efi-stub-helper.c 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Helper functions used by the EFI stub on multiple
 * architectures. This should be #included by the EFI stub
 * implementation files.
 *
 * Copyright 2011 Intel Corporation; author Matt Fleming
 *
 * This file is part of the Linux kernel, and is made available
 * under the terms of the GNU General Public License version 2.
 *
 */

13 14 15 16
#include <linux/efi.h>
#include <asm/efi.h>

#include "efistub.h"
17

18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Some firmware implementations have problems reading files in one go.
 * A read chunk size of 1MB seems to work for most platforms.
 *
 * Unfortunately, reading files in chunks triggers *other* bugs on some
 * platforms, so we provide a way to disable this workaround, which can
 * be done by passing "efi=nochunk" on the EFI boot stub command line.
 *
 * If you experience issues with initrd images being corrupt it's worth
 * trying efi=nochunk, but chunking is enabled by default because there
 * are far more machines that require the workaround than those that
 * break with it enabled.
 */
31
#define EFI_READ_CHUNK_SIZE	(1024 * 1024)
32

33 34
static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;

35 36 37 38 39 40 41 42 43
/*
 * Allow the platform to override the allocation granularity: this allows
 * systems that have the capability to run with a larger page size to deal
 * with the allocations for initrd and fdt more efficiently.
 */
#ifndef EFI_ALLOC_ALIGN
#define EFI_ALLOC_ALIGN		EFI_PAGE_SIZE
#endif

44 45
#define EFI_MMAP_NR_SLACK_SLOTS	8

46
struct file_info {
47 48 49 50
	efi_file_handle_t *handle;
	u64 size;
};

51
void efi_printk(efi_system_table_t *sys_table_arg, char *str)
52 53 54 55 56 57 58 59 60
{
	char *s8;

	for (s8 = str; *s8; s8++) {
		efi_char16_t ch[2] = { 0 };

		ch[0] = *s8;
		if (*s8 == '\n') {
			efi_char16_t nl[2] = { '\r', 0 };
61
			efi_char16_printk(sys_table_arg, nl);
62 63
		}

64
		efi_char16_printk(sys_table_arg, ch);
65 66 67
	}
}

68 69 70 71 72 73 74 75 76
static inline bool mmap_has_headroom(unsigned long buff_size,
				     unsigned long map_size,
				     unsigned long desc_size)
{
	unsigned long slack = buff_size - map_size;

	return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
}

77
efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
78
				struct efi_boot_memmap *map)
79 80 81 82 83 84
{
	efi_memory_desc_t *m = NULL;
	efi_status_t status;
	unsigned long key;
	u32 desc_version;

85 86 87
	*map->desc_size =	sizeof(*m);
	*map->map_size =	*map->desc_size * 32;
	*map->buff_size =	*map->map_size;
88
again:
89
	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
90
				*map->map_size, (void **)&m);
91 92 93
	if (status != EFI_SUCCESS)
		goto fail;

94
	*map->desc_size = 0;
95
	key = 0;
96 97 98 99 100
	status = efi_call_early(get_memory_map, map->map_size, m,
				&key, map->desc_size, &desc_version);
	if (status == EFI_BUFFER_TOO_SMALL ||
	    !mmap_has_headroom(*map->buff_size, *map->map_size,
			       *map->desc_size)) {
101
		efi_call_early(free_pool, m);
102 103 104 105 106 107 108 109 110
		/*
		 * Make sure there is some entries of headroom so that the
		 * buffer can be reused for a new map after allocations are
		 * no longer permitted.  Its unlikely that the map will grow to
		 * exceed this headroom once we are ready to trigger
		 * ExitBootServices()
		 */
		*map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
		*map->buff_size = *map->map_size;
111
		goto again;
112 113 114
	}

	if (status != EFI_SUCCESS)
115
		efi_call_early(free_pool, m);
116

117 118 119 120
	if (map->key_ptr && status == EFI_SUCCESS)
		*map->key_ptr = key;
	if (map->desc_ver && status == EFI_SUCCESS)
		*map->desc_ver = desc_version;
121 122

fail:
123
	*map->map = m;
124 125 126
	return status;
}

127

128
unsigned long get_dram_base(efi_system_table_t *sys_table_arg)
129 130
{
	efi_status_t status;
131
	unsigned long map_size, buff_size;
132 133 134
	unsigned long membase  = EFI_ERROR;
	struct efi_memory_map map;
	efi_memory_desc_t *md;
135
	struct efi_boot_memmap boot_map;
136

137 138 139 140 141 142 143 144
	boot_map.map =		(efi_memory_desc_t **)&map.map;
	boot_map.map_size =	&map_size;
	boot_map.desc_size =	&map.desc_size;
	boot_map.desc_ver =	NULL;
	boot_map.key_ptr =	NULL;
	boot_map.buff_size =	&buff_size;

	status = efi_get_memory_map(sys_table_arg, &boot_map);
145 146 147 148 149
	if (status != EFI_SUCCESS)
		return membase;

	map.map_end = map.map + map_size;

150 151
	for_each_efi_memory_desc_in_map(&map, md) {
		if (md->attribute & EFI_MEMORY_WB) {
152 153
			if (membase > md->phys_addr)
				membase = md->phys_addr;
154 155
		}
	}
156 157 158 159 160 161

	efi_call_early(free_pool, map.map);

	return membase;
}

162 163 164
/*
 * Allocate at the highest possible address that is not above 'max'.
 */
165 166 167
efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
			    unsigned long size, unsigned long align,
			    unsigned long *addr, unsigned long max)
168
{
169
	unsigned long map_size, desc_size, buff_size;
170 171 172 173 174
	efi_memory_desc_t *map;
	efi_status_t status;
	unsigned long nr_pages;
	u64 max_addr = 0;
	int i;
175 176 177 178 179 180 181 182
	struct efi_boot_memmap boot_map;

	boot_map.map =		&map;
	boot_map.map_size =	&map_size;
	boot_map.desc_size =	&desc_size;
	boot_map.desc_ver =	NULL;
	boot_map.key_ptr =	NULL;
	boot_map.buff_size =	&buff_size;
183

184
	status = efi_get_memory_map(sys_table_arg, &boot_map);
185 186 187
	if (status != EFI_SUCCESS)
		goto fail;

188 189 190 191 192
	/*
	 * Enforce minimum alignment that EFI requires when requesting
	 * a specific address.  We are doing page-based allocations,
	 * so we must be aligned to a page.
	 */
193 194
	if (align < EFI_ALLOC_ALIGN)
		align = EFI_ALLOC_ALIGN;
195

196
	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
again:
	for (i = 0; i < map_size / desc_size; i++) {
		efi_memory_desc_t *desc;
		unsigned long m = (unsigned long)map;
		u64 start, end;

		desc = (efi_memory_desc_t *)(m + (i * desc_size));
		if (desc->type != EFI_CONVENTIONAL_MEMORY)
			continue;

		if (desc->num_pages < nr_pages)
			continue;

		start = desc->phys_addr;
		end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);

213
		if (end > max)
214 215
			end = max;

216 217 218
		if ((start + size) > end)
			continue;

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
		if (round_down(end - size, align) < start)
			continue;

		start = round_down(end - size, align);

		/*
		 * Don't allocate at 0x0. It will confuse code that
		 * checks pointers against NULL.
		 */
		if (start == 0x0)
			continue;

		if (start > max_addr)
			max_addr = start;
	}

	if (!max_addr)
		status = EFI_NOT_FOUND;
	else {
238 239 240
		status = efi_call_early(allocate_pages,
					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
					nr_pages, &max_addr);
241 242 243 244 245 246 247 248 249
		if (status != EFI_SUCCESS) {
			max = max_addr;
			max_addr = 0;
			goto again;
		}

		*addr = max_addr;
	}

250
	efi_call_early(free_pool, map);
251 252 253 254 255 256 257
fail:
	return status;
}

/*
 * Allocate at the lowest possible address.
 */
258 259 260
efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
			   unsigned long size, unsigned long align,
			   unsigned long *addr)
261
{
262
	unsigned long map_size, desc_size, buff_size;
263 264 265 266
	efi_memory_desc_t *map;
	efi_status_t status;
	unsigned long nr_pages;
	int i;
267 268 269 270 271 272 273 274
	struct efi_boot_memmap boot_map;

	boot_map.map =		&map;
	boot_map.map_size =	&map_size;
	boot_map.desc_size =	&desc_size;
	boot_map.desc_ver =	NULL;
	boot_map.key_ptr =	NULL;
	boot_map.buff_size =	&buff_size;
275

276
	status = efi_get_memory_map(sys_table_arg, &boot_map);
277 278 279
	if (status != EFI_SUCCESS)
		goto fail;

280 281 282 283 284
	/*
	 * Enforce minimum alignment that EFI requires when requesting
	 * a specific address.  We are doing page-based allocations,
	 * so we must be aligned to a page.
	 */
285 286
	if (align < EFI_ALLOC_ALIGN)
		align = EFI_ALLOC_ALIGN;
287

288
	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	for (i = 0; i < map_size / desc_size; i++) {
		efi_memory_desc_t *desc;
		unsigned long m = (unsigned long)map;
		u64 start, end;

		desc = (efi_memory_desc_t *)(m + (i * desc_size));

		if (desc->type != EFI_CONVENTIONAL_MEMORY)
			continue;

		if (desc->num_pages < nr_pages)
			continue;

		start = desc->phys_addr;
		end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);

		/*
		 * Don't allocate at 0x0. It will confuse code that
		 * checks pointers against NULL. Skip the first 8
		 * bytes so we start at a nice even number.
		 */
		if (start == 0x0)
			start += 8;

		start = round_up(start, align);
		if ((start + size) > end)
			continue;

317 318 319
		status = efi_call_early(allocate_pages,
					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
					nr_pages, &start);
320 321 322 323 324 325 326 327 328
		if (status == EFI_SUCCESS) {
			*addr = start;
			break;
		}
	}

	if (i == map_size / desc_size)
		status = EFI_NOT_FOUND;

329
	efi_call_early(free_pool, map);
330 331 332 333
fail:
	return status;
}

334 335
void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
	      unsigned long addr)
336 337 338
{
	unsigned long nr_pages;

339 340 341
	if (!size)
		return;

342
	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
343
	efi_call_early(free_pages, addr, nr_pages);
344 345
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/*
 * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
 * option, e.g. efi=nochunk.
 *
 * It should be noted that efi= is parsed in two very different
 * environments, first in the early boot environment of the EFI boot
 * stub, and subsequently during the kernel boot.
 */
efi_status_t efi_parse_options(char *cmdline)
{
	char *str;

	/*
	 * If no EFI parameters were specified on the cmdline we've got
	 * nothing to do.
	 */
	str = strstr(cmdline, "efi=");
	if (!str)
		return EFI_SUCCESS;

	/* Skip ahead to first argument */
	str += strlen("efi=");

	/*
	 * Remember, because efi= is also used by the kernel we need to
	 * skip over arguments we don't understand.
	 */
	while (*str) {
		if (!strncmp(str, "nochunk", 7)) {
			str += strlen("nochunk");
			__chunk_size = -1UL;
		}

		/* Group words together, delimited by "," */
		while (*str && *str != ',')
			str++;

		if (*str == ',')
			str++;
	}

	return EFI_SUCCESS;
}
389 390

/*
391
 * Check the cmdline for a LILO-style file= arguments.
392
 *
393 394
 * We only support loading a file from the same filesystem as
 * the kernel image.
395
 */
396 397 398 399 400 401
efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
				  efi_loaded_image_t *image,
				  char *cmd_line, char *option_string,
				  unsigned long max_addr,
				  unsigned long *load_addr,
				  unsigned long *load_size)
402
{
403 404 405
	struct file_info *files;
	unsigned long file_addr;
	u64 file_size_total;
L
Leif Lindholm 已提交
406
	efi_file_handle_t *fh = NULL;
407
	efi_status_t status;
408
	int nr_files;
409 410 411
	char *str;
	int i, j, k;

412 413
	file_addr = 0;
	file_size_total = 0;
414

415
	str = cmd_line;
416 417 418

	j = 0;			/* See close_handles */

419 420 421 422 423 424
	if (!load_addr || !load_size)
		return EFI_INVALID_PARAMETER;

	*load_addr = 0;
	*load_size = 0;

425 426 427
	if (!str || !*str)
		return EFI_SUCCESS;

428
	for (nr_files = 0; *str; nr_files++) {
429
		str = strstr(str, option_string);
430 431 432
		if (!str)
			break;

433
		str += strlen(option_string);
434 435 436 437 438 439 440 441 442

		/* Skip any leading slashes */
		while (*str == '/' || *str == '\\')
			str++;

		while (*str && *str != ' ' && *str != '\n')
			str++;
	}

443
	if (!nr_files)
444 445
		return EFI_SUCCESS;

446 447
	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
				nr_files * sizeof(*files), (void **)&files);
448
	if (status != EFI_SUCCESS) {
449
		pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n");
450 451 452
		goto fail;
	}

453
	str = cmd_line;
454 455
	for (i = 0; i < nr_files; i++) {
		struct file_info *file;
456 457 458
		efi_char16_t filename_16[256];
		efi_char16_t *p;

459
		str = strstr(str, option_string);
460 461 462
		if (!str)
			break;

463
		str += strlen(option_string);
464

465
		file = &files[i];
466 467 468 469 470 471 472 473 474 475 476 477
		p = filename_16;

		/* Skip any leading slashes */
		while (*str == '/' || *str == '\\')
			str++;

		while (*str && *str != ' ' && *str != '\n') {
			if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
				break;

			if (*str == '/') {
				*p++ = '\\';
478
				str++;
479 480 481 482 483 484 485 486 487
			} else {
				*p++ = *str++;
			}
		}

		*p = '\0';

		/* Only open the volume once. */
		if (!i) {
488 489 490
			status = efi_open_volume(sys_table_arg, image,
						 (void **)&fh);
			if (status != EFI_SUCCESS)
491
				goto free_files;
492 493
		}

494 495 496
		status = efi_file_size(sys_table_arg, fh, filename_16,
				       (void **)&file->handle, &file->size);
		if (status != EFI_SUCCESS)
497 498
			goto close_handles;

499
		file_size_total += file->size;
500 501
	}

502
	if (file_size_total) {
503 504 505
		unsigned long addr;

		/*
506 507 508
		 * Multiple files need to be at consecutive addresses in memory,
		 * so allocate enough memory for all the files.  This is used
		 * for loading multiple files.
509
		 */
510 511
		status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000,
				    &file_addr, max_addr);
512
		if (status != EFI_SUCCESS) {
513
			pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n");
514 515 516 517
			goto close_handles;
		}

		/* We've run out of free low memory. */
518
		if (file_addr > max_addr) {
519
			pr_efi_err(sys_table_arg, "We've run out of free low memory\n");
520
			status = EFI_INVALID_PARAMETER;
521
			goto free_file_total;
522 523
		}

524 525
		addr = file_addr;
		for (j = 0; j < nr_files; j++) {
526
			unsigned long size;
527

528
			size = files[j].size;
529
			while (size) {
530
				unsigned long chunksize;
531 532
				if (size > __chunk_size)
					chunksize = __chunk_size;
533 534
				else
					chunksize = size;
535

536
				status = efi_file_read(files[j].handle,
537 538
						       &chunksize,
						       (void *)addr);
539
				if (status != EFI_SUCCESS) {
540
					pr_efi_err(sys_table_arg, "Failed to read file\n");
541
					goto free_file_total;
542 543 544 545 546
				}
				addr += chunksize;
				size -= chunksize;
			}

547
			efi_file_close(files[j].handle);
548 549 550 551
		}

	}

552
	efi_call_early(free_pool, files);
553

554 555
	*load_addr = file_addr;
	*load_size = file_size_total;
556 557 558

	return status;

559 560
free_file_total:
	efi_free(sys_table_arg, file_size_total, file_addr);
561 562 563

close_handles:
	for (k = j; k < i; k++)
564
		efi_file_close(files[k].handle);
565
free_files:
566
	efi_call_early(free_pool, files);
567
fail:
568 569
	*load_addr = 0;
	*load_size = 0;
570 571 572

	return status;
}
573 574 575 576 577 578 579 580 581 582
/*
 * Relocate a kernel image, either compressed or uncompressed.
 * In the ARM64 case, all kernel images are currently
 * uncompressed, and as such when we relocate it we need to
 * allocate additional space for the BSS segment. Any low
 * memory that this function should avoid needs to be
 * unavailable in the EFI memory map, as if the preferred
 * address is not available the lowest available address will
 * be used.
 */
583 584 585 586 587 588
efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
				 unsigned long *image_addr,
				 unsigned long image_size,
				 unsigned long alloc_size,
				 unsigned long preferred_addr,
				 unsigned long alignment)
589
{
590 591
	unsigned long cur_image_addr;
	unsigned long new_addr = 0;
592
	efi_status_t status;
593 594 595 596 597 598 599 600 601
	unsigned long nr_pages;
	efi_physical_addr_t efi_addr = preferred_addr;

	if (!image_addr || !image_size || !alloc_size)
		return EFI_INVALID_PARAMETER;
	if (alloc_size < image_size)
		return EFI_INVALID_PARAMETER;

	cur_image_addr = *image_addr;
602 603 604

	/*
	 * The EFI firmware loader could have placed the kernel image
605 606 607 608 609
	 * anywhere in memory, but the kernel has restrictions on the
	 * max physical address it can run at.  Some architectures
	 * also have a prefered address, so first try to relocate
	 * to the preferred address.  If that fails, allocate as low
	 * as possible while respecting the required alignment.
610
	 */
611
	nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
612 613 614
	status = efi_call_early(allocate_pages,
				EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
				nr_pages, &efi_addr);
615 616 617 618 619
	new_addr = efi_addr;
	/*
	 * If preferred address allocation failed allocate as low as
	 * possible.
	 */
620
	if (status != EFI_SUCCESS) {
621 622 623 624
		status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
				       &new_addr);
	}
	if (status != EFI_SUCCESS) {
625
		pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n");
626
		return status;
627 628
	}

629 630 631 632 633
	/*
	 * We know source/dest won't overlap since both memory ranges
	 * have been allocated by UEFI, so we can safely use memcpy.
	 */
	memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
634

635 636
	/* Return the new address of the relocated image. */
	*image_addr = new_addr;
637 638 639

	return status;
}
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
/*
 * Get the number of UTF-8 bytes corresponding to an UTF-16 character.
 * This overestimates for surrogates, but that is okay.
 */
static int efi_utf8_bytes(u16 c)
{
	return 1 + (c >= 0x80) + (c >= 0x800);
}

/*
 * Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
 */
static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
{
	unsigned int c;

	while (n--) {
		c = *src++;
		if (n && c >= 0xd800 && c <= 0xdbff &&
		    *src >= 0xdc00 && *src <= 0xdfff) {
			c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
			src++;
			n--;
		}
		if (c >= 0xd800 && c <= 0xdfff)
			c = 0xfffd; /* Unmatched surrogate */
		if (c < 0x80) {
			*dst++ = c;
			continue;
		}
		if (c < 0x800) {
			*dst++ = 0xc0 + (c >> 6);
			goto t1;
		}
		if (c < 0x10000) {
			*dst++ = 0xe0 + (c >> 12);
			goto t2;
		}
		*dst++ = 0xf0 + (c >> 18);
		*dst++ = 0x80 + ((c >> 12) & 0x3f);
	t2:
		*dst++ = 0x80 + ((c >> 6) & 0x3f);
	t1:
		*dst++ = 0x80 + (c & 0x3f);
	}

	return dst;
}

690 691 692 693
#ifndef MAX_CMDLINE_ADDRESS
#define MAX_CMDLINE_ADDRESS	ULONG_MAX
#endif

694 695 696 697 698
/*
 * Convert the unicode UEFI command line to ASCII to pass to kernel.
 * Size of memory allocated return in *cmd_line_len.
 * Returns NULL on error.
 */
699 700 701
char *efi_convert_cmdline(efi_system_table_t *sys_table_arg,
			  efi_loaded_image_t *image,
			  int *cmd_line_len)
702
{
703
	const u16 *s2;
704 705
	u8 *s1 = NULL;
	unsigned long cmdline_addr = 0;
706 707 708 709
	int load_options_chars = image->load_options_size / 2; /* UTF-16 */
	const u16 *options = image->load_options;
	int options_bytes = 0;  /* UTF-8 bytes */
	int options_chars = 0;  /* UTF-16 chars */
710 711 712 713 714
	efi_status_t status;
	u16 zero = 0;

	if (options) {
		s2 = options;
715 716 717 718
		while (*s2 && *s2 != '\n'
		       && options_chars < load_options_chars) {
			options_bytes += efi_utf8_bytes(*s2++);
			options_chars++;
719 720 721
		}
	}

722
	if (!options_chars) {
723 724 725 726
		/* No command line options, so return empty string*/
		options = &zero;
	}

727
	options_bytes++;	/* NUL termination */
L
Leif Lindholm 已提交
728

729 730
	status = efi_high_alloc(sys_table_arg, options_bytes, 0,
				&cmdline_addr, MAX_CMDLINE_ADDRESS);
731 732 733 734
	if (status != EFI_SUCCESS)
		return NULL;

	s1 = (u8 *)cmdline_addr;
735
	s2 = (const u16 *)options;
736

737
	s1 = efi_utf16_to_utf8(s1, s2, options_chars);
738 739
	*s1 = '\0';

740
	*cmd_line_len = options_bytes;
741 742
	return (char *)cmdline_addr;
}