	clear_bit(__E1000_RESETTING, &adapter->state);
	return 0;
}

static void e1000_get_pauseparam(struct net_device *netdev,
				 struct ethtool_pauseparam *pause)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	pause->autoneg =
		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);

312
	if (hw->fc.current_mode == e1000_fc_rx_pause) {
313
		pause->rx_pause = 1;
314
	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
315
		pause->tx_pause = 1;
316
	} else if (hw->fc.current_mode == e1000_fc_full) {
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
		pause->rx_pause = 1;
		pause->tx_pause = 1;
	}
}

static int e1000_set_pauseparam(struct net_device *netdev,
				struct ethtool_pauseparam *pause)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int retval = 0;

	adapter->fc_autoneg = pause->autoneg;

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
332
		usleep_range(1000, 2000);
333 334

	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
335
		hw->fc.requested_mode = e1000_fc_default;
336 337 338 339 340 341 342
		if (netif_running(adapter->netdev)) {
			e1000e_down(adapter);
			e1000e_up(adapter);
		} else {
			e1000e_reset(adapter);
		}
	} else {
343 344 345 346 347 348 349 350 351 352 353
		if (pause->rx_pause && pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_full;
		else if (pause->rx_pause && !pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else if (!pause->rx_pause && pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_tx_pause;
		else if (!pause->rx_pause && !pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_none;

		hw->fc.current_mode = hw->fc.requested_mode;

354 355 356 357 358 359 360 361 362
		if (hw->phy.media_type == e1000_media_type_fiber) {
			retval = hw->mac.ops.setup_link(hw);
			/* implicit goto out */
		} else {
			retval = e1000e_force_mac_fc(hw);
			if (retval)
				goto out;
			e1000e_set_fc_watermarks(hw);
		}
363 364
	}

365
out:
366 367 368 369 370 371 372
	clear_bit(__E1000_RESETTING, &adapter->state);
	return retval;
}

static u32 e1000_get_rx_csum(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
373
	return adapter->flags & FLAG_RX_CSUM_ENABLED;
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
}

static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (data)
		adapter->flags |= FLAG_RX_CSUM_ENABLED;
	else
		adapter->flags &= ~FLAG_RX_CSUM_ENABLED;

	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);
	return 0;
}

static u32 e1000_get_tx_csum(struct net_device *netdev)
{
394
	return (netdev->features & NETIF_F_HW_CSUM) != 0;
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
}

static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
{
	if (data)
		netdev->features |= NETIF_F_HW_CSUM;
	else
		netdev->features &= ~NETIF_F_HW_CSUM;

	return 0;
}

static int e1000_set_tso(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (data) {
		netdev->features |= NETIF_F_TSO;
		netdev->features |= NETIF_F_TSO6;
	} else {
		netdev->features &= ~NETIF_F_TSO;
		netdev->features &= ~NETIF_F_TSO6;
	}

	adapter->flags |= FLAG_TSO_FORCE;
	return 0;
}

static u32 e1000_get_msglevel(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	return adapter->msg_enable;
}

static void e1000_set_msglevel(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	adapter->msg_enable = data;
}

static int e1000_get_regs_len(struct net_device *netdev)
{
#define E1000_REGS_LEN 32 /* overestimate */
	return E1000_REGS_LEN * sizeof(u32);
}

static void e1000_get_regs(struct net_device *netdev,
			   struct ethtool_regs *regs, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 *regs_buff = p;
	u16 phy_data;

	memset(p, 0, E1000_REGS_LEN * sizeof(u32));

451 452
	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
			adapter->pdev->device;
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

	regs_buff[0]  = er32(CTRL);
	regs_buff[1]  = er32(STATUS);

	regs_buff[2]  = er32(RCTL);
	regs_buff[3]  = er32(RDLEN);
	regs_buff[4]  = er32(RDH);
	regs_buff[5]  = er32(RDT);
	regs_buff[6]  = er32(RDTR);

	regs_buff[7]  = er32(TCTL);
	regs_buff[8]  = er32(TDLEN);
	regs_buff[9]  = er32(TDH);
	regs_buff[10] = er32(TDT);
	regs_buff[11] = er32(TIDV);

	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
470 471 472 473

	/* ethtool doesn't use anything past this point, so all this
	 * code is likely legacy junk for apps that may or may not
	 * exist */
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	if (hw->phy.type == e1000_phy_m88) {
		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
		regs_buff[13] = (u32)phy_data; /* cable length */
		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
		regs_buff[18] = regs_buff[13]; /* cable polarity */
		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		regs_buff[20] = regs_buff[17]; /* polarity correction */
		/* phy receive errors */
		regs_buff[22] = adapter->phy_stats.receive_errors;
		regs_buff[23] = regs_buff[13]; /* mdix mode */
	}
489
	regs_buff[21] = 0; /* was idle_errors */
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
}

static int e1000_get_eeprom_len(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	return adapter->hw.nvm.word_size * 2;
}

static int e1000_get_eeprom(struct net_device *netdev,
			    struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u16 *eeprom_buff;
	int first_word;
	int last_word;
	int ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EINVAL;

	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;

	eeprom_buff = kmalloc(sizeof(u16) *
			(last_word - first_word + 1), GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
		ret_val = e1000_read_nvm(hw, first_word,
					 last_word - first_word + 1,
					 eeprom_buff);
	} else {
		for (i = 0; i < last_word - first_word + 1; i++) {
			ret_val = e1000_read_nvm(hw, first_word + i, 1,
						      &eeprom_buff[i]);
533
			if (ret_val)
534 535 536 537
				break;
		}
	}

538 539
	if (ret_val) {
		/* a read error occurred, throw away the result */
540 541
		memset(eeprom_buff, 0xff, sizeof(u16) *
		       (last_word - first_word + 1));
542 543 544 545 546
	} else {
		/* Device's eeprom is always little-endian, word addressable */
		for (i = 0; i < last_word - first_word + 1; i++)
			le16_to_cpus(&eeprom_buff[i]);
	}
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
	kfree(eeprom_buff);

	return ret_val;
}

static int e1000_set_eeprom(struct net_device *netdev,
			    struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u16 *eeprom_buff;
	void *ptr;
	int max_len;
	int first_word;
	int last_word;
	int ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EOPNOTSUPP;

	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
		return -EFAULT;

573 574 575
	if (adapter->flags & FLAG_READ_ONLY_NVM)
		return -EINVAL;

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	max_len = hw->nvm.word_size * 2;

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	ptr = (void *)eeprom_buff;

	if (eeprom->offset & 1) {
		/* need read/modify/write of first changed EEPROM word */
		/* only the second byte of the word is being modified */
		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
		ptr++;
	}
	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
		/* need read/modify/write of last changed EEPROM word */
		/* only the first byte of the word is being modified */
		ret_val = e1000_read_nvm(hw, last_word, 1,
				  &eeprom_buff[last_word - first_word]);

598 599 600
	if (ret_val)
		goto out;

601 602 603 604 605 606 607 608 609 610 611 612
	/* Device's eeprom is always little-endian, word addressable */
	for (i = 0; i < last_word - first_word + 1; i++)
		le16_to_cpus(&eeprom_buff[i]);

	memcpy(ptr, bytes, eeprom->len);

	for (i = 0; i < last_word - first_word + 1; i++)
		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);

	ret_val = e1000_write_nvm(hw, first_word,
				  last_word - first_word + 1, eeprom_buff);

613 614 615
	if (ret_val)
		goto out;

616 617
	/*
	 * Update the checksum over the first part of the EEPROM if needed
618
	 * and flush shadow RAM for applicable controllers
619
	 */
620
	if ((first_word <= NVM_CHECKSUM_REG) ||
621 622 623
	    (hw->mac.type == e1000_82583) ||
	    (hw->mac.type == e1000_82574) ||
	    (hw->mac.type == e1000_82573))
624
		ret_val = e1000e_update_nvm_checksum(hw);
625

626
out:
627 628 629 630 631 632 633 634 635 636
	kfree(eeprom_buff);
	return ret_val;
}

static void e1000_get_drvinfo(struct net_device *netdev,
			      struct ethtool_drvinfo *drvinfo)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	char firmware_version[32];

637 638 639 640
	strncpy(drvinfo->driver,  e1000e_driver_name,
		sizeof(drvinfo->driver) - 1);
	strncpy(drvinfo->version, e1000e_driver_version,
		sizeof(drvinfo->version) - 1);
641

642 643 644 645
	/*
	 * EEPROM image version # is reported as firmware version # for
	 * PCI-E controllers
	 */
646
	snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d",
647 648 649
		(adapter->eeprom_vers & 0xF000) >> 12,
		(adapter->eeprom_vers & 0x0FF0) >> 4,
		(adapter->eeprom_vers & 0x000F));
650

651 652 653 654
	strncpy(drvinfo->fw_version, firmware_version,
		sizeof(drvinfo->fw_version) - 1);
	strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
		sizeof(drvinfo->bus_info) - 1);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	drvinfo->regdump_len = e1000_get_regs_len(netdev);
	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
}

static void e1000_get_ringparam(struct net_device *netdev,
				struct ethtool_ringparam *ring)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_ring *rx_ring = adapter->rx_ring;

	ring->rx_max_pending = E1000_MAX_RXD;
	ring->tx_max_pending = E1000_MAX_TXD;
	ring->rx_mini_max_pending = 0;
	ring->rx_jumbo_max_pending = 0;
	ring->rx_pending = rx_ring->count;
	ring->tx_pending = tx_ring->count;
	ring->rx_mini_pending = 0;
	ring->rx_jumbo_pending = 0;
}

static int e1000_set_ringparam(struct net_device *netdev,
			       struct ethtool_ringparam *ring)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring, *tx_old;
	struct e1000_ring *rx_ring, *rx_old;
	int err;

	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
		return -EINVAL;

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
688
		usleep_range(1000, 2000);
689 690 691 692 693 694 695 696

	if (netif_running(adapter->netdev))
		e1000e_down(adapter);

	tx_old = adapter->tx_ring;
	rx_old = adapter->rx_ring;

	err = -ENOMEM;
697
	tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL);
698 699 700
	if (!tx_ring)
		goto err_alloc_tx;

701
	rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL);
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	if (!rx_ring)
		goto err_alloc_rx;

	adapter->tx_ring = tx_ring;
	adapter->rx_ring = rx_ring;

	rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
	rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
	rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);

	tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
	tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
	tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);

	if (netif_running(adapter->netdev)) {
		/* Try to get new resources before deleting old */
		err = e1000e_setup_rx_resources(adapter);
		if (err)
			goto err_setup_rx;
		err = e1000e_setup_tx_resources(adapter);
		if (err)
			goto err_setup_tx;

725 726 727 728
		/*
		 * restore the old in order to free it,
		 * then add in the new
		 */
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
		adapter->rx_ring = rx_old;
		adapter->tx_ring = tx_old;
		e1000e_free_rx_resources(adapter);
		e1000e_free_tx_resources(adapter);
		kfree(tx_old);
		kfree(rx_old);
		adapter->rx_ring = rx_ring;
		adapter->tx_ring = tx_ring;
		err = e1000e_up(adapter);
		if (err)
			goto err_setup;
	}

	clear_bit(__E1000_RESETTING, &adapter->state);
	return 0;
err_setup_tx:
	e1000e_free_rx_resources(adapter);
err_setup_rx:
	adapter->rx_ring = rx_old;
	adapter->tx_ring = tx_old;
	kfree(rx_ring);
err_alloc_rx:
	kfree(tx_ring);
err_alloc_tx:
	e1000e_up(adapter);
err_setup:
	clear_bit(__E1000_RESETTING, &adapter->state);
	return err;
}

759 760
static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
			     int reg, int offset, u32 mask, u32 write)
761
{
762
	u32 pat, val;
763 764
	static const u32 test[] = {
		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
765
	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
766
		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
767 768 769
				      (test[pat] & write));
		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
		if (val != (test[pat] & write & mask)) {
770 771 772
			e_err("pattern test reg %04X failed: got 0x%08X "
			      "expected 0x%08X\n", reg + offset, val,
			      (test[pat] & write & mask));
773
			*data = reg;
774
			return 1;
775 776
		}
	}
777
	return 0;
778 779
}

780 781 782
static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
			      int reg, u32 mask, u32 write)
{
783
	u32 val;
784
	__ew32(&adapter->hw, reg, write & mask);
785 786
	val = __er32(&adapter->hw, reg);
	if ((write & mask) != (val & mask)) {
787 788
		e_err("set/check reg %04X test failed: got 0x%08X "
		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
789
		*data = reg;
790
		return 1;
791
	}
792
	return 0;
793
}
794 795 796 797
#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
	do {                                                                   \
		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
			return 1;                                              \
798
	} while (0)
799 800
#define REG_PATTERN_TEST(reg, mask, write)                                     \
	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
801

802 803 804 805
#define REG_SET_AND_CHECK(reg, mask, write)                                    \
	do {                                                                   \
		if (reg_set_and_check(adapter, data, reg, mask, write))        \
			return 1;                                              \
806 807
	} while (0)

808 809 810 811 812 813 814 815 816
static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &adapter->hw.mac;
	u32 value;
	u32 before;
	u32 after;
	u32 i;
	u32 toggle;
817
	u32 mask;
818

819 820
	/*
	 * The status register is Read Only, so a write should fail.
821 822 823 824 825 826 827 828 829
	 * Some bits that get toggled are ignored.
	 */
	switch (mac->type) {
	/* there are several bits on newer hardware that are r/w */
	case e1000_82571:
	case e1000_82572:
	case e1000_80003es2lan:
		toggle = 0x7FFFF3FF;
		break;
830
        default:
831 832 833 834 835 836 837 838 839
		toggle = 0x7FFFF033;
		break;
	}

	before = er32(STATUS);
	value = (er32(STATUS) & toggle);
	ew32(STATUS, toggle);
	after = er32(STATUS) & toggle;
	if (value != after) {
840 841
		e_err("failed STATUS register test got: 0x%08X expected: "
		      "0x%08X\n", after, value);
842 843 844 845 846 847
		*data = 1;
		return 1;
	}
	/* restore previous status */
	ew32(STATUS, before);

848
	if (!(adapter->flags & FLAG_IS_ICH)) {
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
	}

	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);

	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);

868
	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
869 870 871
	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);

A
Auke Kok 已提交
872 873
	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
874
	if (!(adapter->flags & FLAG_IS_ICH))
A
Auke Kok 已提交
875 876 877
		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
878 879 880 881
	mask = 0x8003FFFF;
	switch (mac->type) {
	case e1000_ich10lan:
	case e1000_pchlan:
882
	case e1000_pch2lan:
883 884 885 886 887
		mask |= (1 << 18);
		break;
	default:
		break;
	}
A
Auke Kok 已提交
888 889
	for (i = 0; i < mac->rar_entry_count; i++)
		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
890
		                       mask, 0xFFFFFFFF);
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

	for (i = 0; i < mac->mta_reg_count; i++)
		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);

	*data = 0;
	return 0;
}

static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
{
	u16 temp;
	u16 checksum = 0;
	u16 i;

	*data = 0;
	/* Read and add up the contents of the EEPROM */
	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
			*data = 1;
910
			return *data;
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
		}
		checksum += temp;
	}

	/* If Checksum is not Correct return error else test passed */
	if ((checksum != (u16) NVM_SUM) && !(*data))
		*data = 2;

	return *data;
}

static irqreturn_t e1000_test_intr(int irq, void *data)
{
	struct net_device *netdev = (struct net_device *) data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	adapter->test_icr |= er32(ICR);

	return IRQ_HANDLED;
}

static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 mask;
	u32 shared_int = 1;
	u32 irq = adapter->pdev->irq;
	int i;
941 942
	int ret_val = 0;
	int int_mode = E1000E_INT_MODE_LEGACY;
943 944 945

	*data = 0;

946 947 948 949 950 951 952
	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
		int_mode = adapter->int_mode;
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
		e1000e_set_interrupt_capability(adapter);
	}
953
	/* Hook up test interrupt handler just for this test */
954
	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
955 956
			 netdev)) {
		shared_int = 0;
957
	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
958 959
		 netdev->name, netdev)) {
		*data = 1;
960 961
		ret_val = -1;
		goto out;
962
	}
963
	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
964 965 966

	/* Disable all the interrupts */
	ew32(IMC, 0xFFFFFFFF);
967
	e1e_flush();
968
	usleep_range(10000, 20000);
969 970 971 972 973 974

	/* Test each interrupt */
	for (i = 0; i < 10; i++) {
		/* Interrupt to test */
		mask = 1 << i;

975 976 977 978 979 980 981 982 983 984 985 986 987 988
		if (adapter->flags & FLAG_IS_ICH) {
			switch (mask) {
			case E1000_ICR_RXSEQ:
				continue;
			case 0x00000100:
				if (adapter->hw.mac.type == e1000_ich8lan ||
				    adapter->hw.mac.type == e1000_ich9lan)
					continue;
				break;
			default:
				break;
			}
		}

989
		if (!shared_int) {
990 991
			/*
			 * Disable the interrupt to be reported in
992 993 994 995 996 997 998 999
			 * the cause register and then force the same
			 * interrupt and see if one gets posted.  If
			 * an interrupt was posted to the bus, the
			 * test failed.
			 */
			adapter->test_icr = 0;
			ew32(IMC, mask);
			ew32(ICS, mask);
1000
			e1e_flush();
1001
			usleep_range(10000, 20000);
1002 1003 1004 1005 1006 1007 1008

			if (adapter->test_icr & mask) {
				*data = 3;
				break;
			}
		}

1009 1010
		/*
		 * Enable the interrupt to be reported in
1011 1012 1013 1014 1015 1016 1017 1018
		 * the cause register and then force the same
		 * interrupt and see if one gets posted.  If
		 * an interrupt was not posted to the bus, the
		 * test failed.
		 */
		adapter->test_icr = 0;
		ew32(IMS, mask);
		ew32(ICS, mask);
1019
		e1e_flush();
1020
		usleep_range(10000, 20000);
1021 1022 1023 1024 1025 1026 1027

		if (!(adapter->test_icr & mask)) {
			*data = 4;
			break;
		}

		if (!shared_int) {
1028 1029
			/*
			 * Disable the other interrupts to be reported in
1030 1031 1032 1033 1034 1035 1036 1037
			 * the cause register and then force the other
			 * interrupts and see if any get posted.  If
			 * an interrupt was posted to the bus, the
			 * test failed.
			 */
			adapter->test_icr = 0;
			ew32(IMC, ~mask & 0x00007FFF);
			ew32(ICS, ~mask & 0x00007FFF);
1038
			e1e_flush();
1039
			usleep_range(10000, 20000);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

			if (adapter->test_icr) {
				*data = 5;
				break;
			}
		}
	}

	/* Disable all the interrupts */
	ew32(IMC, 0xFFFFFFFF);
1050
	e1e_flush();
1051
	usleep_range(10000, 20000);
1052 1053 1054 1055

	/* Unhook test interrupt handler */
	free_irq(irq, netdev);

1056 1057 1058 1059 1060 1061 1062 1063
out:
	if (int_mode == E1000E_INT_MODE_MSIX) {
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = int_mode;
		e1000e_set_interrupt_capability(adapter);
	}

	return ret_val;
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
}

static void e1000_free_desc_rings(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	int i;

	if (tx_ring->desc && tx_ring->buffer_info) {
		for (i = 0; i < tx_ring->count; i++) {
			if (tx_ring->buffer_info[i].dma)
1076
				dma_unmap_single(&pdev->dev,
1077 1078
					tx_ring->buffer_info[i].dma,
					tx_ring->buffer_info[i].length,
1079
					DMA_TO_DEVICE);
1080 1081 1082 1083 1084 1085 1086 1087
			if (tx_ring->buffer_info[i].skb)
				dev_kfree_skb(tx_ring->buffer_info[i].skb);
		}
	}

	if (rx_ring->desc && rx_ring->buffer_info) {
		for (i = 0; i < rx_ring->count; i++) {
			if (rx_ring->buffer_info[i].dma)
1088
				dma_unmap_single(&pdev->dev,
1089
					rx_ring->buffer_info[i].dma,
1090
					2048, DMA_FROM_DEVICE);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
			if (rx_ring->buffer_info[i].skb)
				dev_kfree_skb(rx_ring->buffer_info[i].skb);
		}
	}

	if (tx_ring->desc) {
		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
				  tx_ring->dma);
		tx_ring->desc = NULL;
	}
	if (rx_ring->desc) {
		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
				  rx_ring->dma);
		rx_ring->desc = NULL;
	}

	kfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;
	kfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;
}

static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
	int i;
	int ret_val;

	/* Setup Tx descriptor ring and Tx buffers */

	if (!tx_ring->count)
		tx_ring->count = E1000_DEFAULT_TXD;

1128 1129 1130 1131
	tx_ring->buffer_info = kcalloc(tx_ring->count,
				       sizeof(struct e1000_buffer),
				       GFP_KERNEL);
	if (!(tx_ring->buffer_info)) {
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		ret_val = 1;
		goto err_nomem;
	}

	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		ret_val = 2;
		goto err_nomem;
	}
	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

1147
	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1148
	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1149
	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1150 1151
	ew32(TDH, 0);
	ew32(TDT, 0);
1152 1153 1154
	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	for (i = 0; i < tx_ring->count; i++) {
		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
		struct sk_buff *skb;
		unsigned int skb_size = 1024;

		skb = alloc_skb(skb_size, GFP_KERNEL);
		if (!skb) {
			ret_val = 3;
			goto err_nomem;
		}
		skb_put(skb, skb_size);
		tx_ring->buffer_info[i].skb = skb;
		tx_ring->buffer_info[i].length = skb->len;
		tx_ring->buffer_info[i].dma =
1170 1171 1172 1173
			dma_map_single(&pdev->dev, skb->data, skb->len,
				       DMA_TO_DEVICE);
		if (dma_mapping_error(&pdev->dev,
				      tx_ring->buffer_info[i].dma)) {
1174 1175 1176
			ret_val = 4;
			goto err_nomem;
		}
1177
		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1178 1179 1180
		tx_desc->lower.data = cpu_to_le32(skb->len);
		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
						   E1000_TXD_CMD_IFCS |
1181
						   E1000_TXD_CMD_RS);
1182 1183 1184 1185 1186 1187 1188 1189
		tx_desc->upper.data = 0;
	}

	/* Setup Rx descriptor ring and Rx buffers */

	if (!rx_ring->count)
		rx_ring->count = E1000_DEFAULT_RXD;

1190 1191 1192 1193
	rx_ring->buffer_info = kcalloc(rx_ring->count,
				       sizeof(struct e1000_buffer),
				       GFP_KERNEL);
	if (!(rx_ring->buffer_info)) {
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		ret_val = 5;
		goto err_nomem;
	}

	rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->desc) {
		ret_val = 6;
		goto err_nomem;
	}
	rx_ring->next_to_use = 0;
	rx_ring->next_to_clean = 0;

	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
	ew32(RDLEN, rx_ring->size);
	ew32(RDH, 0);
	ew32(RDT, 0);
	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1216 1217
		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
	ew32(RCTL, rctl);

	for (i = 0; i < rx_ring->count; i++) {
		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
		struct sk_buff *skb;

		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
		if (!skb) {
			ret_val = 7;
			goto err_nomem;
		}
		skb_reserve(skb, NET_IP_ALIGN);
		rx_ring->buffer_info[i].skb = skb;
		rx_ring->buffer_info[i].dma =
1234 1235 1236 1237
			dma_map_single(&pdev->dev, skb->data, 2048,
				       DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev,
				      rx_ring->buffer_info[i].dma)) {
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
			ret_val = 8;
			goto err_nomem;
		}
		rx_desc->buffer_addr =
			cpu_to_le64(rx_ring->buffer_info[i].dma);
		memset(skb->data, 0x00, skb->len);
	}

	return 0;

err_nomem:
	e1000_free_desc_rings(adapter);
	return ret_val;
}

static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
{
	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
	e1e_wphy(&adapter->hw, 29, 0x001F);
	e1e_wphy(&adapter->hw, 30, 0x8FFC);
	e1e_wphy(&adapter->hw, 29, 0x001A);
	e1e_wphy(&adapter->hw, 30, 0x8FF0);
}

static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_reg = 0;
1266
	u16 phy_reg = 0;
1267
	s32 ret_val = 0;
1268

1269
	hw->mac.autoneg = 0;
1270

1271
	if (hw->phy.type == e1000_phy_ife) {
1272 1273 1274 1275
		/* force 100, set loopback */
		e1e_wphy(hw, PHY_CONTROL, 0x6100);

		/* Now set up the MAC to the same speed/duplex as the PHY. */
1276
		ctrl_reg = er32(CTRL);
1277 1278 1279 1280 1281
		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1282 1283

		ew32(CTRL, ctrl_reg);
1284
		e1e_flush();
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
		udelay(500);

		return 0;
	}

	/* Specific PHY configuration for loopback */
	switch (hw->phy.type) {
	case e1000_phy_m88:
		/* Auto-MDI/MDIX Off */
		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
		/* reset to update Auto-MDI/MDIX */
		e1e_wphy(hw, PHY_CONTROL, 0x9140);
		/* autoneg off */
		e1e_wphy(hw, PHY_CONTROL, 0x8140);
		break;
	case e1000_phy_gg82563:
		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1302
		break;
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	case e1000_phy_bm:
		/* Set Default MAC Interface speed to 1GB */
		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
		phy_reg &= ~0x0007;
		phy_reg |= 0x006;
		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
		/* Assert SW reset for above settings to take effect */
		e1000e_commit_phy(hw);
		mdelay(1);
		/* Force Full Duplex */
		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
		/* Set Link Up (in force link) */
		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
		/* Force Link */
		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
		/* Set Early Link Enable */
		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1324 1325 1326 1327
		break;
	case e1000_phy_82577:
	case e1000_phy_82578:
		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1328 1329 1330 1331 1332
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val) {
			e_err("Cannot setup 1Gbps loopback.\n");
			return ret_val;
		}
1333
		e1000_configure_k1_ich8lan(hw, false);
1334
		hw->phy.ops.release(hw);
1335
		break;
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	case e1000_phy_82579:
		/* Disable PHY energy detect power down */
		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
		/* Disable full chip energy detect */
		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
		/* Enable loopback on the PHY */
#define I82577_PHY_LBK_CTRL          19
		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
		break;
1347
	default:
1348 1349
		break;
	}
1350

1351 1352 1353
	/* force 1000, set loopback */
	e1e_wphy(hw, PHY_CONTROL, 0x4140);
	mdelay(250);
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	/* Now set up the MAC to the same speed/duplex as the PHY. */
	ctrl_reg = er32(CTRL);
	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
		     E1000_CTRL_FD);	 /* Force Duplex to FULL */

	if (adapter->flags & FLAG_IS_ICH)
		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1365

1366 1367
	if (hw->phy.media_type == e1000_media_type_copper &&
	    hw->phy.type == e1000_phy_m88) {
1368 1369
		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
	} else {
1370 1371 1372 1373
		/*
		 * Set the ILOS bit on the fiber Nic if half duplex link is
		 * detected.
		 */
1374
		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1375 1376 1377 1378 1379
			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
	}

	ew32(CTRL, ctrl_reg);

1380 1381
	/*
	 * Disable the receiver on the PHY so when a cable is plugged in, the
1382 1383
	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
	 */
1384
	if (hw->phy.type == e1000_phy_m88)
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		e1000_phy_disable_receiver(adapter);

	udelay(500);

	return 0;
}

static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);
	int link = 0;

	/* special requirements for 82571/82572 fiber adapters */

1400 1401 1402 1403
	/*
	 * jump through hoops to make sure link is up because serdes
	 * link is hardwired up
	 */
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	ctrl |= E1000_CTRL_SLU;
	ew32(CTRL, ctrl);

	/* disable autoneg */
	ctrl = er32(TXCW);
	ctrl &= ~(1 << 31);
	ew32(TXCW, ctrl);

	link = (er32(STATUS) & E1000_STATUS_LU);

	if (!link) {
		/* set invert loss of signal */
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_ILOS;
		ew32(CTRL, ctrl);
	}

1421 1422 1423 1424
	/*
	 * special write to serdes control register to enable SerDes analog
	 * loopback
	 */
1425 1426
#define E1000_SERDES_LB_ON 0x410
	ew32(SCTL, E1000_SERDES_LB_ON);
1427
	e1e_flush();
1428
	usleep_range(10000, 20000);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

	return 0;
}

/* only call this for fiber/serdes connections to es2lan */
static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrlext = er32(CTRL_EXT);
	u32 ctrl = er32(CTRL);

1440 1441 1442 1443
	/*
	 * save CTRL_EXT to restore later, reuse an empty variable (unused
	 * on mac_type 80003es2lan)
	 */
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	adapter->tx_fifo_head = ctrlext;

	/* clear the serdes mode bits, putting the device into mac loopback */
	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
	ew32(CTRL_EXT, ctrlext);

	/* force speed to 1000/FD, link up */
	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
	ew32(CTRL, ctrl);

	/* set mac loopback */
	ctrl = er32(RCTL);
	ctrl |= E1000_RCTL_LBM_MAC;
	ew32(RCTL, ctrl);

	/* set testing mode parameters (no need to reset later) */
#define KMRNCTRLSTA_OPMODE (0x1F << 16)
#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
	ew32(KMRNCTRLSTA,
1465
	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1466 1467 1468 1469 1470 1471 1472 1473 1474

	return 0;
}

static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

1475 1476
	if (hw->phy.media_type == e1000_media_type_fiber ||
	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
		switch (hw->mac.type) {
		case e1000_80003es2lan:
			return e1000_set_es2lan_mac_loopback(adapter);
			break;
		case e1000_82571:
		case e1000_82572:
			return e1000_set_82571_fiber_loopback(adapter);
			break;
		default:
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_LBM_TCVR;
			ew32(RCTL, rctl);
			return 0;
		}
1491
	} else if (hw->phy.media_type == e1000_media_type_copper) {
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
		return e1000_integrated_phy_loopback(adapter);
	}

	return 7;
}

static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
	u16 phy_reg;

	rctl = er32(RCTL);
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
	ew32(RCTL, rctl);

	switch (hw->mac.type) {
	case e1000_80003es2lan:
1510 1511
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1512
			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1513
			ew32(CTRL_EXT, adapter->tx_fifo_head);
1514 1515 1516 1517 1518
			adapter->tx_fifo_head = 0;
		}
		/* fall through */
	case e1000_82571:
	case e1000_82572:
1519 1520
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1521 1522
#define E1000_SERDES_LB_OFF 0x400
			ew32(SCTL, E1000_SERDES_LB_OFF);
1523
			e1e_flush();
1524
			usleep_range(10000, 20000);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
			break;
		}
		/* Fall Through */
	default:
		hw->mac.autoneg = 1;
		if (hw->phy.type == e1000_phy_gg82563)
			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
		if (phy_reg & MII_CR_LOOPBACK) {
			phy_reg &= ~MII_CR_LOOPBACK;
			e1e_wphy(hw, PHY_CONTROL, phy_reg);
			e1000e_commit_phy(hw);
		}
		break;
	}
}

static void e1000_create_lbtest_frame(struct sk_buff *skb,
				      unsigned int frame_size)
{
	memset(skb->data, 0xFF, frame_size);
	frame_size &= ~1;
	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
}

static int e1000_check_lbtest_frame(struct sk_buff *skb,
				    unsigned int frame_size)
{
	frame_size &= ~1;
	if (*(skb->data + 3) == 0xFF)
		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
			return 0;
	return 13;
}

static int e1000_run_loopback_test(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	int i, j, k, l;
	int lc;
	int good_cnt;
	int ret_val = 0;
	unsigned long time;

	ew32(RDT, rx_ring->count - 1);

1577 1578
	/*
	 * Calculate the loop count based on the largest descriptor ring
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	 * The idea is to wrap the largest ring a number of times using 64
	 * send/receive pairs during each loop
	 */

	if (rx_ring->count <= tx_ring->count)
		lc = ((tx_ring->count / 64) * 2) + 1;
	else
		lc = ((rx_ring->count / 64) * 2) + 1;

	k = 0;
	l = 0;
	for (j = 0; j <= lc; j++) { /* loop count loop */
		for (i = 0; i < 64; i++) { /* send the packets */
1592 1593
			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
						  1024);
1594
			dma_sync_single_for_device(&pdev->dev,
1595 1596
					tx_ring->buffer_info[k].dma,
					tx_ring->buffer_info[k].length,
1597
					DMA_TO_DEVICE);
1598 1599 1600 1601 1602
			k++;
			if (k == tx_ring->count)
				k = 0;
		}
		ew32(TDT, k);
1603
		e1e_flush();
1604 1605 1606 1607
		msleep(200);
		time = jiffies; /* set the start time for the receive */
		good_cnt = 0;
		do { /* receive the sent packets */
1608
			dma_sync_single_for_cpu(&pdev->dev,
1609
					rx_ring->buffer_info[l].dma, 2048,
1610
					DMA_FROM_DEVICE);
1611 1612 1613 1614 1615 1616 1617 1618

			ret_val = e1000_check_lbtest_frame(
					rx_ring->buffer_info[l].skb, 1024);
			if (!ret_val)
				good_cnt++;
			l++;
			if (l == rx_ring->count)
				l = 0;
1619 1620
			/*
			 * time + 20 msecs (200 msecs on 2.4) is more than
1621 1622 1623 1624 1625 1626 1627 1628
			 * enough time to complete the receives, if it's
			 * exceeded, break and error off
			 */
		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
		if (good_cnt != 64) {
			ret_val = 13; /* ret_val is the same as mis-compare */
			break;
		}
1629
		if (jiffies >= (time + 20)) {
1630 1631 1632 1633 1634 1635 1636 1637 1638
			ret_val = 14; /* error code for time out error */
			break;
		}
	} /* end loop count loop */
	return ret_val;
}

static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
{
1639 1640 1641 1642
	/*
	 * PHY loopback cannot be performed if SoL/IDER
	 * sessions are active
	 */
1643
	if (e1000_check_reset_block(&adapter->hw)) {
1644
		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1645 1646 1647 1648 1649
		*data = 0;
		goto out;
	}

	*data = e1000_setup_desc_rings(adapter);
A
Adrian Bunk 已提交
1650
	if (*data)
1651 1652 1653
		goto out;

	*data = e1000_setup_loopback_test(adapter);
A
Adrian Bunk 已提交
1654
	if (*data)
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
		goto err_loopback;

	*data = e1000_run_loopback_test(adapter);
	e1000_loopback_cleanup(adapter);

err_loopback:
	e1000_free_desc_rings(adapter);
out:
	return *data;
}

static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;

	*data = 0;
1671
	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1672
		int i = 0;
1673
		hw->mac.serdes_has_link = false;
1674

1675 1676 1677 1678
		/*
		 * On some blade server designs, link establishment
		 * could take as long as 2-3 minutes
		 */
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		do {
			hw->mac.ops.check_for_link(hw);
			if (hw->mac.serdes_has_link)
				return *data;
			msleep(20);
		} while (i++ < 3750);

		*data = 1;
	} else {
		hw->mac.ops.check_for_link(hw);
		if (hw->mac.autoneg)
1690 1691 1692 1693 1694
			/*
			 * On some Phy/switch combinations, link establishment
			 * can take a few seconds more than expected.
			 */
			msleep(5000);
1695

1696
		if (!(er32(STATUS) & E1000_STATUS_LU))
1697 1698 1699 1700 1701
			*data = 1;
	}
	return *data;
}

1702
static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1703
{
1704 1705 1706 1707 1708 1709 1710 1711
	switch (sset) {
	case ETH_SS_TEST:
		return E1000_TEST_LEN;
	case ETH_SS_STATS:
		return E1000_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
}

static void e1000_diag_test(struct net_device *netdev,
			    struct ethtool_test *eth_test, u64 *data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	u16 autoneg_advertised;
	u8 forced_speed_duplex;
	u8 autoneg;
	bool if_running = netif_running(netdev);

	set_bit(__E1000_TESTING, &adapter->state);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

	if (!if_running) {
		/* Get control of and reset hardware */
		if (adapter->flags & FLAG_HAS_AMT)
			e1000e_get_hw_control(adapter);

		e1000e_power_up_phy(adapter);

		adapter->hw.phy.autoneg_wait_to_complete = 1;
		e1000e_reset(adapter);
		adapter->hw.phy.autoneg_wait_to_complete = 0;
	}

1737 1738 1739 1740 1741 1742 1743 1744
	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
		/* Offline tests */

		/* save speed, duplex, autoneg settings */
		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
		autoneg = adapter->hw.mac.autoneg;

1745
		e_info("offline testing starting\n");
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

		if (if_running)
			/* indicate we're in test mode */
			dev_close(netdev);

		if (e1000_reg_test(adapter, &data[0]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		e1000e_reset(adapter);
		if (e1000_eeprom_test(adapter, &data[1]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		e1000e_reset(adapter);
		if (e1000_intr_test(adapter, &data[2]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		e1000e_reset(adapter);
		if (e1000_loopback_test(adapter, &data[3]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

1766 1767 1768 1769 1770 1771 1772 1773
		/* force this routine to wait until autoneg complete/timeout */
		adapter->hw.phy.autoneg_wait_to_complete = 1;
		e1000e_reset(adapter);
		adapter->hw.phy.autoneg_wait_to_complete = 0;

		if (e1000_link_test(adapter, &data[4]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
		/* restore speed, duplex, autoneg settings */
		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
		adapter->hw.mac.autoneg = autoneg;
		e1000e_reset(adapter);

		clear_bit(__E1000_TESTING, &adapter->state);
		if (if_running)
			dev_open(netdev);
	} else {
1784
		/* Online tests */
1785

1786
		e_info("online testing starting\n");
1787

1788
		/* register, eeprom, intr and loopback tests not run online */
1789 1790 1791 1792 1793
		data[0] = 0;
		data[1] = 0;
		data[2] = 0;
		data[3] = 0;

1794 1795
		if (e1000_link_test(adapter, &data[4]))
			eth_test->flags |= ETH_TEST_FL_FAILED;
1796

1797 1798
		clear_bit(__E1000_TESTING, &adapter->state);
	}
1799 1800 1801 1802 1803 1804 1805 1806

	if (!if_running) {
		e1000e_reset(adapter);

		if (adapter->flags & FLAG_HAS_AMT)
			e1000e_release_hw_control(adapter);
	}

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	msleep_interruptible(4 * 1000);
}

static void e1000_get_wol(struct net_device *netdev,
			  struct ethtool_wolinfo *wol)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	wol->supported = 0;
	wol->wolopts = 0;

1818 1819
	if (!(adapter->flags & FLAG_HAS_WOL) ||
	    !device_can_wakeup(&adapter->pdev->dev))
1820 1821 1822
		return;

	wol->supported = WAKE_UCAST | WAKE_MCAST |
1823
	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1824 1825 1826 1827 1828 1829

	/* apply any specific unsupported masks here */
	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
		wol->supported &= ~WAKE_UCAST;

		if (adapter->wol & E1000_WUFC_EX)
1830 1831
			e_err("Interface does not support directed (unicast) "
			      "frame wake-up packets\n");
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	}

	if (adapter->wol & E1000_WUFC_EX)
		wol->wolopts |= WAKE_UCAST;
	if (adapter->wol & E1000_WUFC_MC)
		wol->wolopts |= WAKE_MCAST;
	if (adapter->wol & E1000_WUFC_BC)
		wol->wolopts |= WAKE_BCAST;
	if (adapter->wol & E1000_WUFC_MAG)
		wol->wolopts |= WAKE_MAGIC;
1842 1843
	if (adapter->wol & E1000_WUFC_LNKC)
		wol->wolopts |= WAKE_PHY;
1844 1845
}

1846
static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1847 1848 1849
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

1850
	if (!(adapter->flags & FLAG_HAS_WOL) ||
1851 1852
	    !device_can_wakeup(&adapter->pdev->dev) ||
	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1853
			      WAKE_MAGIC | WAKE_PHY)))
1854
		return -EOPNOTSUPP;
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

	/* these settings will always override what we currently have */
	adapter->wol = 0;

	if (wol->wolopts & WAKE_UCAST)
		adapter->wol |= E1000_WUFC_EX;
	if (wol->wolopts & WAKE_MCAST)
		adapter->wol |= E1000_WUFC_MC;
	if (wol->wolopts & WAKE_BCAST)
		adapter->wol |= E1000_WUFC_BC;
	if (wol->wolopts & WAKE_MAGIC)
		adapter->wol |= E1000_WUFC_MAG;
1867 1868
	if (wol->wolopts & WAKE_PHY)
		adapter->wol |= E1000_WUFC_LNKC;
1869

1870 1871
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);

1872 1873 1874
	return 0;
}

1875 1876
static int e1000_set_phys_id(struct net_device *netdev,
			     enum ethtool_phys_id_state state)
1877 1878
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
1879
	struct e1000_hw *hw = &adapter->hw;
1880

1881 1882 1883 1884
	switch (state) {
	case ETHTOOL_ID_ACTIVE:
		if (!hw->mac.ops.blink_led)
			return 2;	/* cycle on/off twice per second */
1885

1886 1887 1888 1889
		hw->mac.ops.blink_led(hw);
		break;

	case ETHTOOL_ID_INACTIVE:
1890 1891
		if (hw->phy.type == e1000_phy_ife)
			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1892 1893 1894
		hw->mac.ops.led_off(hw);
		hw->mac.ops.cleanup_led(hw);
		break;
1895

1896 1897 1898
	case ETHTOOL_ID_ON:
		adapter->hw.mac.ops.led_on(&adapter->hw);
		break;
1899

1900 1901 1902 1903
	case ETHTOOL_ID_OFF:
		adapter->hw.mac.ops.led_off(&adapter->hw);
		break;
	}
1904 1905 1906
	return 0;
}

1907 1908 1909 1910 1911
static int e1000_get_coalesce(struct net_device *netdev,
			      struct ethtool_coalesce *ec)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

1912
	if (adapter->itr_setting <= 4)
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		ec->rx_coalesce_usecs = adapter->itr_setting;
	else
		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;

	return 0;
}

static int e1000_set_coalesce(struct net_device *netdev,
			      struct ethtool_coalesce *ec)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1927
	    ((ec->rx_coalesce_usecs > 4) &&
1928 1929 1930 1931
	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
	    (ec->rx_coalesce_usecs == 2))
		return -EINVAL;

1932 1933 1934
	if (ec->rx_coalesce_usecs == 4) {
		adapter->itr = adapter->itr_setting = 4;
	} else if (ec->rx_coalesce_usecs <= 3) {
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		adapter->itr = 20000;
		adapter->itr_setting = ec->rx_coalesce_usecs;
	} else {
		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
		adapter->itr_setting = adapter->itr & ~3;
	}

	if (adapter->itr_setting != 0)
		ew32(ITR, 1000000000 / (adapter->itr * 256));
	else
		ew32(ITR, 0);

	return 0;
}

1950 1951 1952
static int e1000_nway_reset(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
1953 1954 1955 1956 1957 1958 1959 1960 1961

	if (!netif_running(netdev))
		return -EAGAIN;

	if (!adapter->hw.mac.autoneg)
		return -EINVAL;

	e1000e_reinit_locked(adapter);

1962 1963 1964 1965 1966 1967 1968 1969
	return 0;
}

static void e1000_get_ethtool_stats(struct net_device *netdev,
				    struct ethtool_stats *stats,
				    u64 *data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
J
Jeff Kirsher 已提交
1970
	struct rtnl_link_stats64 net_stats;
1971
	int i;
1972
	char *p = NULL;
1973

J
Jeff Kirsher 已提交
1974
	e1000e_get_stats64(netdev, &net_stats);
1975
	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1976 1977
		switch (e1000_gstrings_stats[i].type) {
		case NETDEV_STATS:
J
Jeff Kirsher 已提交
1978
			p = (char *) &net_stats +
1979 1980 1981 1982 1983 1984
					e1000_gstrings_stats[i].stat_offset;
			break;
		case E1000_STATS:
			p = (char *) adapter +
					e1000_gstrings_stats[i].stat_offset;
			break;
1985 1986 1987
		default:
			data[i] = 0;
			continue;
1988 1989
		}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
	}
}

static void e1000_get_strings(struct net_device *netdev, u32 stringset,
			      u8 *data)
{
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_TEST:
2003
		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
		break;
	case ETH_SS_STATS:
		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
			memcpy(p, e1000_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
		break;
	}
}

J
Jeff Kirsher 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static int e1000e_set_flags(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	bool need_reset = false;
	int rc;

	need_reset = (data & ETH_FLAG_RXVLAN) !=
		     (netdev->features & NETIF_F_HW_VLAN_RX);

	rc = ethtool_op_set_flags(netdev, data, ETH_FLAG_RXVLAN |
				  ETH_FLAG_TXVLAN);

	if (rc)
		return rc;

	if (need_reset) {
		if (netif_running(netdev))
			e1000e_reinit_locked(adapter);
		else
			e1000e_reset(adapter);
	}

	return 0;
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
static const struct ethtool_ops e1000_ethtool_ops = {
	.get_settings		= e1000_get_settings,
	.set_settings		= e1000_set_settings,
	.get_drvinfo		= e1000_get_drvinfo,
	.get_regs_len		= e1000_get_regs_len,
	.get_regs		= e1000_get_regs,
	.get_wol		= e1000_get_wol,
	.set_wol		= e1000_set_wol,
	.get_msglevel		= e1000_get_msglevel,
	.set_msglevel		= e1000_set_msglevel,
	.nway_reset		= e1000_nway_reset,
2051
	.get_link		= ethtool_op_get_link,
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	.get_eeprom_len		= e1000_get_eeprom_len,
	.get_eeprom		= e1000_get_eeprom,
	.set_eeprom		= e1000_set_eeprom,
	.get_ringparam		= e1000_get_ringparam,
	.set_ringparam		= e1000_set_ringparam,
	.get_pauseparam		= e1000_get_pauseparam,
	.set_pauseparam		= e1000_set_pauseparam,
	.get_rx_csum		= e1000_get_rx_csum,
	.set_rx_csum		= e1000_set_rx_csum,
	.get_tx_csum		= e1000_get_tx_csum,
	.set_tx_csum		= e1000_set_tx_csum,
	.get_sg			= ethtool_op_get_sg,
	.set_sg			= ethtool_op_set_sg,
	.get_tso		= ethtool_op_get_tso,
	.set_tso		= e1000_set_tso,
	.self_test		= e1000_diag_test,
	.get_strings		= e1000_get_strings,
2069
	.set_phys_id		= e1000_set_phys_id,
2070
	.get_ethtool_stats	= e1000_get_ethtool_stats,
2071
	.get_sset_count		= e1000e_get_sset_count,
2072 2073
	.get_coalesce		= e1000_get_coalesce,
	.set_coalesce		= e1000_set_coalesce,
2074
	.get_flags		= ethtool_op_get_flags,
J
Jeff Kirsher 已提交
2075
	.set_flags		= e1000e_set_flags,
2076 2077 2078 2079 2080 2081
};

void e1000e_set_ethtool_ops(struct net_device *netdev)
{
	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
}