cx18-av-core.c 40.1 KB
Newer Older
1 2 3 4 5 6
/*
 *  cx18 ADEC audio functions
 *
 *  Derived from cx25840-core.c
 *
 *  Copyright (C) 2007  Hans Verkuil <hverkuil@xs4all.nl>
7
 *  Copyright (C) 2008  Andy Walls <awalls@radix.net>
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version 2
 *  of the License, or (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 *  02110-1301, USA.
 */

25
#include <media/v4l2-chip-ident.h>
26
#include "cx18-driver.h"
27
#include "cx18-io.h"
28
#include "cx18-cards.h"
29 30 31

int cx18_av_write(struct cx18 *cx, u16 addr, u8 value)
{
32
	u32 reg = 0xc40000 + (addr & ~3);
33 34
	u32 mask = 0xff;
	int shift = (addr & 3) * 8;
35
	u32 x = cx18_read_reg(cx, reg);
36 37

	x = (x & ~(mask << shift)) | ((u32)value << shift);
38
	cx18_write_reg(cx, x, reg);
39 40 41
	return 0;
}

42 43 44 45 46 47 48 49 50 51 52 53
int cx18_av_write_expect(struct cx18 *cx, u16 addr, u8 value, u8 eval, u8 mask)
{
	u32 reg = 0xc40000 + (addr & ~3);
	int shift = (addr & 3) * 8;
	u32 x = cx18_read_reg(cx, reg);

	x = (x & ~((u32)0xff << shift)) | ((u32)value << shift);
	cx18_write_reg_expect(cx, x, reg,
				((u32)eval << shift), ((u32)mask << shift));
	return 0;
}

54 55
int cx18_av_write4(struct cx18 *cx, u16 addr, u32 value)
{
56
	cx18_write_reg(cx, value, 0xc40000 + addr);
57 58 59
	return 0;
}

60 61 62 63 64 65 66
int
cx18_av_write4_expect(struct cx18 *cx, u16 addr, u32 value, u32 eval, u32 mask)
{
	cx18_write_reg_expect(cx, value, 0xc40000 + addr, eval, mask);
	return 0;
}

67 68 69 70 71 72
int cx18_av_write4_noretry(struct cx18 *cx, u16 addr, u32 value)
{
	cx18_write_reg_noretry(cx, value, 0xc40000 + addr);
	return 0;
}

73 74
u8 cx18_av_read(struct cx18 *cx, u16 addr)
{
75
	u32 x = cx18_read_reg(cx, 0xc40000 + (addr & ~3));
76 77 78 79 80 81 82
	int shift = (addr & 3) * 8;

	return (x >> shift) & 0xff;
}

u32 cx18_av_read4(struct cx18 *cx, u16 addr)
{
83
	return cx18_read_reg(cx, 0xc40000 + addr);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
}

int cx18_av_and_or(struct cx18 *cx, u16 addr, unsigned and_mask,
		   u8 or_value)
{
	return cx18_av_write(cx, addr,
			     (cx18_av_read(cx, addr) & and_mask) |
			     or_value);
}

int cx18_av_and_or4(struct cx18 *cx, u16 addr, u32 and_mask,
		   u32 or_value)
{
	return cx18_av_write4(cx, addr,
			     (cx18_av_read4(cx, addr) & and_mask) |
			     or_value);
}

102
static int cx18_av_init(struct v4l2_subdev *sd, u32 val)
103
{
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
	struct cx18 *cx = v4l2_get_subdevdata(sd);

	/*
	 * The crystal freq used in calculations in this driver will be
	 * 28.636360 MHz.
	 * Aim to run the PLLs' VCOs near 400 MHz to minimze errors.
	 */

	/*
	 * VDCLK  Integer = 0x0f, Post Divider = 0x04
	 * AIMCLK Integer = 0x0e, Post Divider = 0x16
	 */
	cx18_av_write4(cx, CXADEC_PLL_CTRL1, 0x160e040f);

	/* VDCLK Fraction = 0x2be2fe */
	/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz before post divide */
	cx18_av_write4(cx, CXADEC_VID_PLL_FRAC, 0x002be2fe);

	/* AIMCLK Fraction = 0x05227ad */
	/* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz pre post-div*/
	cx18_av_write4(cx, CXADEC_AUX_PLL_FRAC, 0x005227ad);

	/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
	cx18_av_write(cx, CXADEC_I2S_MCLK, 0x56);
	return 0;
}

static void cx18_av_initialize(struct v4l2_subdev *sd)
{
	struct cx18_av_state *state = to_cx18_av_state(sd);
	struct cx18 *cx = v4l2_get_subdevdata(sd);
135 136 137 138
	u32 v;

	cx18_av_loadfw(cx);
	/* Stop 8051 code execution */
139 140
	cx18_av_write4_expect(cx, CXADEC_DL_CTL, 0x03000000,
						 0x03000000, 0x13000000);
141 142 143

	/* initallize the PLL by toggling sleep bit */
	v = cx18_av_read4(cx, CXADEC_HOST_REG1);
144 145
	/* enable sleep mode - register appears to be read only... */
	cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v | 1, v, 0xfffe);
146
	/* disable sleep mode */
147 148
	cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v & 0xfffe,
						    v & 0xfffe, 0xffff);
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

	/* initialize DLLs */
	v = cx18_av_read4(cx, CXADEC_DLL1_DIAG_CTRL) & 0xE1FFFEFF;
	/* disable FLD */
	cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v);
	/* enable FLD */
	cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v | 0x10000100);

	v = cx18_av_read4(cx, CXADEC_DLL2_DIAG_CTRL) & 0xE1FFFEFF;
	/* disable FLD */
	cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v);
	/* enable FLD */
	cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v | 0x06000100);

	/* set analog bias currents. Set Vreg to 1.20V. */
	cx18_av_write4(cx, CXADEC_AFE_DIAG_CTRL1, 0x000A1802);

	v = cx18_av_read4(cx, CXADEC_AFE_DIAG_CTRL3) | 1;
	/* enable TUNE_FIL_RST */
168
	cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3, v, v, 0x03009F0F);
169
	/* disable TUNE_FIL_RST */
170 171
	cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3,
			      v & 0xFFFFFFFE, v & 0xFFFFFFFE, 0x03009F0F);
172 173 174 175 176 177 178 179 180 181 182

	/* enable 656 output */
	cx18_av_and_or4(cx, CXADEC_PIN_CTRL1, ~0, 0x040C00);

	/* video output drive strength */
	cx18_av_and_or4(cx, CXADEC_PIN_CTRL2, ~0, 0x2);

	/* reset video */
	cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0x8000);
	cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0);

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	/*
	 * Disable Video Auto-config of the Analog Front End and Video PLL.
	 *
	 * Since we only use BT.656 pixel mode, which works for both 525 and 625
	 * line systems, it's just easier for us to set registers
	 * 0x102 (CXADEC_CHIP_CTRL), 0x104-0x106 (CXADEC_AFE_CTRL),
	 * 0x108-0x109 (CXADEC_PLL_CTRL1), and 0x10c-0x10f (CXADEC_VID_PLL_FRAC)
	 * ourselves, than to run around cleaning up after the auto-config.
	 *
	 * (Note: my CX23418 chip doesn't seem to let the ACFG_DIS bit
	 * get set to 1, but OTOH, it doesn't seem to do AFE and VID PLL
	 * autoconfig either.)
	 *
	 * As a default, also turn off Dual mode for ADC2 and set ADC2 to CH3.
	 */
	cx18_av_and_or4(cx, CXADEC_CHIP_CTRL, 0xFFFBFFFF, 0x00120000);

	/* Setup the Video and and Aux/Audio PLLs */
	cx18_av_init(sd, 0);

203 204 205 206 207 208 209 210 211 212 213 214
	/* set video to auto-detect */
	/* Clear bits 11-12 to enable slow locking mode.  Set autodetect mode */
	/* set the comb notch = 1 */
	cx18_av_and_or4(cx, CXADEC_MODE_CTRL, 0xFFF7E7F0, 0x02040800);

	/* Enable wtw_en in CRUSH_CTRL (Set bit 22) */
	/* Enable maj_sel in CRUSH_CTRL (Set bit 20) */
	cx18_av_and_or4(cx, CXADEC_CRUSH_CTRL, ~0, 0x00500000);

	/* Set VGA_TRACK_RANGE to 0x20 */
	cx18_av_and_or4(cx, CXADEC_DFE_CTRL2, 0xFFFF00FF, 0x00002000);

215 216 217
	/*
	 * Initial VBI setup
	 * VIP-1.1, 10 bit mode, enable Raw, disable sliced,
218 219
	 * don't clamp raw samples when codes are in use, 1 byte user D-words,
	 * IDID0 has line #, RP code V bit transition on VBLANK, data during
220 221
	 * blanking intervals
	 */
222
	cx18_av_write4(cx, CXADEC_OUT_CTRL1, 0x4013252e);
223 224 225 226 227 228

	/* Set the video input.
	   The setting in MODE_CTRL gets lost when we do the above setup */
	/* EncSetSignalStd(dwDevNum, pEnc->dwSigStd); */
	/* EncSetVideoInput(dwDevNum, pEnc->VidIndSelection); */

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	/*
	 * Analog Front End (AFE)
	 * Default to luma on ch1/ADC1, chroma on ch2/ADC2, SIF on ch3/ADC2
	 *  bypass_ch[1-3]     use filter
	 *  droop_comp_ch[1-3] disable
	 *  clamp_en_ch[1-3]   disable
	 *  aud_in_sel         ADC2
	 *  luma_in_sel        ADC1
	 *  chroma_in_sel      ADC2
	 *  clamp_sel_ch[2-3]  midcode
	 *  clamp_sel_ch1      video decoder
	 *  vga_sel_ch3        audio decoder
	 *  vga_sel_ch[1-2]    video decoder
	 *  half_bw_ch[1-3]    disable
	 *  +12db_ch[1-3]      disable
	 */
	cx18_av_and_or4(cx, CXADEC_AFE_CTRL, 0xFF000000, 0x00005D00);
246 247 248 249 250 251 252

/* 	if(dwEnable && dw3DCombAvailable) { */
/*      	CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x7728021F); */
/*    } else { */
/*      	CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x6628021F); */
/*    } */
	cx18_av_write4(cx, CXADEC_SRC_COMB_CFG, 0x6628021F);
253 254
	state->default_volume = 228 - cx18_av_read(cx, 0x8d4);
	state->default_volume = ((state->default_volume / 2) + 23) << 9;
255 256
}

257 258
static int cx18_av_reset(struct v4l2_subdev *sd, u32 val)
{
259
	cx18_av_initialize(sd);
260 261
	return 0;
}
262

263 264 265 266 267 268 269
static int cx18_av_load_fw(struct v4l2_subdev *sd)
{
	struct cx18_av_state *state = to_cx18_av_state(sd);

	if (!state->is_initialized) {
		/* initialize on first use */
		state->is_initialized = 1;
270
		cx18_av_initialize(sd);
271 272 273
	}
	return 0;
}
274

275 276 277
void cx18_av_std_setup(struct cx18 *cx)
{
	struct cx18_av_state *state = &cx->av_state;
278
	struct v4l2_subdev *sd = &state->sd;
279
	v4l2_std_id std = state->std;
280 281 282 283 284 285 286

	/*
	 * Video ADC crystal clock to pixel clock SRC decimation ratio
	 * 28.636360 MHz/13.5 Mpps * 256 = 0x21f.07b
	 */
	const int src_decimation = 0x21f;

287
	int hblank, hactive, burst, vblank, vactive, sc;
288
	int vblank656;
289 290 291 292 293 294 295 296 297
	int luma_lpf, uv_lpf, comb;
	u32 pll_int, pll_frac, pll_post;

	/* datasheet startup, step 8d */
	if (std & ~V4L2_STD_NTSC)
		cx18_av_write(cx, 0x49f, 0x11);
	else
		cx18_av_write(cx, 0x49f, 0x14);

298 299 300 301 302 303 304 305
	/*
	 * Note: At the end of a field, there are 3 sets of half line duration
	 * (double horizontal rate) pulses:
	 *
	 * 5 (625) or 6 (525) half-lines to blank for the vertical retrace
	 * 5 (625) or 6 (525) vertical sync pulses of half line duration
	 * 5 (625) or 6 (525) half-lines of equalization pulses
	 */
306
	if (std & V4L2_STD_625_50) {
307 308
		/*
		 * The following relationships of half line counts should hold:
309
		 * 625 = vblank656 + vactive
310 311 312 313
		 * 10 = vblank656 - vblank = vsync pulses + equalization pulses
		 *
		 * vblank656: half lines after line 625/mid-313 of blanked video
		 * vblank:    half lines, after line 5/317, of blanked video
314 315
		 * vactive:   half lines of active video +
		 * 		5 half lines after the end of active video
316 317 318 319 320 321 322 323 324 325
		 *
		 * As far as I can tell:
		 * vblank656 starts counting from the falling edge of the first
		 * 	vsync pulse (start of line 1 or mid-313)
		 * vblank starts counting from the after the 5 vsync pulses and
		 * 	5 or 4 equalization pulses (start of line 6 or 318)
		 *
		 * For 625 line systems the driver will extract VBI information
		 * from lines 6-23 and lines 318-335 (but the slicer can only
		 * handle 17 lines, not the 18 in the vblank region).
326 327 328 329 330 331 332 333 334 335 336
		 * In addition, we need vblank656 and vblank to be one whole
		 * line longer, to cover line 24 and 336, so the SAV/EAV RP
		 * codes get generated such that the encoder can actually
		 * extract line 23 & 335 (WSS).  We'll lose 1 line in each field
		 * at the top of the screen.
		 *
		 * It appears the 5 half lines that happen after active
		 * video must be included in vactive (579 instead of 574),
		 * otherwise the colors get badly displayed in various regions
		 * of the screen.  I guess the chroma comb filter gets confused
		 * without them (at least when a PVR-350 is the PAL source).
337
		 */
338 339 340
		vblank656 = 48; /* lines  1 -  24  &  313 - 336 */
		vblank = 38;    /* lines  6 -  24  &  318 - 336 */
		vactive = 579;  /* lines 24 - 313  &  337 - 626 */
341 342 343 344 345 346 347 348

		/*
		 * For a 13.5 Mpps clock and 15,625 Hz line rate, a line is
		 * is 864 pixels = 720 active + 144 blanking.  ITU-R BT.601
		 * specifies 12 luma clock periods or ~ 0.9 * 13.5 Mpps after
		 * the end of active video to start a horizontal line, so that
		 * leaves 132 pixels of hblank to ignore.
		 */
349 350 351
		hblank = 132;
		hactive = 720;

352 353 354 355 356 357 358
		/*
		 * Burst gate delay (for 625 line systems)
		 * Hsync leading edge to color burst rise = 5.6 us
		 * Color burst width = 2.25 us
		 * Gate width = 4 pixel clocks
		 * (5.6 us + 2.25/2 us) * 13.5 Mpps + 4/2 clocks = 92.79 clocks
		 */
359
		burst = 93;
360 361 362 363
		luma_lpf = 2;
		if (std & V4L2_STD_PAL) {
			uv_lpf = 1;
			comb = 0x20;
364 365
			/* sc = 4433618.75 * src_decimation/28636360 * 2^13 */
			sc = 688700;
366 367 368
		} else if (std == V4L2_STD_PAL_Nc) {
			uv_lpf = 1;
			comb = 0x20;
369 370
			/* sc = 3582056.25 * src_decimation/28636360 * 2^13 */
			sc = 556422;
371 372 373
		} else { /* SECAM */
			uv_lpf = 0;
			comb = 0;
374 375 376
			/* (fr + fb)/2 = (4406260 + 4250000)/2 = 4328130 */
			/* sc = 4328130 * src_decimation/28636360 * 2^13 */
			sc = 672314;
377 378
		}
	} else {
379 380
		/*
		 * The following relationships of half line counts should hold:
381 382
		 * 525 = prevsync + vblank656 + vactive
		 * 12 = vblank656 - vblank = vsync pulses + equalization pulses
383
		 *
384
		 * prevsync:  6 half-lines before the vsync pulses
385 386
		 * vblank656: half lines, after line 3/mid-266, of blanked video
		 * vblank:    half lines, after line 9/272, of blanked video
387
		 * vactive:   half lines of active video
388
		 *
389
		 * As far as I can tell:
390
		 * vblank656 starts counting from the falling edge of the first
391
		 * 	vsync pulse (start of line 4 or mid-266)
392
		 * vblank starts counting from the after the 6 vsync pulses and
393
		 * 	6 or 5 equalization pulses (start of line 10 or 272)
394 395
		 *
		 * For 525 line systems the driver will extract VBI information
396
		 * from lines 10-21 and lines 273-284.
397
		 */
398 399 400
		vblank656 = 38; /* lines  4 -  22  &  266 - 284 */
		vblank = 26;	/* lines 10 -  22  &  272 - 284 */
		vactive = 481;  /* lines 23 - 263  &  285 - 525 */
401

402 403 404 405 406 407 408
		/*
		 * For a 13.5 Mpps clock and 15,734.26 Hz line rate, a line is
		 * is 858 pixels = 720 active + 138 blanking.  The Hsync leading
		 * edge should happen 1.2 us * 13.5 Mpps ~= 16 pixels after the
		 * end of active video, leaving 122 pixels of hblank to ignore
		 * before active video starts.
		 */
409 410 411 412 413
		hactive = 720;
		hblank = 122;
		luma_lpf = 1;
		uv_lpf = 1;

414 415 416 417 418 419 420
		/*
		 * Burst gate delay (for 525 line systems)
		 * Hsync leading edge to color burst rise = 5.3 us
		 * Color burst width = 2.5 us
		 * Gate width = 4 pixel clocks
		 * (5.3 us + 2.5/2 us) * 13.5 Mpps + 4/2 clocks = 90.425 clocks
		 */
421
		if (std == V4L2_STD_PAL_60) {
422
			burst = 90;
423 424
			luma_lpf = 2;
			comb = 0x20;
425 426
			/* sc = 4433618.75 * src_decimation/28636360 * 2^13 */
			sc = 688700;
427
		} else if (std == V4L2_STD_PAL_M) {
428 429
			/* The 97 needs to be verified against PAL-M timings */
			burst = 97;
430
			comb = 0x20;
431 432
			/* sc = 3575611.49 * src_decimation/28636360 * 2^13 */
			sc = 555421;
433
		} else {
434
			burst = 90;
435
			comb = 0x66;
436 437
			/* sc = 3579545.45.. * src_decimation/28636360 * 2^13 */
			sc = 556032;
438 439 440 441 442 443 444
		}
	}

	/* DEBUG: Displays configured PLL frequency */
	pll_int = cx18_av_read(cx, 0x108);
	pll_frac = cx18_av_read4(cx, 0x10c) & 0x1ffffff;
	pll_post = cx18_av_read(cx, 0x109);
445 446
	CX18_DEBUG_INFO_DEV(sd, "PLL regs = int: %u, frac: %u, post: %u\n",
			    pll_int, pll_frac, pll_post);
447 448

	if (pll_post) {
449
		int fsc, pll;
450
		u64 tmp;
451

452
		pll = (28636360L * ((((u64)pll_int) << 25) + pll_frac)) >> 25;
453
		pll /= pll_post;
454
		CX18_DEBUG_INFO_DEV(sd, "Video PLL = %d.%06d MHz\n",
455
				    pll / 1000000, pll % 1000000);
456
		CX18_DEBUG_INFO_DEV(sd, "Pixel rate = %d.%06d Mpixel/sec\n",
457
				    pll / 8000000, (pll / 8) % 1000000);
458

459 460 461
		CX18_DEBUG_INFO_DEV(sd, "ADC XTAL/pixel clock decimation ratio "
				    "= %d.%03d\n", src_decimation / 256,
				    ((src_decimation % 256) * 1000) / 256);
462

463 464 465
		tmp = 28636360 * (u64) sc;
		do_div(tmp, src_decimation);
		fsc = tmp >> 13;
466
		CX18_DEBUG_INFO_DEV(sd,
467 468
				    "Chroma sub-carrier initial freq = %d.%06d "
				    "MHz\n", fsc / 1000000, fsc % 1000000);
469 470 471 472 473 474 475 476

		CX18_DEBUG_INFO_DEV(sd, "hblank %i, hactive %i, vblank %i, "
				    "vactive %i, vblank656 %i, src_dec %i, "
				    "burst 0x%02x, luma_lpf %i, uv_lpf %i, "
				    "comb 0x%02x, sc 0x%06x\n",
				    hblank, hactive, vblank, vactive, vblank656,
				    src_decimation, burst, luma_lpf, uv_lpf,
				    comb, sc);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	}

	/* Sets horizontal blanking delay and active lines */
	cx18_av_write(cx, 0x470, hblank);
	cx18_av_write(cx, 0x471, 0xff & (((hblank >> 8) & 0x3) |
						(hactive << 4)));
	cx18_av_write(cx, 0x472, hactive >> 4);

	/* Sets burst gate delay */
	cx18_av_write(cx, 0x473, burst);

	/* Sets vertical blanking delay and active duration */
	cx18_av_write(cx, 0x474, vblank);
	cx18_av_write(cx, 0x475, 0xff & (((vblank >> 8) & 0x3) |
						(vactive << 4)));
	cx18_av_write(cx, 0x476, vactive >> 4);
	cx18_av_write(cx, 0x477, vblank656);

	/* Sets src decimation rate */
	cx18_av_write(cx, 0x478, 0xff & src_decimation);
	cx18_av_write(cx, 0x479, 0xff & (src_decimation >> 8));

	/* Sets Luma and UV Low pass filters */
	cx18_av_write(cx, 0x47a, luma_lpf << 6 | ((uv_lpf << 4) & 0x30));

	/* Enables comb filters */
	cx18_av_write(cx, 0x47b, comb);

	/* Sets SC Step*/
	cx18_av_write(cx, 0x47c, sc);
	cx18_av_write(cx, 0x47d, 0xff & sc >> 8);
	cx18_av_write(cx, 0x47e, 0xff & sc >> 16);

	if (std & V4L2_STD_625_50) {
511 512
		state->slicer_line_delay = 1;
		state->slicer_line_offset = (6 + state->slicer_line_delay - 2);
513
	} else {
514 515
		state->slicer_line_delay = 0;
		state->slicer_line_offset = (10 + state->slicer_line_delay - 2);
516
	}
517
	cx18_av_write(cx, 0x47f, state->slicer_line_delay);
518 519
}

520 521 522 523
static void input_change(struct cx18 *cx)
{
	struct cx18_av_state *state = &cx->av_state;
	v4l2_std_id std = state->std;
524
	u8 v;
525 526

	/* Follow step 8c and 8d of section 3.16 in the cx18_av datasheet */
527 528 529
	cx18_av_write(cx, 0x49f, (std & V4L2_STD_NTSC) ? 0x14 : 0x11);
	cx18_av_and_or(cx, 0x401, ~0x60, 0);
	cx18_av_and_or(cx, 0x401, ~0x60, 0x60);
530 531 532 533

	if (std & V4L2_STD_525_60) {
		if (std == V4L2_STD_NTSC_M_JP) {
			/* Japan uses EIAJ audio standard */
534 535
			cx18_av_write_expect(cx, 0x808, 0xf7, 0xf7, 0xff);
			cx18_av_write_expect(cx, 0x80b, 0x02, 0x02, 0x3f);
536 537
		} else if (std == V4L2_STD_NTSC_M_KR) {
			/* South Korea uses A2 audio standard */
538 539
			cx18_av_write_expect(cx, 0x808, 0xf8, 0xf8, 0xff);
			cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f);
540 541
		} else {
			/* Others use the BTSC audio standard */
542 543
			cx18_av_write_expect(cx, 0x808, 0xf6, 0xf6, 0xff);
			cx18_av_write_expect(cx, 0x80b, 0x01, 0x01, 0x3f);
544 545 546
		}
	} else if (std & V4L2_STD_PAL) {
		/* Follow tuner change procedure for PAL */
547 548
		cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff);
		cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f);
549 550
	} else if (std & V4L2_STD_SECAM) {
		/* Select autodetect for SECAM */
551 552
		cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff);
		cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f);
553 554
	}

555 556
	v = cx18_av_read(cx, 0x803);
	if (v & 0x10) {
557
		/* restart audio decoder microcontroller */
558 559 560 561
		v &= ~0x10;
		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
		v |= 0x10;
		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
562 563 564
	}
}

565 566 567 568 569 570 571 572
static int cx18_av_s_frequency(struct v4l2_subdev *sd,
			       struct v4l2_frequency *freq)
{
	struct cx18 *cx = v4l2_get_subdevdata(sd);
	input_change(cx);
	return 0;
}

573 574 575 576
static int set_input(struct cx18 *cx, enum cx18_av_video_input vid_input,
					enum cx18_av_audio_input aud_input)
{
	struct cx18_av_state *state = &cx->av_state;
577
	struct v4l2_subdev *sd = &state->sd;
578 579 580 581 582 583 584 585 586

	enum analog_signal_type {
		NONE, CVBS, Y, C, SIF, Pb, Pr
	} ch[3] = {NONE, NONE, NONE};

	u8 afe_mux_cfg;
	u8 adc2_cfg;
	u32 afe_cfg;
	int i;
587

588 589
	CX18_DEBUG_INFO_DEV(sd, "decoder set video input %d, audio input %d\n",
			    vid_input, aud_input);
590

591 592 593 594
	if (vid_input >= CX18_AV_COMPOSITE1 &&
	    vid_input <= CX18_AV_COMPOSITE8) {
		afe_mux_cfg = 0xf0 + (vid_input - CX18_AV_COMPOSITE1);
		ch[0] = CVBS;
595 596 597 598 599 600
	} else {
		int luma = vid_input & 0xf0;
		int chroma = vid_input & 0xf00;

		if ((vid_input & ~0xff0) ||
		    luma < CX18_AV_SVIDEO_LUMA1 ||
601
		    luma > CX18_AV_SVIDEO_LUMA8 ||
602 603
		    chroma < CX18_AV_SVIDEO_CHROMA4 ||
		    chroma > CX18_AV_SVIDEO_CHROMA8) {
604 605
			CX18_ERR_DEV(sd, "0x%04x is not a valid video input!\n",
				     vid_input);
606 607
			return -EINVAL;
		}
608 609
		afe_mux_cfg = 0xf0 + ((luma - CX18_AV_SVIDEO_LUMA1) >> 4);
		ch[0] = Y;
610
		if (chroma >= CX18_AV_SVIDEO_CHROMA7) {
611 612 613
			afe_mux_cfg &= 0x3f;
			afe_mux_cfg |= (chroma - CX18_AV_SVIDEO_CHROMA7) >> 2;
			ch[2] = C;
614
		} else {
615 616 617
			afe_mux_cfg &= 0xcf;
			afe_mux_cfg |= (chroma - CX18_AV_SVIDEO_CHROMA4) >> 4;
			ch[1] = C;
618 619
		}
	}
620
	/* TODO: LeadTek WinFast DVR3100 H & WinFast PVR2100 can do Y/Pb/Pr */
621 622

	switch (aud_input) {
623 624
	case CX18_AV_AUDIO_SERIAL1:
	case CX18_AV_AUDIO_SERIAL2:
625 626
		/* do nothing, use serial audio input */
		break;
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	case CX18_AV_AUDIO4:
		afe_mux_cfg &= ~0x30;
		ch[1] = SIF;
		break;
	case CX18_AV_AUDIO5:
		afe_mux_cfg = (afe_mux_cfg & ~0x30) | 0x10;
		ch[1] = SIF;
		break;
	case CX18_AV_AUDIO6:
		afe_mux_cfg = (afe_mux_cfg & ~0x30) | 0x20;
		ch[1] = SIF;
		break;
	case CX18_AV_AUDIO7:
		afe_mux_cfg &= ~0xc0;
		ch[2] = SIF;
		break;
	case CX18_AV_AUDIO8:
		afe_mux_cfg = (afe_mux_cfg & ~0xc0) | 0x40;
		ch[2] = SIF;
		break;
647 648

	default:
649 650
		CX18_ERR_DEV(sd, "0x%04x is not a valid audio input!\n",
			     aud_input);
651 652 653
		return -EINVAL;
	}

654 655
	/* Set up analog front end multiplexers */
	cx18_av_write_expect(cx, 0x103, afe_mux_cfg, afe_mux_cfg, 0xf7);
656
	/* Set INPUT_MODE to Composite (0) or S-Video (1) */
657
	cx18_av_and_or(cx, 0x401, ~0x6, ch[0] == CVBS ? 0 : 0x02);
658

659
	/* Set CH_SEL_ADC2 to 1 if input comes from CH3 */
660 661 662
	adc2_cfg = cx18_av_read(cx, 0x102);
	if (ch[2] == NONE)
		adc2_cfg &= ~0x2; /* No sig on CH3, set ADC2 to CH2 for input */
663
	else
664 665
		adc2_cfg |= 0x2;  /* Signal on CH3, set ADC2 to CH3 for input */

666
	/* Set DUAL_MODE_ADC2 to 1 if input comes from both CH2 and CH3 */
667 668
	if (ch[1] != NONE && ch[2] != NONE)
		adc2_cfg |= 0x4; /* Set dual mode */
669
	else
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
		adc2_cfg &= ~0x4; /* Clear dual mode */
	cx18_av_write_expect(cx, 0x102, adc2_cfg, adc2_cfg, 0x17);

	/* Configure the analog front end */
	afe_cfg = cx18_av_read4(cx, CXADEC_AFE_CTRL);
	afe_cfg &= 0xff000000;
	afe_cfg |= 0x00005000; /* CHROMA_IN, AUD_IN: ADC2; LUMA_IN: ADC1 */
	if (ch[1] != NONE && ch[2] != NONE)
		afe_cfg |= 0x00000030; /* half_bw_ch[2-3] since in dual mode */

	for (i = 0; i < 3; i++) {
		switch (ch[i]) {
		default:
		case NONE:
			/* CLAMP_SEL = Fixed to midcode clamp level */
			afe_cfg |= (0x00000200 << i);
			break;
		case CVBS:
		case Y:
			if (i > 0)
				afe_cfg |= 0x00002000; /* LUMA_IN_SEL: ADC2 */
			break;
		case C:
		case Pb:
		case Pr:
			/* CLAMP_SEL = Fixed to midcode clamp level */
			afe_cfg |= (0x00000200 << i);
			if (i == 0 && ch[i] == C)
				afe_cfg &= ~0x00001000; /* CHROMA_IN_SEL ADC1 */
			break;
		case SIF:
			/*
			 * VGA_GAIN_SEL = Audio Decoder
			 * CLAMP_SEL = Fixed to midcode clamp level
			 */
			afe_cfg |= (0x00000240 << i);
			if (i == 0)
				afe_cfg &= ~0x00004000; /* AUD_IN_SEL ADC1 */
			break;
		}
	}
711

712
	cx18_av_write4(cx, CXADEC_AFE_CTRL, afe_cfg);
713 714 715 716 717 718 719 720

	state->vid_input = vid_input;
	state->aud_input = aud_input;
	cx18_av_audio_set_path(cx);
	input_change(cx);
	return 0;
}

721
static int cx18_av_s_video_routing(struct v4l2_subdev *sd,
722
				   u32 input, u32 output, u32 config)
723 724 725
{
	struct cx18_av_state *state = to_cx18_av_state(sd);
	struct cx18 *cx = v4l2_get_subdevdata(sd);
726
	return set_input(cx, input, state->aud_input);
727
}
728

729
static int cx18_av_s_audio_routing(struct v4l2_subdev *sd,
730
				   u32 input, u32 output, u32 config)
731
{
732 733
	struct cx18_av_state *state = to_cx18_av_state(sd);
	struct cx18 *cx = v4l2_get_subdevdata(sd);
734
	return set_input(cx, state->vid_input, input);
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
}

static int cx18_av_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt)
{
	struct cx18_av_state *state = to_cx18_av_state(sd);
	struct cx18 *cx = v4l2_get_subdevdata(sd);
	u8 vpres;
	u8 mode;
	int val = 0;

	if (state->radio)
		return 0;

	vpres = cx18_av_read(cx, 0x40e) & 0x20;
	vt->signal = vpres ? 0xffff : 0x0;

	vt->capability |=
		    V4L2_TUNER_CAP_STEREO | V4L2_TUNER_CAP_LANG1 |
		    V4L2_TUNER_CAP_LANG2 | V4L2_TUNER_CAP_SAP;

	mode = cx18_av_read(cx, 0x804);

	/* get rxsubchans and audmode */
	if ((mode & 0xf) == 1)
		val |= V4L2_TUNER_SUB_STEREO;
	else
		val |= V4L2_TUNER_SUB_MONO;

	if (mode == 2 || mode == 4)
		val = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;

	if (mode & 0x10)
		val |= V4L2_TUNER_SUB_SAP;

	vt->rxsubchans = val;
	vt->audmode = state->audmode;
	return 0;
}

static int cx18_av_s_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt)
{
	struct cx18_av_state *state = to_cx18_av_state(sd);
	struct cx18 *cx = v4l2_get_subdevdata(sd);
	u8 v;

	if (state->radio)
		return 0;

	v = cx18_av_read(cx, 0x809);
	v &= ~0xf;

	switch (vt->audmode) {
	case V4L2_TUNER_MODE_MONO:
		/* mono      -> mono
		   stereo    -> mono
		   bilingual -> lang1 */
		break;
	case V4L2_TUNER_MODE_STEREO:
	case V4L2_TUNER_MODE_LANG1:
		/* mono      -> mono
		   stereo    -> stereo
		   bilingual -> lang1 */
		v |= 0x4;
		break;
	case V4L2_TUNER_MODE_LANG1_LANG2:
		/* mono      -> mono
		   stereo    -> stereo
		   bilingual -> lang1/lang2 */
		v |= 0x7;
		break;
	case V4L2_TUNER_MODE_LANG2:
		/* mono      -> mono
		   stereo    -> stereo
		   bilingual -> lang2 */
		v |= 0x1;
		break;
	default:
		return -EINVAL;
	}
	cx18_av_write_expect(cx, 0x809, v, v, 0xff);
	state->audmode = vt->audmode;
	return 0;
}

static int cx18_av_s_std(struct v4l2_subdev *sd, v4l2_std_id norm)
{
	struct cx18_av_state *state = to_cx18_av_state(sd);
	struct cx18 *cx = v4l2_get_subdevdata(sd);

824 825 826
	u8 fmt = 0; 	/* zero is autodetect */
	u8 pal_m = 0;

827 828 829 830 831 832
	if (state->radio == 0 && state->std == norm)
		return 0;

	state->radio = 0;
	state->std = norm;

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	/* First tests should be against specific std */
	if (state->std == V4L2_STD_NTSC_M_JP) {
		fmt = 0x2;
	} else if (state->std == V4L2_STD_NTSC_443) {
		fmt = 0x3;
	} else if (state->std == V4L2_STD_PAL_M) {
		pal_m = 1;
		fmt = 0x5;
	} else if (state->std == V4L2_STD_PAL_N) {
		fmt = 0x6;
	} else if (state->std == V4L2_STD_PAL_Nc) {
		fmt = 0x7;
	} else if (state->std == V4L2_STD_PAL_60) {
		fmt = 0x8;
	} else {
		/* Then, test against generic ones */
		if (state->std & V4L2_STD_NTSC)
			fmt = 0x1;
		else if (state->std & V4L2_STD_PAL)
			fmt = 0x4;
		else if (state->std & V4L2_STD_SECAM)
			fmt = 0xc;
	}

857
	CX18_DEBUG_INFO_DEV(sd, "changing video std to fmt %i\n", fmt);
858 859 860 861 862 863

	/* Follow step 9 of section 3.16 in the cx18_av datasheet.
	   Without this PAL may display a vertical ghosting effect.
	   This happens for example with the Yuan MPC622. */
	if (fmt >= 4 && fmt < 8) {
		/* Set format to NTSC-M */
864
		cx18_av_and_or(cx, 0x400, ~0xf, 1);
865 866 867
		/* Turn off LCOMB */
		cx18_av_and_or(cx, 0x47b, ~6, 0);
	}
868 869
	cx18_av_and_or(cx, 0x400, ~0x2f, fmt | 0x20);
	cx18_av_and_or(cx, 0x403, ~0x3, pal_m);
870
	cx18_av_std_setup(cx);
871 872 873 874
	input_change(cx);
	return 0;
}

875 876 877 878 879 880
static int cx18_av_s_radio(struct v4l2_subdev *sd)
{
	struct cx18_av_state *state = to_cx18_av_state(sd);
	state->radio = 1;
	return 0;
}
881

882
static int cx18_av_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
883
{
884 885
	struct cx18 *cx = v4l2_get_subdevdata(sd);

886 887 888
	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		if (ctrl->value < 0 || ctrl->value > 255) {
889 890
			CX18_ERR_DEV(sd, "invalid brightness setting %d\n",
				     ctrl->value);
891 892 893 894 895 896 897 898
			return -ERANGE;
		}

		cx18_av_write(cx, 0x414, ctrl->value - 128);
		break;

	case V4L2_CID_CONTRAST:
		if (ctrl->value < 0 || ctrl->value > 127) {
899 900
			CX18_ERR_DEV(sd, "invalid contrast setting %d\n",
				     ctrl->value);
901 902 903 904 905 906 907 908
			return -ERANGE;
		}

		cx18_av_write(cx, 0x415, ctrl->value << 1);
		break;

	case V4L2_CID_SATURATION:
		if (ctrl->value < 0 || ctrl->value > 127) {
909 910
			CX18_ERR_DEV(sd, "invalid saturation setting %d\n",
				     ctrl->value);
911 912 913 914 915 916 917 918
			return -ERANGE;
		}

		cx18_av_write(cx, 0x420, ctrl->value << 1);
		cx18_av_write(cx, 0x421, ctrl->value << 1);
		break;

	case V4L2_CID_HUE:
919
		if (ctrl->value < -128 || ctrl->value > 127) {
920 921
			CX18_ERR_DEV(sd, "invalid hue setting %d\n",
				     ctrl->value);
922 923 924 925 926 927 928 929 930 931 932
			return -ERANGE;
		}

		cx18_av_write(cx, 0x422, ctrl->value);
		break;

	case V4L2_CID_AUDIO_VOLUME:
	case V4L2_CID_AUDIO_BASS:
	case V4L2_CID_AUDIO_TREBLE:
	case V4L2_CID_AUDIO_BALANCE:
	case V4L2_CID_AUDIO_MUTE:
933
		return cx18_av_audio_s_ctrl(cx, ctrl);
934 935 936 937 938 939 940

	default:
		return -EINVAL;
	}
	return 0;
}

941
static int cx18_av_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
942
{
943 944
	struct cx18 *cx = v4l2_get_subdevdata(sd);

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		ctrl->value = (s8)cx18_av_read(cx, 0x414) + 128;
		break;
	case V4L2_CID_CONTRAST:
		ctrl->value = cx18_av_read(cx, 0x415) >> 1;
		break;
	case V4L2_CID_SATURATION:
		ctrl->value = cx18_av_read(cx, 0x420) >> 1;
		break;
	case V4L2_CID_HUE:
		ctrl->value = (s8)cx18_av_read(cx, 0x422);
		break;
	case V4L2_CID_AUDIO_VOLUME:
	case V4L2_CID_AUDIO_BASS:
	case V4L2_CID_AUDIO_TREBLE:
	case V4L2_CID_AUDIO_BALANCE:
	case V4L2_CID_AUDIO_MUTE:
963
		return cx18_av_audio_g_ctrl(cx, ctrl);
964 965 966 967 968 969
	default:
		return -EINVAL;
	}
	return 0;
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
static int cx18_av_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc)
{
	struct cx18_av_state *state = to_cx18_av_state(sd);

	switch (qc->id) {
	case V4L2_CID_BRIGHTNESS:
		return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
	case V4L2_CID_CONTRAST:
	case V4L2_CID_SATURATION:
		return v4l2_ctrl_query_fill(qc, 0, 127, 1, 64);
	case V4L2_CID_HUE:
		return v4l2_ctrl_query_fill(qc, -128, 127, 1, 0);
	default:
		break;
	}

	switch (qc->id) {
	case V4L2_CID_AUDIO_VOLUME:
		return v4l2_ctrl_query_fill(qc, 0, 65535,
			65535 / 100, state->default_volume);
	case V4L2_CID_AUDIO_MUTE:
		return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
	case V4L2_CID_AUDIO_BALANCE:
	case V4L2_CID_AUDIO_BASS:
	case V4L2_CID_AUDIO_TREBLE:
		return v4l2_ctrl_query_fill(qc, 0, 65535, 65535 / 100, 32768);
	default:
		return -EINVAL;
	}
	return -EINVAL;
}
1001

1002
static int cx18_av_g_fmt(struct v4l2_subdev *sd, struct v4l2_format *fmt)
1003
{
1004 1005
	struct cx18 *cx = v4l2_get_subdevdata(sd);

1006
	return cx18_av_vbi_g_fmt(cx, fmt);
1007 1008
}

1009
static int cx18_av_s_fmt(struct v4l2_subdev *sd, struct v4l2_format *fmt)
1010
{
1011 1012 1013
	struct cx18_av_state *state = to_cx18_av_state(sd);
	struct cx18 *cx = v4l2_get_subdevdata(sd);

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	struct v4l2_pix_format *pix;
	int HSC, VSC, Vsrc, Hsrc, filter, Vlines;
	int is_50Hz = !(state->std & V4L2_STD_525_60);

	switch (fmt->type) {
	case V4L2_BUF_TYPE_VIDEO_CAPTURE:
		pix = &(fmt->fmt.pix);

		Vsrc = (cx18_av_read(cx, 0x476) & 0x3f) << 4;
		Vsrc |= (cx18_av_read(cx, 0x475) & 0xf0) >> 4;

		Hsrc = (cx18_av_read(cx, 0x472) & 0x3f) << 4;
		Hsrc |= (cx18_av_read(cx, 0x471) & 0xf0) >> 4;

1028 1029 1030 1031 1032
		/*
		 * This adjustment reflects the excess of vactive, set in
		 * cx18_av_std_setup(), above standard values:
		 *
		 * 480 + 1 for 60 Hz systems
1033
		 * 576 + 3 for 50 Hz systems
1034
		 */
1035
		Vlines = pix->height + (is_50Hz ? 3 : 1);
1036

1037 1038 1039 1040 1041 1042 1043
		/*
		 * Invalid height and width scaling requests are:
		 * 1. width less than 1/16 of the source width
		 * 2. width greater than the source width
		 * 3. height less than 1/8 of the source height
		 * 4. height greater than the source height
		 */
1044 1045
		if ((pix->width * 16 < Hsrc) || (Hsrc < pix->width) ||
		    (Vlines * 8 < Vsrc) || (Vsrc < Vlines)) {
1046 1047
			CX18_ERR_DEV(sd, "%dx%d is not a valid size!\n",
				     pix->width, pix->height);
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
			return -ERANGE;
		}

		HSC = (Hsrc * (1 << 20)) / pix->width - (1 << 20);
		VSC = (1 << 16) - (Vsrc * (1 << 9) / Vlines - (1 << 9));
		VSC &= 0x1fff;

		if (pix->width >= 385)
			filter = 0;
		else if (pix->width > 192)
			filter = 1;
		else if (pix->width > 96)
			filter = 2;
		else
			filter = 3;

1064 1065 1066
		CX18_DEBUG_INFO_DEV(sd,
				    "decoder set size %dx%d -> scale  %ux%u\n",
				    pix->width, pix->height, HSC, VSC);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

		/* HSCALE=HSC */
		cx18_av_write(cx, 0x418, HSC & 0xff);
		cx18_av_write(cx, 0x419, (HSC >> 8) & 0xff);
		cx18_av_write(cx, 0x41a, HSC >> 16);
		/* VSCALE=VSC */
		cx18_av_write(cx, 0x41c, VSC & 0xff);
		cx18_av_write(cx, 0x41d, VSC >> 8);
		/* VS_INTRLACE=1 VFILT=filter */
		cx18_av_write(cx, 0x41e, 0x8 | filter);
		break;

	case V4L2_BUF_TYPE_SLICED_VBI_CAPTURE:
1080
		return cx18_av_vbi_s_fmt(cx, fmt);
1081 1082

	case V4L2_BUF_TYPE_VBI_CAPTURE:
1083
		return cx18_av_vbi_s_fmt(cx, fmt);
1084 1085 1086 1087 1088 1089 1090

	default:
		return -EINVAL;
	}
	return 0;
}

1091
static int cx18_av_s_stream(struct v4l2_subdev *sd, int enable)
1092
{
1093
	struct cx18 *cx = v4l2_get_subdevdata(sd);
1094

1095
	CX18_DEBUG_INFO_DEV(sd, "%s output\n", enable ? "enable" : "disable");
1096
	if (enable) {
1097 1098
		cx18_av_write(cx, 0x115, 0x8c);
		cx18_av_write(cx, 0x116, 0x07);
1099
	} else {
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		cx18_av_write(cx, 0x115, 0x00);
		cx18_av_write(cx, 0x116, 0x00);
	}
	return 0;
}

static void log_video_status(struct cx18 *cx)
{
	static const char *const fmt_strs[] = {
		"0x0",
		"NTSC-M", "NTSC-J", "NTSC-4.43",
		"PAL-BDGHI", "PAL-M", "PAL-N", "PAL-Nc", "PAL-60",
		"0x9", "0xA", "0xB",
		"SECAM",
		"0xD", "0xE", "0xF"
	};

	struct cx18_av_state *state = &cx->av_state;
1118
	struct v4l2_subdev *sd = &state->sd;
1119 1120 1121 1122 1123
	u8 vidfmt_sel = cx18_av_read(cx, 0x400) & 0xf;
	u8 gen_stat1 = cx18_av_read(cx, 0x40d);
	u8 gen_stat2 = cx18_av_read(cx, 0x40e);
	int vid_input = state->vid_input;

1124 1125 1126 1127
	CX18_INFO_DEV(sd, "Video signal:              %spresent\n",
		      (gen_stat2 & 0x20) ? "" : "not ");
	CX18_INFO_DEV(sd, "Detected format:           %s\n",
		      fmt_strs[gen_stat1 & 0xf]);
1128

1129 1130 1131
	CX18_INFO_DEV(sd, "Specified standard:        %s\n",
		      vidfmt_sel ? fmt_strs[vidfmt_sel]
				 : "automatic detection");
1132 1133 1134

	if (vid_input >= CX18_AV_COMPOSITE1 &&
	    vid_input <= CX18_AV_COMPOSITE8) {
1135 1136
		CX18_INFO_DEV(sd, "Specified video input:     Composite %d\n",
			      vid_input - CX18_AV_COMPOSITE1 + 1);
1137
	} else {
1138 1139 1140 1141
		CX18_INFO_DEV(sd, "Specified video input:     "
			      "S-Video (Luma In%d, Chroma In%d)\n",
			      (vid_input & 0xf0) >> 4,
			      (vid_input & 0xf00) >> 8);
1142 1143
	}

1144 1145
	CX18_INFO_DEV(sd, "Specified audioclock freq: %d Hz\n",
		      state->audclk_freq);
1146 1147 1148 1149 1150
}

static void log_audio_status(struct cx18 *cx)
{
	struct cx18_av_state *state = &cx->av_state;
1151
	struct v4l2_subdev *sd = &state->sd;
1152
	u8 download_ctl = cx18_av_read(cx, 0x803);
1153 1154
	u8 mod_det_stat0 = cx18_av_read(cx, 0x804);
	u8 mod_det_stat1 = cx18_av_read(cx, 0x805);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	u8 audio_config = cx18_av_read(cx, 0x808);
	u8 pref_mode = cx18_av_read(cx, 0x809);
	u8 afc0 = cx18_av_read(cx, 0x80b);
	u8 mute_ctl = cx18_av_read(cx, 0x8d3);
	int aud_input = state->aud_input;
	char *p;

	switch (mod_det_stat0) {
	case 0x00: p = "mono"; break;
	case 0x01: p = "stereo"; break;
	case 0x02: p = "dual"; break;
	case 0x04: p = "tri"; break;
	case 0x10: p = "mono with SAP"; break;
	case 0x11: p = "stereo with SAP"; break;
	case 0x12: p = "dual with SAP"; break;
	case 0x14: p = "tri with SAP"; break;
	case 0xfe: p = "forced mode"; break;
1172
	default: p = "not defined"; break;
1173
	}
1174
	CX18_INFO_DEV(sd, "Detected audio mode:       %s\n", p);
1175 1176

	switch (mod_det_stat1) {
1177
	case 0x00: p = "not defined"; break;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	case 0x01: p = "EIAJ"; break;
	case 0x02: p = "A2-M"; break;
	case 0x03: p = "A2-BG"; break;
	case 0x04: p = "A2-DK1"; break;
	case 0x05: p = "A2-DK2"; break;
	case 0x06: p = "A2-DK3"; break;
	case 0x07: p = "A1 (6.0 MHz FM Mono)"; break;
	case 0x08: p = "AM-L"; break;
	case 0x09: p = "NICAM-BG"; break;
	case 0x0a: p = "NICAM-DK"; break;
	case 0x0b: p = "NICAM-I"; break;
	case 0x0c: p = "NICAM-L"; break;
	case 0x0d: p = "BTSC/EIAJ/A2-M Mono (4.5 MHz FMMono)"; break;
1191 1192 1193 1194 1195
	case 0x0e: p = "IF FM Radio"; break;
	case 0x0f: p = "BTSC"; break;
	case 0x10: p = "detected chrominance"; break;
	case 0xfd: p = "unknown audio standard"; break;
	case 0xfe: p = "forced audio standard"; break;
1196
	case 0xff: p = "no detected audio standard"; break;
1197
	default: p = "not defined"; break;
1198
	}
1199 1200 1201 1202 1203
	CX18_INFO_DEV(sd, "Detected audio standard:   %s\n", p);
	CX18_INFO_DEV(sd, "Audio muted:               %s\n",
		      (mute_ctl & 0x2) ? "yes" : "no");
	CX18_INFO_DEV(sd, "Audio microcontroller:     %s\n",
		      (download_ctl & 0x10) ? "running" : "stopped");
1204 1205

	switch (audio_config >> 4) {
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	case 0x00: p = "undefined"; break;
	case 0x01: p = "BTSC"; break;
	case 0x02: p = "EIAJ"; break;
	case 0x03: p = "A2-M"; break;
	case 0x04: p = "A2-BG"; break;
	case 0x05: p = "A2-DK1"; break;
	case 0x06: p = "A2-DK2"; break;
	case 0x07: p = "A2-DK3"; break;
	case 0x08: p = "A1 (6.0 MHz FM Mono)"; break;
	case 0x09: p = "AM-L"; break;
	case 0x0a: p = "NICAM-BG"; break;
	case 0x0b: p = "NICAM-DK"; break;
	case 0x0c: p = "NICAM-I"; break;
	case 0x0d: p = "NICAM-L"; break;
	case 0x0e: p = "FM radio"; break;
1221
	case 0x0f: p = "automatic detection"; break;
1222
	default: p = "undefined"; break;
1223
	}
1224
	CX18_INFO_DEV(sd, "Configured audio standard: %s\n", p);
1225 1226 1227 1228 1229 1230 1231 1232

	if ((audio_config >> 4) < 0xF) {
		switch (audio_config & 0xF) {
		case 0x00: p = "MONO1 (LANGUAGE A/Mono L+R channel for BTSC, EIAJ, A2)"; break;
		case 0x01: p = "MONO2 (LANGUAGE B)"; break;
		case 0x02: p = "MONO3 (STEREO forced MONO)"; break;
		case 0x03: p = "MONO4 (NICAM ANALOG-Language C/Analog Fallback)"; break;
		case 0x04: p = "STEREO"; break;
1233 1234 1235
		case 0x05: p = "DUAL1 (AC)"; break;
		case 0x06: p = "DUAL2 (BC)"; break;
		case 0x07: p = "DUAL3 (AB)"; break;
1236 1237
		default: p = "undefined";
		}
1238
		CX18_INFO_DEV(sd, "Configured audio mode:     %s\n", p);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	} else {
		switch (audio_config & 0xF) {
		case 0x00: p = "BG"; break;
		case 0x01: p = "DK1"; break;
		case 0x02: p = "DK2"; break;
		case 0x03: p = "DK3"; break;
		case 0x04: p = "I"; break;
		case 0x05: p = "L"; break;
		case 0x06: p = "BTSC"; break;
		case 0x07: p = "EIAJ"; break;
		case 0x08: p = "A2-M"; break;
1250 1251 1252
		case 0x09: p = "FM Radio (4.5 MHz)"; break;
		case 0x0a: p = "FM Radio (5.5 MHz)"; break;
		case 0x0b: p = "S-Video"; break;
1253
		case 0x0f: p = "automatic standard and mode detection"; break;
1254
		default: p = "undefined"; break;
1255
		}
1256
		CX18_INFO_DEV(sd, "Configured audio system:   %s\n", p);
1257 1258 1259
	}

	if (aud_input)
1260 1261
		CX18_INFO_DEV(sd, "Specified audio input:     Tuner (In%d)\n",
			      aud_input);
1262
	else
1263
		CX18_INFO_DEV(sd, "Specified audio input:     External\n");
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

	switch (pref_mode & 0xf) {
	case 0: p = "mono/language A"; break;
	case 1: p = "language B"; break;
	case 2: p = "language C"; break;
	case 3: p = "analog fallback"; break;
	case 4: p = "stereo"; break;
	case 5: p = "language AC"; break;
	case 6: p = "language BC"; break;
	case 7: p = "language AB"; break;
1274
	default: p = "undefined"; break;
1275
	}
1276
	CX18_INFO_DEV(sd, "Preferred audio mode:      %s\n", p);
1277 1278

	if ((audio_config & 0xf) == 0xf) {
1279
		switch ((afc0 >> 3) & 0x1) {
1280 1281 1282
		case 0: p = "system DK"; break;
		case 1: p = "system L"; break;
		}
1283
		CX18_INFO_DEV(sd, "Selected 65 MHz format:    %s\n", p);
1284

1285 1286 1287 1288 1289 1290 1291
		switch (afc0 & 0x7) {
		case 0: p = "Chroma"; break;
		case 1: p = "BTSC"; break;
		case 2: p = "EIAJ"; break;
		case 3: p = "A2-M"; break;
		case 4: p = "autodetect"; break;
		default: p = "undefined"; break;
1292
		}
1293
		CX18_INFO_DEV(sd, "Selected 45 MHz format:    %s\n", p);
1294 1295
	}
}
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

static int cx18_av_log_status(struct v4l2_subdev *sd)
{
	struct cx18 *cx = v4l2_get_subdevdata(sd);
	log_video_status(cx);
	log_audio_status(cx);
	return 0;
}

static inline int cx18_av_dbg_match(const struct v4l2_dbg_match *match)
{
	return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 1;
}

static int cx18_av_g_chip_ident(struct v4l2_subdev *sd,
				struct v4l2_dbg_chip_ident *chip)
{
1313 1314
	struct cx18_av_state *state = to_cx18_av_state(sd);

1315
	if (cx18_av_dbg_match(&chip->match)) {
1316 1317
		chip->ident = state->id;
		chip->revision = state->rev;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	}
	return 0;
}

#ifdef CONFIG_VIDEO_ADV_DEBUG
static int cx18_av_g_register(struct v4l2_subdev *sd,
			      struct v4l2_dbg_register *reg)
{
	struct cx18 *cx = v4l2_get_subdevdata(sd);

	if (!cx18_av_dbg_match(&reg->match))
		return -EINVAL;
	if ((reg->reg & 0x3) != 0)
		return -EINVAL;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	reg->size = 4;
	reg->val = cx18_av_read4(cx, reg->reg & 0x00000ffc);
	return 0;
}

static int cx18_av_s_register(struct v4l2_subdev *sd,
			      struct v4l2_dbg_register *reg)
{
	struct cx18 *cx = v4l2_get_subdevdata(sd);

	if (!cx18_av_dbg_match(&reg->match))
		return -EINVAL;
	if ((reg->reg & 0x3) != 0)
		return -EINVAL;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	cx18_av_write4(cx, reg->reg & 0x00000ffc, reg->val);
	return 0;
}
#endif

static const struct v4l2_subdev_core_ops cx18_av_general_ops = {
	.g_chip_ident = cx18_av_g_chip_ident,
	.log_status = cx18_av_log_status,
1358
	.init = cx18_av_init,
1359
	.load_fw = cx18_av_load_fw,
1360 1361 1362 1363
	.reset = cx18_av_reset,
	.queryctrl = cx18_av_queryctrl,
	.g_ctrl = cx18_av_g_ctrl,
	.s_ctrl = cx18_av_s_ctrl,
1364
	.s_std = cx18_av_s_std,
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
#ifdef CONFIG_VIDEO_ADV_DEBUG
	.g_register = cx18_av_g_register,
	.s_register = cx18_av_s_register,
#endif
};

static const struct v4l2_subdev_tuner_ops cx18_av_tuner_ops = {
	.s_radio = cx18_av_s_radio,
	.s_frequency = cx18_av_s_frequency,
	.g_tuner = cx18_av_g_tuner,
	.s_tuner = cx18_av_s_tuner,
};

static const struct v4l2_subdev_audio_ops cx18_av_audio_ops = {
	.s_clock_freq = cx18_av_s_clock_freq,
	.s_routing = cx18_av_s_audio_routing,
};

static const struct v4l2_subdev_video_ops cx18_av_video_ops = {
	.s_routing = cx18_av_s_video_routing,
	.decode_vbi_line = cx18_av_decode_vbi_line,
	.s_stream = cx18_av_s_stream,
	.g_fmt = cx18_av_g_fmt,
	.s_fmt = cx18_av_s_fmt,
};

static const struct v4l2_subdev_ops cx18_av_ops = {
	.core = &cx18_av_general_ops,
	.tuner = &cx18_av_tuner_ops,
	.audio = &cx18_av_audio_ops,
	.video = &cx18_av_video_ops,
};

1398
int cx18_av_probe(struct cx18 *cx)
1399
{
1400
	struct cx18_av_state *state = &cx->av_state;
1401
	struct v4l2_subdev *sd;
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	state->rev = cx18_av_read4(cx, CXADEC_CHIP_CTRL) & 0xffff;
	state->id = ((state->rev >> 4) == CXADEC_CHIP_TYPE_MAKO)
		    ? V4L2_IDENT_CX23418_843 : V4L2_IDENT_UNKNOWN;

	state->vid_input = CX18_AV_COMPOSITE7;
	state->aud_input = CX18_AV_AUDIO8;
	state->audclk_freq = 48000;
	state->audmode = V4L2_TUNER_MODE_LANG1;
	state->slicer_line_delay = 0;
	state->slicer_line_offset = (10 + state->slicer_line_delay - 2);

1414 1415 1416 1417
	sd = &state->sd;
	v4l2_subdev_init(sd, &cx18_av_ops);
	v4l2_set_subdevdata(sd, cx);
	snprintf(sd->name, sizeof(sd->name),
1418
		 "%s %03x", cx->v4l2_dev.name, (state->rev >> 4));
1419 1420
	sd->grp_id = CX18_HW_418_AV;
	return v4l2_device_register_subdev(&cx->v4l2_dev, sd);
1421
}