vgic-v2.c 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2015, 2016 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/irqchip/arm-gic.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
20 21
#include <kvm/arm_vgic.h>
#include <asm/kvm_mmu.h>
22 23 24

#include "vgic.h"

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
static inline void vgic_v2_write_lr(int lr, u32 val)
{
	void __iomem *base = kvm_vgic_global_state.vctrl_base;

	writel_relaxed(val, base + GICH_LR0 + (lr * 4));
}

void vgic_v2_init_lrs(void)
{
	int i;

	for (i = 0; i < kvm_vgic_global_state.nr_lr; i++)
		vgic_v2_write_lr(i, 0);
}

40
void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
41 42 43
{
	struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;

44
	cpuif->vgic_hcr |= GICH_HCR_UIE;
45 46
}

47
static bool lr_signals_eoi_mi(u32 lr_val)
48
{
49 50
	return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) &&
	       !(lr_val & GICH_LR_HW);
51 52 53 54 55 56 57 58 59 60 61
}

/*
 * transfer the content of the LRs back into the corresponding ap_list:
 * - active bit is transferred as is
 * - pending bit is
 *   - transferred as is in case of edge sensitive IRQs
 *   - set to the line-level (resample time) for level sensitive IRQs
 */
void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
{
62 63
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
64
	int lr;
65
	unsigned long flags;
66

67
	cpuif->vgic_hcr &= ~GICH_HCR_UIE;
68

69
	for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
70
		u32 val = cpuif->vgic_lr[lr];
71
		u32 cpuid, intid = val & GICH_LR_VIRTUALID;
72 73
		struct vgic_irq *irq;

74 75 76 77 78
		/* Extract the source vCPU id from the LR */
		cpuid = val & GICH_LR_PHYSID_CPUID;
		cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
		cpuid &= 7;

79 80 81 82 83
		/* Notify fds when the guest EOI'ed a level-triggered SPI */
		if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
			kvm_notify_acked_irq(vcpu->kvm, 0,
					     intid - VGIC_NR_PRIVATE_IRQS);

84 85
		irq = vgic_get_irq(vcpu->kvm, vcpu, intid);

86
		spin_lock_irqsave(&irq->irq_lock, flags);
87 88 89 90

		/* Always preserve the active bit */
		irq->active = !!(val & GICH_LR_ACTIVE_BIT);

91 92 93
		if (irq->active && vgic_irq_is_sgi(intid))
			irq->active_source = cpuid;

94 95 96
		/* Edge is the only case where we preserve the pending bit */
		if (irq->config == VGIC_CONFIG_EDGE &&
		    (val & GICH_LR_PENDING_BIT)) {
97
			irq->pending_latch = true;
98

99
			if (vgic_irq_is_sgi(intid))
100 101 102
				irq->source |= (1 << cpuid);
		}

103 104 105
		/*
		 * Clear soft pending state when level irqs have been acked.
		 */
106 107
		if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE))
			irq->pending_latch = false;
108

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
		/*
		 * Level-triggered mapped IRQs are special because we only
		 * observe rising edges as input to the VGIC.
		 *
		 * If the guest never acked the interrupt we have to sample
		 * the physical line and set the line level, because the
		 * device state could have changed or we simply need to
		 * process the still pending interrupt later.
		 *
		 * If this causes us to lower the level, we have to also clear
		 * the physical active state, since we will otherwise never be
		 * told when the interrupt becomes asserted again.
		 */
		if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT)) {
			irq->line_level = vgic_get_phys_line_level(irq);

			if (!irq->line_level)
				vgic_irq_set_phys_active(irq, false);
		}

129
		spin_unlock_irqrestore(&irq->irq_lock, flags);
130
		vgic_put_irq(vcpu->kvm, irq);
131
	}
132 133

	vgic_cpu->used_lrs = 0;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
}

/*
 * Populates the particular LR with the state of a given IRQ:
 * - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq
 * - for a level sensitive IRQ the pending state value is unchanged;
 *   it is dictated directly by the input level
 *
 * If @irq describes an SGI with multiple sources, we choose the
 * lowest-numbered source VCPU and clear that bit in the source bitmap.
 *
 * The irq_lock must be held by the caller.
 */
void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
	u32 val = irq->intid;
150 151
	bool allow_pending = true;

152
	if (irq->active) {
153
		val |= GICH_LR_ACTIVE_BIT;
154 155 156 157 158 159 160
		if (vgic_irq_is_sgi(irq->intid))
			val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
		if (vgic_irq_is_multi_sgi(irq)) {
			allow_pending = false;
			val |= GICH_LR_EOI;
		}
	}
161

162 163 164
	if (irq->group)
		val |= GICH_LR_GROUP1;

165 166 167 168 169 170 171 172 173 174 175 176 177
	if (irq->hw) {
		val |= GICH_LR_HW;
		val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT;
		/*
		 * Never set pending+active on a HW interrupt, as the
		 * pending state is kept at the physical distributor
		 * level.
		 */
		if (irq->active)
			allow_pending = false;
	} else {
		if (irq->config == VGIC_CONFIG_LEVEL) {
			val |= GICH_LR_EOI;
178

179 180 181 182 183 184 185 186 187 188
			/*
			 * Software resampling doesn't work very well
			 * if we allow P+A, so let's not do that.
			 */
			if (irq->active)
				allow_pending = false;
		}
	}

	if (allow_pending && irq_is_pending(irq)) {
189 190 191
		val |= GICH_LR_PENDING_BIT;

		if (irq->config == VGIC_CONFIG_EDGE)
192
			irq->pending_latch = false;
193 194 195 196 197 198 199

		if (vgic_irq_is_sgi(irq->intid)) {
			u32 src = ffs(irq->source);

			BUG_ON(!src);
			val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
			irq->source &= ~(1 << (src - 1));
200
			if (irq->source) {
201
				irq->pending_latch = true;
202 203
				val |= GICH_LR_EOI;
			}
204 205 206
		}
	}

207 208 209 210 211 212 213 214 215
	/*
	 * Level-triggered mapped IRQs are special because we only observe
	 * rising edges as input to the VGIC.  We therefore lower the line
	 * level here, so that we can take new virtual IRQs.  See
	 * vgic_v2_fold_lr_state for more info.
	 */
	if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT))
		irq->line_level = false;

216 217 218 219 220 221 222 223 224 225
	/* The GICv2 LR only holds five bits of priority. */
	val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;

	vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val;
}

void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
	vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0;
}
226 227 228

void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
229
	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
230 231
	u32 vmcr;

232 233 234 235 236 237 238 239 240 241 242 243
	vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) &
		GICH_VMCR_ENABLE_GRP0_MASK;
	vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) &
		GICH_VMCR_ENABLE_GRP1_MASK;
	vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) &
		GICH_VMCR_ACK_CTL_MASK;
	vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) &
		GICH_VMCR_FIQ_EN_MASK;
	vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) &
		GICH_VMCR_CBPR_MASK;
	vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) &
		GICH_VMCR_EOI_MODE_MASK;
244 245 246 247
	vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) &
		GICH_VMCR_ALIAS_BINPOINT_MASK;
	vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) &
		GICH_VMCR_BINPOINT_MASK;
248 249
	vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) <<
		 GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK;
250

251
	cpu_if->vgic_vmcr = vmcr;
252 253 254 255
}

void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
256 257 258 259
	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
	u32 vmcr;

	vmcr = cpu_if->vgic_vmcr;
260

261 262 263 264 265 266 267 268 269 270 271 272 273
	vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >>
		GICH_VMCR_ENABLE_GRP0_SHIFT;
	vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >>
		GICH_VMCR_ENABLE_GRP1_SHIFT;
	vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >>
		GICH_VMCR_ACK_CTL_SHIFT;
	vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >>
		GICH_VMCR_FIQ_EN_SHIFT;
	vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >>
		GICH_VMCR_CBPR_SHIFT;
	vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >>
		GICH_VMCR_EOI_MODE_SHIFT;

274 275 276 277
	vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >>
			GICH_VMCR_ALIAS_BINPOINT_SHIFT;
	vmcrp->bpr  = (vmcr & GICH_VMCR_BINPOINT_MASK) >>
			GICH_VMCR_BINPOINT_SHIFT;
278 279
	vmcrp->pmr  = ((vmcr & GICH_VMCR_PRIMASK_MASK) >>
			GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT;
280
}
281

282 283
void vgic_v2_enable(struct kvm_vcpu *vcpu)
{
284 285 286 287 288 289 290 291 292
	/*
	 * By forcing VMCR to zero, the GIC will restore the binary
	 * points to their reset values. Anything else resets to zero
	 * anyway.
	 */
	vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0;

	/* Get the show on the road... */
	vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN;
293 294
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
/* check for overlapping regions and for regions crossing the end of memory */
static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base)
{
	if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base)
		return false;
	if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base)
		return false;

	if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base)
		return true;
	if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base)
		return true;

	return false;
}

int vgic_v2_map_resources(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	int ret = 0;

	if (vgic_ready(kvm))
		goto out;

	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
	    IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
		kvm_err("Need to set vgic cpu and dist addresses first\n");
		ret = -ENXIO;
		goto out;
	}

	if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) {
		kvm_err("VGIC CPU and dist frames overlap\n");
		ret = -EINVAL;
		goto out;
	}

	/*
	 * Initialize the vgic if this hasn't already been done on demand by
	 * accessing the vgic state from userspace.
	 */
	ret = vgic_init(kvm);
	if (ret) {
		kvm_err("Unable to initialize VGIC dynamic data structures\n");
		goto out;
	}

	ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V2);
	if (ret) {
		kvm_err("Unable to register VGIC MMIO regions\n");
		goto out;
	}

348 349 350 351 352 353 354 355
	if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) {
		ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
					    kvm_vgic_global_state.vcpu_base,
					    KVM_VGIC_V2_CPU_SIZE, true);
		if (ret) {
			kvm_err("Unable to remap VGIC CPU to VCPU\n");
			goto out;
		}
356 357 358 359 360 361 362 363
	}

	dist->ready = true;

out:
	return ret;
}

364 365
DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap);

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/**
 * vgic_v2_probe - probe for a GICv2 compatible interrupt controller in DT
 * @node:	pointer to the DT node
 *
 * Returns 0 if a GICv2 has been found, returns an error code otherwise
 */
int vgic_v2_probe(const struct gic_kvm_info *info)
{
	int ret;
	u32 vtr;

	if (!info->vctrl.start) {
		kvm_err("GICH not present in the firmware table\n");
		return -ENXIO;
	}

382 383 384
	if (!PAGE_ALIGNED(info->vcpu.start) ||
	    !PAGE_ALIGNED(resource_size(&info->vcpu))) {
		kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n");
385

386 387
		ret = create_hyp_io_mappings(info->vcpu.start,
					     resource_size(&info->vcpu),
388 389
					     &kvm_vgic_global_state.vcpu_base_va,
					     &kvm_vgic_global_state.vcpu_hyp_va);
390 391 392 393 394 395
		if (ret) {
			kvm_err("Cannot map GICV into hyp\n");
			goto out;
		}

		static_branch_enable(&vgic_v2_cpuif_trap);
396 397
	}

398 399
	ret = create_hyp_io_mappings(info->vctrl.start,
				     resource_size(&info->vctrl),
400 401
				     &kvm_vgic_global_state.vctrl_base,
				     &kvm_vgic_global_state.vctrl_hyp);
402 403
	if (ret) {
		kvm_err("Cannot map VCTRL into hyp\n");
404
		goto out;
405 406 407 408 409
	}

	vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR);
	kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1;

410 411 412 413
	ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
	if (ret) {
		kvm_err("Cannot register GICv2 KVM device\n");
		goto out;
414 415 416 417 418 419 420
	}

	kvm_vgic_global_state.can_emulate_gicv2 = true;
	kvm_vgic_global_state.vcpu_base = info->vcpu.start;
	kvm_vgic_global_state.type = VGIC_V2;
	kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS;

421
	kvm_debug("vgic-v2@%llx\n", info->vctrl.start);
422 423

	return 0;
424 425 426 427 428 429 430
out:
	if (kvm_vgic_global_state.vctrl_base)
		iounmap(kvm_vgic_global_state.vctrl_base);
	if (kvm_vgic_global_state.vcpu_base_va)
		iounmap(kvm_vgic_global_state.vcpu_base_va);

	return ret;
431
}
432

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
{
	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
	u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
	u64 elrsr;
	int i;

	elrsr = readl_relaxed(base + GICH_ELRSR0);
	if (unlikely(used_lrs > 32))
		elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32;

	for (i = 0; i < used_lrs; i++) {
		if (elrsr & (1UL << i))
			cpu_if->vgic_lr[i] &= ~GICH_LR_STATE;
		else
			cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4));

		writel_relaxed(0, base + GICH_LR0 + (i * 4));
	}
}

void vgic_v2_save_state(struct kvm_vcpu *vcpu)
{
456
	void __iomem *base = kvm_vgic_global_state.vctrl_base;
457 458 459 460 461 462 463 464 465 466 467 468 469 470
	u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;

	if (!base)
		return;

	if (used_lrs) {
		save_lrs(vcpu, base);
		writel_relaxed(0, base + GICH_HCR);
	}
}

void vgic_v2_restore_state(struct kvm_vcpu *vcpu)
{
	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
471
	void __iomem *base = kvm_vgic_global_state.vctrl_base;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
	int i;

	if (!base)
		return;

	if (used_lrs) {
		writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR);
		for (i = 0; i < used_lrs; i++) {
			writel_relaxed(cpu_if->vgic_lr[i],
				       base + GICH_LR0 + (i * 4));
		}
	}
}

487 488 489 490
void vgic_v2_load(struct kvm_vcpu *vcpu)
{
	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;

491 492 493 494
	writel_relaxed(cpu_if->vgic_vmcr,
		       kvm_vgic_global_state.vctrl_base + GICH_VMCR);
	writel_relaxed(cpu_if->vgic_apr,
		       kvm_vgic_global_state.vctrl_base + GICH_APR);
495 496 497 498 499 500
}

void vgic_v2_put(struct kvm_vcpu *vcpu)
{
	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;

501 502
	cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR);
	cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR);
503
}