vmwgfx_buffer.c 22.3 KB
Newer Older
1 2
/**************************************************************************
 *
S
Sinclair Yeh 已提交
3
 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/

#include "vmwgfx_drv.h"
29 30 31
#include <drm/ttm/ttm_bo_driver.h>
#include <drm/ttm/ttm_placement.h>
#include <drm/ttm/ttm_page_alloc.h>
32

33
static const struct ttm_place vram_placement_flags = {
34 35 36 37
	.fpfn = 0,
	.lpfn = 0,
	.flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
};
38

39
static const struct ttm_place vram_ne_placement_flags = {
40 41 42 43
	.fpfn = 0,
	.lpfn = 0,
	.flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
};
44

45
static const struct ttm_place sys_placement_flags = {
46 47 48 49
	.fpfn = 0,
	.lpfn = 0,
	.flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
};
50

51
static const struct ttm_place sys_ne_placement_flags = {
52 53 54 55
	.fpfn = 0,
	.lpfn = 0,
	.flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
};
56

57
static const struct ttm_place gmr_placement_flags = {
58 59 60 61
	.fpfn = 0,
	.lpfn = 0,
	.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
};
62

63
static const struct ttm_place gmr_ne_placement_flags = {
64 65 66 67
	.fpfn = 0,
	.lpfn = 0,
	.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
};
68

69
static const struct ttm_place mob_placement_flags = {
70 71
	.fpfn = 0,
	.lpfn = 0,
72 73 74
	.flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
};

75
static const struct ttm_place mob_ne_placement_flags = {
76 77 78 79 80
	.fpfn = 0,
	.lpfn = 0,
	.flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
};

81
struct ttm_placement vmw_vram_placement = {
82 83 84 85 86 87
	.num_placement = 1,
	.placement = &vram_placement_flags,
	.num_busy_placement = 1,
	.busy_placement = &vram_placement_flags
};

88
static const struct ttm_place vram_gmr_placement_flags[] = {
89 90 91 92 93 94 95 96 97
	{
		.fpfn = 0,
		.lpfn = 0,
		.flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
	}, {
		.fpfn = 0,
		.lpfn = 0,
		.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
	}
98 99
};

100
static const struct ttm_place gmr_vram_placement_flags[] = {
101 102 103 104 105 106 107 108 109
	{
		.fpfn = 0,
		.lpfn = 0,
		.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
	}, {
		.fpfn = 0,
		.lpfn = 0,
		.flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
	}
110 111
};

112 113 114 115 116 117 118
struct ttm_placement vmw_vram_gmr_placement = {
	.num_placement = 2,
	.placement = vram_gmr_placement_flags,
	.num_busy_placement = 1,
	.busy_placement = &gmr_placement_flags
};

119
static const struct ttm_place vram_gmr_ne_placement_flags[] = {
120 121 122 123 124 125 126 127 128 129 130
	{
		.fpfn = 0,
		.lpfn = 0,
		.flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED |
			 TTM_PL_FLAG_NO_EVICT
	}, {
		.fpfn = 0,
		.lpfn = 0,
		.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED |
			 TTM_PL_FLAG_NO_EVICT
	}
131 132 133 134 135 136 137 138 139
};

struct ttm_placement vmw_vram_gmr_ne_placement = {
	.num_placement = 2,
	.placement = vram_gmr_ne_placement_flags,
	.num_busy_placement = 1,
	.busy_placement = &gmr_ne_placement_flags
};

140 141 142 143 144 145 146
struct ttm_placement vmw_vram_sys_placement = {
	.num_placement = 1,
	.placement = &vram_placement_flags,
	.num_busy_placement = 1,
	.busy_placement = &sys_placement_flags
};

147 148 149 150 151 152 153 154 155 156 157 158 159 160
struct ttm_placement vmw_vram_ne_placement = {
	.num_placement = 1,
	.placement = &vram_ne_placement_flags,
	.num_busy_placement = 1,
	.busy_placement = &vram_ne_placement_flags
};

struct ttm_placement vmw_sys_placement = {
	.num_placement = 1,
	.placement = &sys_placement_flags,
	.num_busy_placement = 1,
	.busy_placement = &sys_placement_flags
};

161 162 163 164 165 166 167
struct ttm_placement vmw_sys_ne_placement = {
	.num_placement = 1,
	.placement = &sys_ne_placement_flags,
	.num_busy_placement = 1,
	.busy_placement = &sys_ne_placement_flags
};

168
static const struct ttm_place evictable_placement_flags[] = {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	{
		.fpfn = 0,
		.lpfn = 0,
		.flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
	}, {
		.fpfn = 0,
		.lpfn = 0,
		.flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
	}, {
		.fpfn = 0,
		.lpfn = 0,
		.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
	}, {
		.fpfn = 0,
		.lpfn = 0,
		.flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
	}
186 187
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
static const struct ttm_place nonfixed_placement_flags[] = {
	{
		.fpfn = 0,
		.lpfn = 0,
		.flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
	}, {
		.fpfn = 0,
		.lpfn = 0,
		.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
	}, {
		.fpfn = 0,
		.lpfn = 0,
		.flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
	}
};

204
struct ttm_placement vmw_evictable_placement = {
205
	.num_placement = 4,
206 207 208 209 210
	.placement = evictable_placement_flags,
	.num_busy_placement = 1,
	.busy_placement = &sys_placement_flags
};

211 212 213 214 215 216 217
struct ttm_placement vmw_srf_placement = {
	.num_placement = 1,
	.num_busy_placement = 2,
	.placement = &gmr_placement_flags,
	.busy_placement = gmr_vram_placement_flags
};

218 219 220 221 222 223 224
struct ttm_placement vmw_mob_placement = {
	.num_placement = 1,
	.num_busy_placement = 1,
	.placement = &mob_placement_flags,
	.busy_placement = &mob_placement_flags
};

225 226 227 228 229 230 231
struct ttm_placement vmw_mob_ne_placement = {
	.num_placement = 1,
	.num_busy_placement = 1,
	.placement = &mob_ne_placement_flags,
	.busy_placement = &mob_ne_placement_flags
};

232 233 234 235 236 237 238
struct ttm_placement vmw_nonfixed_placement = {
	.num_placement = 3,
	.placement = nonfixed_placement_flags,
	.num_busy_placement = 1,
	.busy_placement = &sys_placement_flags
};

239
struct vmw_ttm_tt {
240
	struct ttm_dma_tt dma_ttm;
241 242
	struct vmw_private *dev_priv;
	int gmr_id;
243 244
	struct vmw_mob *mob;
	int mem_type;
245 246 247 248
	struct sg_table sgt;
	struct vmw_sg_table vsgt;
	uint64_t sg_alloc_size;
	bool mapped;
249 250
};

251 252
const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
/**
 * Helper functions to advance a struct vmw_piter iterator.
 *
 * @viter: Pointer to the iterator.
 *
 * These functions return false if past the end of the list,
 * true otherwise. Functions are selected depending on the current
 * DMA mapping mode.
 */
static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
{
	return ++(viter->i) < viter->num_pages;
}

static bool __vmw_piter_sg_next(struct vmw_piter *viter)
{
	return __sg_page_iter_next(&viter->iter);
}


/**
 * Helper functions to return a pointer to the current page.
 *
 * @viter: Pointer to the iterator
 *
 * These functions return a pointer to the page currently
 * pointed to by @viter. Functions are selected depending on the
 * current mapping mode.
 */
static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
{
	return viter->pages[viter->i];
}

static struct page *__vmw_piter_sg_page(struct vmw_piter *viter)
{
	return sg_page_iter_page(&viter->iter);
}


/**
 * Helper functions to return the DMA address of the current page.
 *
 * @viter: Pointer to the iterator
 *
 * These functions return the DMA address of the page currently
 * pointed to by @viter. Functions are selected depending on the
 * current mapping mode.
 */
static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
{
	return page_to_phys(viter->pages[viter->i]);
}

static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
{
	return viter->addrs[viter->i];
}

static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
{
	return sg_page_iter_dma_address(&viter->iter);
}


/**
 * vmw_piter_start - Initialize a struct vmw_piter.
 *
 * @viter: Pointer to the iterator to initialize
 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
 *
 * Note that we're following the convention of __sg_page_iter_start, so that
 * the iterator doesn't point to a valid page after initialization; it has
 * to be advanced one step first.
 */
void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
		     unsigned long p_offset)
{
	viter->i = p_offset - 1;
	viter->num_pages = vsgt->num_pages;
	switch (vsgt->mode) {
	case vmw_dma_phys:
		viter->next = &__vmw_piter_non_sg_next;
		viter->dma_address = &__vmw_piter_phys_addr;
		viter->page = &__vmw_piter_non_sg_page;
		viter->pages = vsgt->pages;
		break;
	case vmw_dma_alloc_coherent:
		viter->next = &__vmw_piter_non_sg_next;
		viter->dma_address = &__vmw_piter_dma_addr;
		viter->page = &__vmw_piter_non_sg_page;
		viter->addrs = vsgt->addrs;
345
		viter->pages = vsgt->pages;
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		break;
	case vmw_dma_map_populate:
	case vmw_dma_map_bind:
		viter->next = &__vmw_piter_sg_next;
		viter->dma_address = &__vmw_piter_sg_addr;
		viter->page = &__vmw_piter_sg_page;
		__sg_page_iter_start(&viter->iter, vsgt->sgt->sgl,
				     vsgt->sgt->orig_nents, p_offset);
		break;
	default:
		BUG();
	}
}

/**
 * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
 * TTM pages
 *
 * @vmw_tt: Pointer to a struct vmw_ttm_backend
 *
 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
 */
static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
{
	struct device *dev = vmw_tt->dev_priv->dev->dev;

	dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
		DMA_BIDIRECTIONAL);
	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
}

/**
 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
 *
 * @vmw_tt: Pointer to a struct vmw_ttm_backend
 *
 * This function is used to get device addresses from the kernel DMA layer.
 * However, it's violating the DMA API in that when this operation has been
 * performed, it's illegal for the CPU to write to the pages without first
 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
 * therefore only legal to call this function if we know that the function
 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
 * a CPU write buffer flush.
 */
static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
{
	struct device *dev = vmw_tt->dev_priv->dev->dev;
	int ret;

	ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
			 DMA_BIDIRECTIONAL);
	if (unlikely(ret == 0))
		return -ENOMEM;

	vmw_tt->sgt.nents = ret;

	return 0;
}

/**
 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
 *
 * @vmw_tt: Pointer to a struct vmw_ttm_tt
 *
 * Select the correct function for and make sure the TTM pages are
 * visible to the device. Allocate storage for the device mappings.
 * If a mapping has already been performed, indicated by the storage
 * pointer being non NULL, the function returns success.
 */
static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
{
	struct vmw_private *dev_priv = vmw_tt->dev_priv;
	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
420 421 422 423
	struct ttm_operation_ctx ctx = {
		.interruptible = true,
		.no_wait_gpu = false
	};
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	struct vmw_piter iter;
	dma_addr_t old;
	int ret = 0;
	static size_t sgl_size;
	static size_t sgt_size;

	if (vmw_tt->mapped)
		return 0;

	vsgt->mode = dev_priv->map_mode;
	vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
	vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
	vsgt->sgt = &vmw_tt->sgt;

	switch (dev_priv->map_mode) {
	case vmw_dma_map_bind:
	case vmw_dma_map_populate:
		if (unlikely(!sgl_size)) {
			sgl_size = ttm_round_pot(sizeof(struct scatterlist));
			sgt_size = ttm_round_pot(sizeof(struct sg_table));
		}
		vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
447
		ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
		if (unlikely(ret != 0))
			return ret;

		ret = sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
						vsgt->num_pages, 0,
						(unsigned long)
						vsgt->num_pages << PAGE_SHIFT,
						GFP_KERNEL);
		if (unlikely(ret != 0))
			goto out_sg_alloc_fail;

		if (vsgt->num_pages > vmw_tt->sgt.nents) {
			uint64_t over_alloc =
				sgl_size * (vsgt->num_pages -
					    vmw_tt->sgt.nents);

			ttm_mem_global_free(glob, over_alloc);
			vmw_tt->sg_alloc_size -= over_alloc;
		}

		ret = vmw_ttm_map_for_dma(vmw_tt);
		if (unlikely(ret != 0))
			goto out_map_fail;

		break;
	default:
		break;
	}

	old = ~((dma_addr_t) 0);
	vmw_tt->vsgt.num_regions = 0;
	for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
		dma_addr_t cur = vmw_piter_dma_addr(&iter);

		if (cur != old + PAGE_SIZE)
			vmw_tt->vsgt.num_regions++;
		old = cur;
	}

	vmw_tt->mapped = true;
	return 0;

out_map_fail:
	sg_free_table(vmw_tt->vsgt.sgt);
	vmw_tt->vsgt.sgt = NULL;
out_sg_alloc_fail:
	ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
	return ret;
}

/**
 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
 *
 * @vmw_tt: Pointer to a struct vmw_ttm_tt
 *
 * Tear down any previously set up device DMA mappings and free
 * any storage space allocated for them. If there are no mappings set up,
 * this function is a NOP.
 */
static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
{
	struct vmw_private *dev_priv = vmw_tt->dev_priv;

	if (!vmw_tt->vsgt.sgt)
		return;

	switch (dev_priv->map_mode) {
	case vmw_dma_map_bind:
	case vmw_dma_map_populate:
		vmw_ttm_unmap_from_dma(vmw_tt);
		sg_free_table(vmw_tt->vsgt.sgt);
		vmw_tt->vsgt.sgt = NULL;
		ttm_mem_global_free(vmw_mem_glob(dev_priv),
				    vmw_tt->sg_alloc_size);
		break;
	default:
		break;
	}
	vmw_tt->mapped = false;
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

/**
 * vmw_bo_map_dma - Make sure buffer object pages are visible to the device
 *
 * @bo: Pointer to a struct ttm_buffer_object
 *
 * Wrapper around vmw_ttm_map_dma, that takes a TTM buffer object pointer
 * instead of a pointer to a struct vmw_ttm_backend as argument.
 * Note that the buffer object must be either pinned or reserved before
 * calling this function.
 */
int vmw_bo_map_dma(struct ttm_buffer_object *bo)
{
	struct vmw_ttm_tt *vmw_tt =
		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);

	return vmw_ttm_map_dma(vmw_tt);
}


/**
 * vmw_bo_unmap_dma - Make sure buffer object pages are visible to the device
 *
 * @bo: Pointer to a struct ttm_buffer_object
 *
 * Wrapper around vmw_ttm_unmap_dma, that takes a TTM buffer object pointer
 * instead of a pointer to a struct vmw_ttm_backend as argument.
 */
void vmw_bo_unmap_dma(struct ttm_buffer_object *bo)
{
	struct vmw_ttm_tt *vmw_tt =
		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);

	vmw_ttm_unmap_dma(vmw_tt);
}


/**
 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
 * TTM buffer object
 *
 * @bo: Pointer to a struct ttm_buffer_object
 *
 * Returns a pointer to a struct vmw_sg_table object. The object should
 * not be freed after use.
 * Note that for the device addresses to be valid, the buffer object must
 * either be reserved or pinned.
 */
const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
{
	struct vmw_ttm_tt *vmw_tt =
		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);

	return &vmw_tt->vsgt;
}


586
static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
587
{
588 589 590 591 592 593 594
	struct vmw_ttm_tt *vmw_be =
		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
	int ret;

	ret = vmw_ttm_map_dma(vmw_be);
	if (unlikely(ret != 0))
		return ret;
595 596

	vmw_be->gmr_id = bo_mem->start;
597
	vmw_be->mem_type = bo_mem->mem_type;
598

599 600 601 602 603 604 605 606 607 608 609 610 611
	switch (bo_mem->mem_type) {
	case VMW_PL_GMR:
		return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
				    ttm->num_pages, vmw_be->gmr_id);
	case VMW_PL_MOB:
		if (unlikely(vmw_be->mob == NULL)) {
			vmw_be->mob =
				vmw_mob_create(ttm->num_pages);
			if (unlikely(vmw_be->mob == NULL))
				return -ENOMEM;
		}

		return vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
612
				    &vmw_be->vsgt, ttm->num_pages,
613 614 615 616 617
				    vmw_be->gmr_id);
	default:
		BUG();
	}
	return 0;
618 619
}

620
static int vmw_ttm_unbind(struct ttm_tt *ttm)
621
{
622 623
	struct vmw_ttm_tt *vmw_be =
		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
624

625 626 627 628 629 630 631 632 633 634
	switch (vmw_be->mem_type) {
	case VMW_PL_GMR:
		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
		break;
	case VMW_PL_MOB:
		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
		break;
	default:
		BUG();
	}
635 636 637 638

	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
		vmw_ttm_unmap_dma(vmw_be);

639 640 641
	return 0;
}

642

643
static void vmw_ttm_destroy(struct ttm_tt *ttm)
644
{
645 646 647 648 649 650 651 652
	struct vmw_ttm_tt *vmw_be =
		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);

	vmw_ttm_unmap_dma(vmw_be);
	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
		ttm_dma_tt_fini(&vmw_be->dma_ttm);
	else
		ttm_tt_fini(ttm);
653 654 655 656

	if (vmw_be->mob)
		vmw_mob_destroy(vmw_be->mob);

657 658 659
	kfree(vmw_be);
}

660

661
static int vmw_ttm_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
662 663 664 665 666 667 668 669 670 671 672 673 674
{
	struct vmw_ttm_tt *vmw_tt =
		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
	struct vmw_private *dev_priv = vmw_tt->dev_priv;
	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
	int ret;

	if (ttm->state != tt_unpopulated)
		return 0;

	if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
		size_t size =
			ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
675
		ret = ttm_mem_global_alloc(glob, size, ctx);
676 677 678
		if (unlikely(ret != 0))
			return ret;

679 680
		ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev,
					ctx);
681 682 683
		if (unlikely(ret != 0))
			ttm_mem_global_free(glob, size);
	} else
684
		ret = ttm_pool_populate(ttm, ctx);
685 686 687 688 689 690 691 692 693 694 695

	return ret;
}

static void vmw_ttm_unpopulate(struct ttm_tt *ttm)
{
	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
						 dma_ttm.ttm);
	struct vmw_private *dev_priv = vmw_tt->dev_priv;
	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);

696 697 698 699 700 701

	if (vmw_tt->mob) {
		vmw_mob_destroy(vmw_tt->mob);
		vmw_tt->mob = NULL;
	}

702 703 704 705 706 707 708 709 710 711 712
	vmw_ttm_unmap_dma(vmw_tt);
	if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
		size_t size =
			ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));

		ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
		ttm_mem_global_free(glob, size);
	} else
		ttm_pool_unpopulate(ttm);
}

713 714 715 716 717 718
static struct ttm_backend_func vmw_ttm_func = {
	.bind = vmw_ttm_bind,
	.unbind = vmw_ttm_unbind,
	.destroy = vmw_ttm_destroy,
};

719 720
static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
					uint32_t page_flags)
721
{
722
	struct vmw_ttm_tt *vmw_be;
723
	int ret;
724

725
	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
726 727 728
	if (!vmw_be)
		return NULL;

729
	vmw_be->dma_ttm.ttm.func = &vmw_ttm_func;
730
	vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
731
	vmw_be->mob = NULL;
732

733
	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
734
		ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags);
735
	else
736
		ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bo, page_flags);
737 738 739 740 741 742 743
	if (unlikely(ret != 0))
		goto out_no_init;

	return &vmw_be->dma_ttm.ttm;
out_no_init:
	kfree(vmw_be);
	return NULL;
744 745
}

746
static int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
747 748 749 750
{
	return 0;
}

751
static int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
752 753 754 755 756 757 758
		      struct ttm_mem_type_manager *man)
{
	switch (type) {
	case TTM_PL_SYSTEM:
		/* System memory */

		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
759
		man->available_caching = TTM_PL_FLAG_CACHED;
760 761 762 763
		man->default_caching = TTM_PL_FLAG_CACHED;
		break;
	case TTM_PL_VRAM:
		/* "On-card" video ram */
764
		man->func = &ttm_bo_manager_func;
765
		man->gpu_offset = 0;
766
		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE;
767 768 769 770
		man->available_caching = TTM_PL_FLAG_CACHED;
		man->default_caching = TTM_PL_FLAG_CACHED;
		break;
	case VMW_PL_GMR:
771
	case VMW_PL_MOB:
772 773 774 775 776 777 778 779 780 781
		/*
		 * "Guest Memory Regions" is an aperture like feature with
		 *  one slot per bo. There is an upper limit of the number of
		 *  slots as well as the bo size.
		 */
		man->func = &vmw_gmrid_manager_func;
		man->gpu_offset = 0;
		man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE;
		man->available_caching = TTM_PL_FLAG_CACHED;
		man->default_caching = TTM_PL_FLAG_CACHED;
782 783 784 785 786 787 788 789
		break;
	default:
		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
		return -EINVAL;
	}
	return 0;
}

790
static void vmw_evict_flags(struct ttm_buffer_object *bo,
791 792 793 794 795 796 797
		     struct ttm_placement *placement)
{
	*placement = vmw_sys_placement;
}

static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
{
798 799 800 801
	struct ttm_object_file *tfile =
		vmw_fpriv((struct drm_file *)filp->private_data)->tfile;

	return vmw_user_dmabuf_verify_access(bo, tfile);
802 803
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817
static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
	struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);

	mem->bus.addr = NULL;
	mem->bus.is_iomem = false;
	mem->bus.offset = 0;
	mem->bus.size = mem->num_pages << PAGE_SHIFT;
	mem->bus.base = 0;
	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
		return -EINVAL;
	switch (mem->mem_type) {
	case TTM_PL_SYSTEM:
818
	case VMW_PL_GMR:
819
	case VMW_PL_MOB:
820 821
		return 0;
	case TTM_PL_VRAM:
822
		mem->bus.offset = mem->start << PAGE_SHIFT;
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
		mem->bus.base = dev_priv->vram_start;
		mem->bus.is_iomem = true;
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
}

static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
{
	return 0;
}

841 842 843
/**
 * vmw_move_notify - TTM move_notify_callback
 *
844 845 846
 * @bo: The TTM buffer object about to move.
 * @mem: The struct ttm_mem_reg indicating to what memory
 *       region the move is taking place.
847 848 849 850 851
 *
 * Calls move_notify for all subsystems needing it.
 * (currently only resources).
 */
static void vmw_move_notify(struct ttm_buffer_object *bo,
852
			    bool evict,
853 854 855
			    struct ttm_mem_reg *mem)
{
	vmw_resource_move_notify(bo, mem);
856
	vmw_query_move_notify(bo, mem);
857 858 859 860 861 862
}


/**
 * vmw_swap_notify - TTM move_notify_callback
 *
863
 * @bo: The TTM buffer object about to be swapped out.
864 865 866
 */
static void vmw_swap_notify(struct ttm_buffer_object *bo)
{
867
	(void) ttm_bo_wait(bo, false, false);
868 869 870
}


871
struct ttm_bo_driver vmw_bo_driver = {
872
	.ttm_tt_create = &vmw_ttm_tt_create,
873 874
	.ttm_tt_populate = &vmw_ttm_populate,
	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
875 876
	.invalidate_caches = vmw_invalidate_caches,
	.init_mem_type = vmw_init_mem_type,
877
	.eviction_valuable = ttm_bo_eviction_valuable,
878 879 880
	.evict_flags = vmw_evict_flags,
	.move = NULL,
	.verify_access = vmw_verify_access,
881 882
	.move_notify = vmw_move_notify,
	.swap_notify = vmw_swap_notify,
883 884 885
	.fault_reserve_notify = &vmw_ttm_fault_reserve_notify,
	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
	.io_mem_free = &vmw_ttm_io_mem_free,
886
};