pci-dma.c 17.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/mm.h>
#include <linux/dma-mapping.h>
17
#include <linux/swiotlb.h>
18
#include <linux/vmalloc.h>
19
#include <linux/export.h>
20 21 22 23 24 25
#include <asm/tlbflush.h>
#include <asm/homecache.h>

/* Generic DMA mapping functions: */

/*
26 27
 * Allocate what Linux calls "coherent" memory.  On TILEPro this is
 * uncached memory; on TILE-Gx it is hash-for-home memory.
28
 */
29 30 31 32 33 34
#ifdef __tilepro__
#define PAGE_HOME_DMA PAGE_HOME_UNCACHED
#else
#define PAGE_HOME_DMA PAGE_HOME_HASH
#endif

35 36 37
static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
				     dma_addr_t *dma_handle, gfp_t gfp,
				     struct dma_attrs *attrs)
38
{
39 40 41
	u64 dma_mask = (dev && dev->coherent_dma_mask) ?
		dev->coherent_dma_mask : DMA_BIT_MASK(32);
	int node = dev ? dev_to_node(dev) : 0;
42 43 44 45
	int order = get_order(size);
	struct page *pg;
	dma_addr_t addr;

46
	gfp |= __GFP_ZERO;
47 48

	/*
49 50 51 52 53 54
	 * If the mask specifies that the memory be in the first 4 GB, then
	 * we force the allocation to come from the DMA zone.  We also
	 * force the node to 0 since that's the only node where the DMA
	 * zone isn't empty.  If the mask size is smaller than 32 bits, we
	 * may still not be able to guarantee a suitable memory address, in
	 * which case we will return NULL.  But such devices are uncommon.
55
	 */
56 57
	if (dma_mask <= DMA_BIT_MASK(32)) {
		gfp |= GFP_DMA;
58
		node = 0;
59
	}
60

61
	pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
62 63 64 65 66
	if (pg == NULL)
		return NULL;

	addr = page_to_phys(pg);
	if (addr + size > dma_mask) {
67
		__homecache_free_pages(pg, order);
68 69 70 71
		return NULL;
	}

	*dma_handle = addr;
72

73 74 75 76
	return page_address(pg);
}

/*
77
 * Free memory that was allocated with tile_dma_alloc_coherent.
78
 */
79 80 81
static void tile_dma_free_coherent(struct device *dev, size_t size,
				   void *vaddr, dma_addr_t dma_handle,
				   struct dma_attrs *attrs)
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
{
	homecache_free_pages((unsigned long)vaddr, get_order(size));
}

/*
 * The map routines "map" the specified address range for DMA
 * accesses.  The memory belongs to the device after this call is
 * issued, until it is unmapped with dma_unmap_single.
 *
 * We don't need to do any mapping, we just flush the address range
 * out of the cache and return a DMA address.
 *
 * The unmap routines do whatever is necessary before the processor
 * accesses the memory again, and must be called before the driver
 * touches the memory.  We can get away with a cache invalidate if we
 * can count on nothing having been touched.
 */

100 101 102
/* Set up a single page for DMA access. */
static void __dma_prep_page(struct page *page, unsigned long offset,
			    size_t size, enum dma_data_direction direction)
103
{
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
	/*
	 * Flush the page from cache if necessary.
	 * On tilegx, data is delivered to hash-for-home L3; on tilepro,
	 * data is delivered direct to memory.
	 *
	 * NOTE: If we were just doing DMA_TO_DEVICE we could optimize
	 * this to be a "flush" not a "finv" and keep some of the
	 * state in cache across the DMA operation, but it doesn't seem
	 * worth creating the necessary flush_buffer_xxx() infrastructure.
	 */
	int home = page_home(page);
	switch (home) {
	case PAGE_HOME_HASH:
#ifdef __tilegx__
		return;
#endif
		break;
	case PAGE_HOME_UNCACHED:
#ifdef __tilepro__
		return;
#endif
		break;
	case PAGE_HOME_IMMUTABLE:
		/* Should be going to the device only. */
		BUG_ON(direction == DMA_FROM_DEVICE ||
		       direction == DMA_BIDIRECTIONAL);
		return;
	case PAGE_HOME_INCOHERENT:
		/* Incoherent anyway, so no need to work hard here. */
		return;
	default:
		BUG_ON(home < 0 || home >= NR_CPUS);
		break;
	}
	homecache_finv_page(page);

#ifdef DEBUG_ALIGNMENT
	/* Warn if the region isn't cacheline aligned. */
	if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
		pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
			PFN_PHYS(page_to_pfn(page)) + offset, size);
#endif
}
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/* Make the page ready to be read by the core. */
static void __dma_complete_page(struct page *page, unsigned long offset,
				size_t size, enum dma_data_direction direction)
{
#ifdef __tilegx__
	switch (page_home(page)) {
	case PAGE_HOME_HASH:
		/* I/O device delivered data the way the cpu wanted it. */
		break;
	case PAGE_HOME_INCOHERENT:
		/* Incoherent anyway, so no need to work hard here. */
		break;
	case PAGE_HOME_IMMUTABLE:
		/* Extra read-only copies are not a problem. */
		break;
	default:
		/* Flush the bogus hash-for-home I/O entries to memory. */
		homecache_finv_map_page(page, PAGE_HOME_HASH);
		break;
	}
#endif
}
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
				enum dma_data_direction direction)
{
	struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
	unsigned long offset = dma_addr & (PAGE_SIZE - 1);
	size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));

	while (size != 0) {
		__dma_prep_page(page, offset, bytes, direction);
		size -= bytes;
		++page;
		offset = 0;
		bytes = min((size_t)PAGE_SIZE, size);
	}
}

static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
				    enum dma_data_direction direction)
{
	struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
	unsigned long offset = dma_addr & (PAGE_SIZE - 1);
	size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));

	while (size != 0) {
		__dma_complete_page(page, offset, bytes, direction);
		size -= bytes;
		++page;
		offset = 0;
		bytes = min((size_t)PAGE_SIZE, size);
200 201
	}
}
202

203 204 205 206 207 208
static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
			   int nents, enum dma_data_direction direction,
			   struct dma_attrs *attrs)
{
	struct scatterlist *sg;
	int i;
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	BUG_ON(!valid_dma_direction(direction));

	WARN_ON(nents == 0 || sglist->length == 0);

	for_each_sg(sglist, sg, nents, i) {
		sg->dma_address = sg_phys(sg);
		__dma_prep_pa_range(sg->dma_address, sg->length, direction);
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		sg->dma_length = sg->length;
#endif
	}

	return nents;
}

static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
			      int nents, enum dma_data_direction direction,
			      struct dma_attrs *attrs)
{
	struct scatterlist *sg;
	int i;

	BUG_ON(!valid_dma_direction(direction));
	for_each_sg(sglist, sg, nents, i) {
		sg->dma_address = sg_phys(sg);
		__dma_complete_pa_range(sg->dma_address, sg->length,
					direction);
	}
}

static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
				    unsigned long offset, size_t size,
				    enum dma_data_direction direction,
				    struct dma_attrs *attrs)
244
{
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	BUG_ON(!valid_dma_direction(direction));

	BUG_ON(offset + size > PAGE_SIZE);
	__dma_prep_page(page, offset, size, direction);

	return page_to_pa(page) + offset;
}

static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
				size_t size, enum dma_data_direction direction,
				struct dma_attrs *attrs)
{
	BUG_ON(!valid_dma_direction(direction));

	__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
			    dma_address & PAGE_OFFSET, size, direction);
}
262

263 264 265 266 267
static void tile_dma_sync_single_for_cpu(struct device *dev,
					 dma_addr_t dma_handle,
					 size_t size,
					 enum dma_data_direction direction)
{
268 269
	BUG_ON(!valid_dma_direction(direction));

270 271
	__dma_complete_pa_range(dma_handle, size, direction);
}
272

273 274 275 276 277
static void tile_dma_sync_single_for_device(struct device *dev,
					    dma_addr_t dma_handle, size_t size,
					    enum dma_data_direction direction)
{
	__dma_prep_pa_range(dma_handle, size, direction);
278 279
}

280 281 282
static void tile_dma_sync_sg_for_cpu(struct device *dev,
				     struct scatterlist *sglist, int nelems,
				     enum dma_data_direction direction)
283
{
284 285 286
	struct scatterlist *sg;
	int i;

287
	BUG_ON(!valid_dma_direction(direction));
288 289 290 291 292 293
	WARN_ON(nelems == 0 || sglist->length == 0);

	for_each_sg(sglist, sg, nelems, i) {
		dma_sync_single_for_cpu(dev, sg->dma_address,
					sg_dma_len(sg), direction);
	}
294 295
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
static void tile_dma_sync_sg_for_device(struct device *dev,
					struct scatterlist *sglist, int nelems,
					enum dma_data_direction direction)
{
	struct scatterlist *sg;
	int i;

	BUG_ON(!valid_dma_direction(direction));
	WARN_ON(nelems == 0 || sglist->length == 0);

	for_each_sg(sglist, sg, nelems, i) {
		dma_sync_single_for_device(dev, sg->dma_address,
					   sg_dma_len(sg), direction);
	}
}

static inline int
tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return 0;
}

static inline int
tile_dma_supported(struct device *dev, u64 mask)
{
	return 1;
}

static struct dma_map_ops tile_default_dma_map_ops = {
	.alloc = tile_dma_alloc_coherent,
	.free = tile_dma_free_coherent,
	.map_page = tile_dma_map_page,
	.unmap_page = tile_dma_unmap_page,
	.map_sg = tile_dma_map_sg,
	.unmap_sg = tile_dma_unmap_sg,
	.sync_single_for_cpu = tile_dma_sync_single_for_cpu,
	.sync_single_for_device = tile_dma_sync_single_for_device,
	.sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
	.sync_sg_for_device = tile_dma_sync_sg_for_device,
	.mapping_error = tile_dma_mapping_error,
	.dma_supported = tile_dma_supported
};

struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
EXPORT_SYMBOL(tile_dma_map_ops);

/* Generic PCI DMA mapping functions */

static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
					 dma_addr_t *dma_handle, gfp_t gfp,
					 struct dma_attrs *attrs)
{
	int node = dev_to_node(dev);
	int order = get_order(size);
	struct page *pg;
	dma_addr_t addr;

	gfp |= __GFP_ZERO;

	pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
	if (pg == NULL)
		return NULL;

	addr = page_to_phys(pg);

361
	*dma_handle = addr + get_dma_offset(dev);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

	return page_address(pg);
}

/*
 * Free memory that was allocated with tile_pci_dma_alloc_coherent.
 */
static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
				       void *vaddr, dma_addr_t dma_handle,
				       struct dma_attrs *attrs)
{
	homecache_free_pages((unsigned long)vaddr, get_order(size));
}

static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
			       int nents, enum dma_data_direction direction,
			       struct dma_attrs *attrs)
379 380 381 382 383 384 385 386 387 388
{
	struct scatterlist *sg;
	int i;

	BUG_ON(!valid_dma_direction(direction));

	WARN_ON(nents == 0 || sglist->length == 0);

	for_each_sg(sglist, sg, nents, i) {
		sg->dma_address = sg_phys(sg);
389
		__dma_prep_pa_range(sg->dma_address, sg->length, direction);
390

391
		sg->dma_address = sg->dma_address + get_dma_offset(dev);
392 393 394
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		sg->dma_length = sg->length;
#endif
395 396 397 398 399
	}

	return nents;
}

400 401 402 403
static void tile_pci_dma_unmap_sg(struct device *dev,
				  struct scatterlist *sglist, int nents,
				  enum dma_data_direction direction,
				  struct dma_attrs *attrs)
404
{
405 406 407
	struct scatterlist *sg;
	int i;

408
	BUG_ON(!valid_dma_direction(direction));
409 410 411 412 413
	for_each_sg(sglist, sg, nents, i) {
		sg->dma_address = sg_phys(sg);
		__dma_complete_pa_range(sg->dma_address, sg->length,
					direction);
	}
414 415
}

416 417 418 419
static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
					unsigned long offset, size_t size,
					enum dma_data_direction direction,
					struct dma_attrs *attrs)
420 421 422
{
	BUG_ON(!valid_dma_direction(direction));

423
	BUG_ON(offset + size > PAGE_SIZE);
424
	__dma_prep_page(page, offset, size, direction);
425

426
	return page_to_pa(page) + offset + get_dma_offset(dev);
427 428
}

429 430 431 432
static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
				    size_t size,
				    enum dma_data_direction direction,
				    struct dma_attrs *attrs)
433 434
{
	BUG_ON(!valid_dma_direction(direction));
435

436
	dma_address -= get_dma_offset(dev);
437

438 439
	__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
			    dma_address & PAGE_OFFSET, size, direction);
440 441
}

442 443 444 445
static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
					     dma_addr_t dma_handle,
					     size_t size,
					     enum dma_data_direction direction)
446 447
{
	BUG_ON(!valid_dma_direction(direction));
448

449
	dma_handle -= get_dma_offset(dev);
450

451
	__dma_complete_pa_range(dma_handle, size, direction);
452 453
}

454 455 456 457 458
static void tile_pci_dma_sync_single_for_device(struct device *dev,
						dma_addr_t dma_handle,
						size_t size,
						enum dma_data_direction
						direction)
459
{
460
	dma_handle -= get_dma_offset(dev);
461

462
	__dma_prep_pa_range(dma_handle, size, direction);
463 464
}

465 466 467 468
static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
					 struct scatterlist *sglist,
					 int nelems,
					 enum dma_data_direction direction)
469
{
470 471 472
	struct scatterlist *sg;
	int i;

473
	BUG_ON(!valid_dma_direction(direction));
474 475 476 477 478 479
	WARN_ON(nelems == 0 || sglist->length == 0);

	for_each_sg(sglist, sg, nelems, i) {
		dma_sync_single_for_cpu(dev, sg->dma_address,
					sg_dma_len(sg), direction);
	}
480 481
}

482 483 484 485
static void tile_pci_dma_sync_sg_for_device(struct device *dev,
					    struct scatterlist *sglist,
					    int nelems,
					    enum dma_data_direction direction)
486 487 488 489 490 491 492 493 494 495 496 497 498
{
	struct scatterlist *sg;
	int i;

	BUG_ON(!valid_dma_direction(direction));
	WARN_ON(nelems == 0 || sglist->length == 0);

	for_each_sg(sglist, sg, nelems, i) {
		dma_sync_single_for_device(dev, sg->dma_address,
					   sg_dma_len(sg), direction);
	}
}

499 500
static inline int
tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
501
{
502
	return 0;
503 504
}

505 506
static inline int
tile_pci_dma_supported(struct device *dev, u64 mask)
507
{
508
	return 1;
509 510
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
static struct dma_map_ops tile_pci_default_dma_map_ops = {
	.alloc = tile_pci_dma_alloc_coherent,
	.free = tile_pci_dma_free_coherent,
	.map_page = tile_pci_dma_map_page,
	.unmap_page = tile_pci_dma_unmap_page,
	.map_sg = tile_pci_dma_map_sg,
	.unmap_sg = tile_pci_dma_unmap_sg,
	.sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
	.sync_single_for_device = tile_pci_dma_sync_single_for_device,
	.sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
	.sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
	.mapping_error = tile_pci_dma_mapping_error,
	.dma_supported = tile_pci_dma_supported
};

struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
EXPORT_SYMBOL(gx_pci_dma_map_ops);

/* PCI DMA mapping functions for legacy PCI devices */

#ifdef CONFIG_SWIOTLB
static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
					 dma_addr_t *dma_handle, gfp_t gfp,
					 struct dma_attrs *attrs)
{
	gfp |= GFP_DMA;
	return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
}

static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
				       void *vaddr, dma_addr_t dma_addr,
				       struct dma_attrs *attrs)
543
{
544
	swiotlb_free_coherent(dev, size, vaddr, dma_addr);
545
}
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

static struct dma_map_ops pci_swiotlb_dma_ops = {
	.alloc = tile_swiotlb_alloc_coherent,
	.free = tile_swiotlb_free_coherent,
	.map_page = swiotlb_map_page,
	.unmap_page = swiotlb_unmap_page,
	.map_sg = swiotlb_map_sg_attrs,
	.unmap_sg = swiotlb_unmap_sg_attrs,
	.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
	.sync_single_for_device = swiotlb_sync_single_for_device,
	.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
	.sync_sg_for_device = swiotlb_sync_sg_for_device,
	.dma_supported = swiotlb_dma_supported,
	.mapping_error = swiotlb_dma_mapping_error,
};

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
static struct dma_map_ops pci_hybrid_dma_ops = {
	.alloc = tile_swiotlb_alloc_coherent,
	.free = tile_swiotlb_free_coherent,
	.map_page = tile_pci_dma_map_page,
	.unmap_page = tile_pci_dma_unmap_page,
	.map_sg = tile_pci_dma_map_sg,
	.unmap_sg = tile_pci_dma_unmap_sg,
	.sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
	.sync_single_for_device = tile_pci_dma_sync_single_for_device,
	.sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
	.sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
	.mapping_error = tile_pci_dma_mapping_error,
	.dma_supported = tile_pci_dma_supported
};

577
struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
578
struct dma_map_ops *gx_hybrid_pci_dma_map_ops = &pci_hybrid_dma_ops;
579 580
#else
struct dma_map_ops *gx_legacy_pci_dma_map_ops;
581
struct dma_map_ops *gx_hybrid_pci_dma_map_ops;
582 583
#endif
EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
584
EXPORT_SYMBOL(gx_hybrid_pci_dma_map_ops);
585 586 587 588 589 590

#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
int dma_set_coherent_mask(struct device *dev, u64 mask)
{
	struct dma_map_ops *dma_ops = get_dma_ops(dev);

591 592 593 594
	/* Handle hybrid PCI devices with limited memory addressability. */
	if ((dma_ops == gx_pci_dma_map_ops ||
	     dma_ops == gx_hybrid_pci_dma_map_ops ||
	     dma_ops == gx_legacy_pci_dma_map_ops) &&
595
	    (mask <= DMA_BIT_MASK(32))) {
596 597 598
		if (dma_ops == gx_pci_dma_map_ops)
			set_dma_ops(dev, gx_hybrid_pci_dma_map_ops);

599 600 601 602 603 604 605 606 607 608 609
		if (mask > dev->archdata.max_direct_dma_addr)
			mask = dev->archdata.max_direct_dma_addr;
	}

	if (!dma_supported(dev, mask))
		return -EIO;
	dev->coherent_dma_mask = mask;
	return 0;
}
EXPORT_SYMBOL(dma_set_coherent_mask);
#endif
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
/*
 * The generic dma_get_required_mask() uses the highest physical address
 * (max_pfn) to provide the hint to the PCI drivers regarding 32-bit or
 * 64-bit DMA configuration. Since TILEGx has I/O TLB/MMU, allowing the
 * DMAs to use the full 64-bit PCI address space and not limited by
 * the physical memory space, we always let the PCI devices use
 * 64-bit DMA if they have that capability, by returning the 64-bit
 * DMA mask here. The device driver has the option to use 32-bit DMA if
 * the device is not capable of 64-bit DMA.
 */
u64 dma_get_required_mask(struct device *dev)
{
	return DMA_BIT_MASK(64);
}
EXPORT_SYMBOL_GPL(dma_get_required_mask);
#endif