gup.c 51.1 KB
Newer Older
1 2 3 4 5 6
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
7
#include <linux/memremap.h>
8 9 10 11 12
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

13
#include <linux/sched/signal.h>
14
#include <linux/rwsem.h>
15
#include <linux/hugetlb.h>
16

17
#include <asm/mmu_context.h>
18
#include <asm/pgtable.h>
19
#include <asm/tlbflush.h>
20

21 22
#include "internal.h"

23 24
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
25
{
26 27 28 29 30 31 32 33 34 35 36 37
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return NULL;
}
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

63 64 65 66 67 68
/*
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
69
	return pte_write(pte) ||
70 71 72
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}

73 74 75 76
static struct page *follow_page_pte(struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd, unsigned int flags)
{
	struct mm_struct *mm = vma->vm_mm;
77
	struct dev_pagemap *pgmap = NULL;
78 79 80
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
81

82
retry:
83
	if (unlikely(pmd_bad(*pmd)))
84
		return no_page_table(vma, flags);
85 86 87 88 89 90 91 92 93 94 95 96

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
97
		if (pte_none(pte))
98 99 100 101 102 103
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
104
		goto retry;
105
	}
106
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
107
		goto no_page;
108
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 110 111
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
112 113

	page = vm_normal_page(vma, address, pte);
114 115 116 117 118 119 120 121 122 123 124
	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
		/*
		 * Only return device mapping pages in the FOLL_GET case since
		 * they are only valid while holding the pgmap reference.
		 */
		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
		if (pgmap)
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			int ret;

			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
140 141
	}

142 143 144 145 146 147 148 149 150 151 152 153 154
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		int ret;
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

155
	if (flags & FOLL_GET) {
156 157 158 159
		if (unlikely(!try_get_page(page))) {
			page = ERR_PTR(-ENOMEM);
			goto out;
		}
160 161 162 163 164 165 166

		/* drop the pgmap reference now that we hold the page */
		if (pgmap) {
			put_dev_pagemap(pgmap);
			pgmap = NULL;
		}
	}
167 168 169 170 171 172 173 174 175 176 177
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
178
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
179 180 181 182
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
204
out:
205 206 207 208 209
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
210 211 212 213
		return NULL;
	return no_page_table(vma, flags);
}

214 215 216
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
				    unsigned int flags, unsigned int *page_mask)
217
{
218
	pmd_t *pmd, pmdval;
219 220 221 222
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

223
	pmd = pmd_offset(pudp, address);
224 225 226 227 228 229
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
230
		return no_page_table(vma, flags);
231
	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
232 233 234 235
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
236
	}
237
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
238
		page = follow_huge_pd(vma, address,
239
				      __hugepd(pmd_val(pmdval)), flags,
240 241 242 243 244
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
245
retry:
246
	if (!pmd_present(pmdval)) {
247 248 249
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
250 251
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
252
			pmd_migration_entry_wait(mm, pmd);
253 254 255 256 257 258 259
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
		 * mmap_sem is held in read mode
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
260 261
		goto retry;
	}
262
	if (pmd_devmap(pmdval)) {
263 264 265 266 267 268
		ptl = pmd_lock(mm, pmd);
		page = follow_devmap_pmd(vma, address, pmd, flags);
		spin_unlock(ptl);
		if (page)
			return page;
	}
269
	if (likely(!pmd_trans_huge(pmdval)))
270 271
		return follow_page_pte(vma, address, pmd, flags);

272
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
273 274
		return no_page_table(vma, flags);

275
retry_locked:
276
	ptl = pmd_lock(mm, pmd);
277 278 279 280
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
281 282 283 284 285 286 287
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
288 289 290 291 292 293 294 295 296 297
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
		return follow_page_pte(vma, address, pmd, flags);
	}
	if (flags & FOLL_SPLIT) {
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
298
			split_huge_pmd(vma, pmd, address);
299 300
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
301
		} else {
302 303 304 305
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
306
			spin_unlock(ptl);
307 308 309 310
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
311 312
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
313 314 315 316
		}

		return ret ? ERR_PTR(ret) :
			follow_page_pte(vma, address, pmd, flags);
317
	}
318 319 320 321
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
	*page_mask = HPAGE_PMD_NR - 1;
	return page;
322 323
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
				    unsigned int flags, unsigned int *page_mask)
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
343 344 345 346 347 348 349 350
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
		page = follow_devmap_pud(vma, address, pud, flags);
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

	return follow_pmd_mask(vma, address, pud, flags, page_mask);
}


static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
				    unsigned int flags, unsigned int *page_mask)
{
	p4d_t *p4d;
370
	struct page *page;
371 372 373 374 375 376 377 378

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

379 380 381 382 383 384 385 386
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	return follow_pud_mask(vma, address, p4d, flags, page_mask);
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
 * @page_mask: on output, *page_mask is set according to the size of the page
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
 * Returns the mapped (struct page *), %NULL if no mapping exists, or
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
struct page *follow_page_mask(struct vm_area_struct *vma,
			      unsigned long address, unsigned int flags,
			      unsigned int *page_mask)
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	*page_mask = 0;

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
		BUG_ON(flags & FOLL_GET);
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

425 426 427 428 429 430
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
431 432 433 434 435 436 437 438
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
439

440 441 442
	return follow_p4d_mask(vma, address, pgd, flags, page_mask);
}

443 444 445 446 447
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
448
	p4d_t *p4d;
449 450 451 452 453 454 455 456 457 458 459 460 461
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
	BUG_ON(pgd_none(*pgd));
462 463 464
	p4d = p4d_offset(pgd, address);
	BUG_ON(p4d_none(*p4d));
	pud = pud_offset(p4d, address);
465 466
	BUG_ON(pud_none(*pud));
	pmd = pmd_offset(pud, address);
467
	if (!pmd_present(*pmd))
468 469 470 471 472 473 474 475 476 477 478 479 480
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
481 482 483 484 485 486 487

		/*
		 * This should never happen (a device public page in the gate
		 * area).
		 */
		if (is_device_public_page(*page))
			goto unmap;
488
	}
489 490 491 492
	if (unlikely(!try_get_page(*page))) {
		ret = -ENOMEM;
		goto unmap;
	}
493 494 495 496 497 498 499
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

500 501 502 503 504
/*
 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 */
505 506 507 508
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
		unsigned long address, unsigned int *flags, int *nonblocking)
{
	unsigned int fault_flags = 0;
509
	vm_fault_t ret;
510

E
Eric B Munson 已提交
511 512 513
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
514 515
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
516 517
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
518 519 520 521
	if (nonblocking)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
522 523 524 525
	if (*flags & FOLL_TRIED) {
		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
		fault_flags |= FAULT_FLAG_TRIED;
	}
526

527
	ret = handle_mm_fault(vma, address, fault_flags);
528
	if (ret & VM_FAULT_ERROR) {
529 530 531 532
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
533 534 535 536 537 538 539 540 541 542 543
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
544
		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
545 546 547 548 549 550 551 552 553 554 555 556 557 558
			*nonblocking = 0;
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
559
		*flags |= FOLL_COW;
560 561 562
	return 0;
}

563 564 565
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
566 567
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
568 569 570 571

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

572 573 574
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

575
	if (write) {
576 577 578 579 580 581 582 583 584 585 586 587
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
588
			if (!is_cow_mapping(vm_flags))
589 590 591 592 593 594 595 596 597 598 599 600
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
601 602 603 604 605
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
606
		return -EFAULT;
607 608 609
	return 0;
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
630
 * Must be called with mmap_sem held.  It may be released.  See below.
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
653 654 655 656 657 658 659 660
 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 * this case.
 *
 * A caller using such a combination of @nonblocking and @gup_flags
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
661 662 663 664 665
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
L
Lorenzo Stoakes 已提交
666
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
667 668 669 670
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *nonblocking)
{
671
	long i = 0;
672
	unsigned int page_mask;
673
	struct vm_area_struct *vma = NULL;
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

	if (!nr_pages)
		return 0;

	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				int ret;
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
					return i ? : ret;
				page_mask = 0;
				goto next_page;
			}
706

707 708 709 710 711
			if (!vma || check_vma_flags(vma, gup_flags))
				return i ? : -EFAULT;
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
712
						gup_flags, nonblocking);
713
				continue;
714
			}
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current)))
			return i ? i : -ERESTARTSYS;
		cond_resched();
		page = follow_page_mask(vma, start, foll_flags, &page_mask);
		if (!page) {
			int ret;
			ret = faultin_page(tsk, vma, start, &foll_flags,
					nonblocking);
			switch (ret) {
			case 0:
				goto retry;
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
				return i ? i : ret;
			case -EBUSY:
				return i;
			case -ENOENT:
				goto next_page;
740
			}
741
			BUG();
742 743 744 745 746 747 748
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
749
			return i ? i : PTR_ERR(page);
750
		}
751 752 753 754 755
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
			page_mask = 0;
756 757
		}
next_page:
758 759 760 761 762 763 764 765 766 767
		if (vmas) {
			vmas[i] = vma;
			page_mask = 0;
		}
		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
768 769 770 771
	} while (nr_pages);
	return i;
}

772 773
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
774
{
775 776
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
777
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
778 779 780 781

	if (!(vm_flags & vma->vm_flags))
		return false;

782 783
	/*
	 * The architecture might have a hardware protection
784
	 * mechanism other than read/write that can deny access.
785 786 787
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
788
	 */
789
	if (!arch_vma_access_permitted(vma, write, false, foreign))
790 791
		return false;

792 793 794
	return true;
}

795 796 797 798 799 800 801
/*
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
802 803
 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
 *		does not allow retry
804 805 806 807 808 809 810 811 812 813 814
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
815
 * get_user_pages() only guarantees to update these in the struct page.
816 817 818 819 820 821
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
822 823
 * This function will not return with an unlocked mmap_sem. So it has not the
 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
824 825
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
826 827
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
828 829
{
	struct vm_area_struct *vma;
830
	vm_fault_t ret, major = 0;
831 832 833

	if (unlocked)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
834

835
retry:
836 837 838 839
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

840
	if (!vma_permits_fault(vma, fault_flags))
841 842
		return -EFAULT;

843
	ret = handle_mm_fault(vma, address, fault_flags);
844
	major |= ret & VM_FAULT_MAJOR;
845
	if (ret & VM_FAULT_ERROR) {
846 847 848 849
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
850 851
		BUG();
	}
852 853 854 855 856 857 858 859 860 861 862

	if (ret & VM_FAULT_RETRY) {
		down_read(&mm->mmap_sem);
		if (!(fault_flags & FAULT_FLAG_TRIED)) {
			*unlocked = true;
			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			fault_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}

863
	if (tsk) {
864
		if (major)
865 866 867 868 869 870
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}
871
EXPORT_SYMBOL_GPL(fixup_user_fault);
872

873 874 875 876 877 878
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
						struct mm_struct *mm,
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
879
						int *locked,
880
						unsigned int flags)
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

	if (pages)
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (!pages)
			/* If it's a prefault don't insist harder */
			return ret;

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
921 922 923 924
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
			if (!pages_done)
				pages_done = ret;
			break;
		}
		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
		pages += ret;
		start += ret << PAGE_SHIFT;

		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
		 * without FAULT_FLAG_ALLOW_RETRY but with
		 * FAULT_FLAG_TRIED.
		 */
		*locked = 1;
		lock_dropped = true;
		down_read(&mm->mmap_sem);
		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
				       pages, NULL, NULL);
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
		pages++;
		start += PAGE_SIZE;
	}
956
	if (lock_dropped && *locked) {
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
		up_read(&mm->mmap_sem);
		*locked = 0;
	}
	return pages_done;
}

/*
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
 * get_user_pages_locked() is suitable to replace the form:
 *
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  to:
 *
 *      int locked = 1;
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 *      if (locked)
 *          up_read(&mm->mmap_sem);
 */
988
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
989
			   unsigned int gup_flags, struct page **pages,
990 991
			   int *locked)
{
992
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
993
				       pages, NULL, locked,
994
				       gup_flags | FOLL_TOUCH);
995
}
996
EXPORT_SYMBOL(get_user_pages_locked);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

/*
 * get_user_pages_unlocked() is suitable to replace the form:
 *
 *      down_read(&mm->mmap_sem);
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  with:
 *
 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 *
 * It is functionally equivalent to get_user_pages_fast so
1010 1011
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1012
 */
1013
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1014
			     struct page **pages, unsigned int gup_flags)
1015
{
1016 1017 1018 1019 1020 1021
	struct mm_struct *mm = current->mm;
	int locked = 1;
	long ret;

	down_read(&mm->mmap_sem);
	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1022
				      &locked, gup_flags | FOLL_TOUCH);
1023 1024 1025
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;
1026
}
1027
EXPORT_SYMBOL(get_user_pages_unlocked);
1028

1029
/*
1030
 * get_user_pages_remote() - pin user pages in memory
1031 1032 1033 1034 1035
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
1036
 * @gup_flags:	flags modifying lookup behaviour
1037 1038 1039 1040 1041
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
1042 1043 1044
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
 * get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
1068 1069 1070
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
1071 1072 1073 1074 1075 1076 1077 1078
 *
 * get_user_pages is typically used for fewer-copy IO operations, to get a
 * handle on the memory by some means other than accesses via the user virtual
 * addresses. The pages may be submitted for DMA to devices or accessed via
 * their kernel linear mapping (via the kmap APIs). Care should be taken to
 * use the correct cache flushing APIs.
 *
 * See also get_user_pages_fast, for performance critical applications.
1079 1080 1081 1082 1083
 *
 * get_user_pages should be phased out in favor of
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
 * should use get_user_pages because it cannot pass
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1084
 */
1085 1086
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, unsigned long nr_pages,
1087
		unsigned int gup_flags, struct page **pages,
1088
		struct vm_area_struct **vmas, int *locked)
1089
{
1090
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1091
				       locked,
1092
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1093 1094 1095 1096
}
EXPORT_SYMBOL(get_user_pages_remote);

/*
1097 1098
 * This is the same as get_user_pages_remote(), just with a
 * less-flexible calling convention where we assume that the task
1099 1100 1101
 * and mm being operated on are the current task's and don't allow
 * passing of a locked parameter.  We also obviously don't pass
 * FOLL_REMOTE in here.
1102
 */
1103
long get_user_pages(unsigned long start, unsigned long nr_pages,
1104
		unsigned int gup_flags, struct page **pages,
1105 1106
		struct vm_area_struct **vmas)
{
1107
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1108
				       pages, vmas, NULL,
1109
				       gup_flags | FOLL_TOUCH);
1110
}
1111
EXPORT_SYMBOL(get_user_pages);
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
#ifdef CONFIG_FS_DAX
/*
 * This is the same as get_user_pages() in that it assumes we are
 * operating on the current task's mm, but it goes further to validate
 * that the vmas associated with the address range are suitable for
 * longterm elevated page reference counts. For example, filesystem-dax
 * mappings are subject to the lifetime enforced by the filesystem and
 * we need guarantees that longterm users like RDMA and V4L2 only
 * establish mappings that have a kernel enforced revocation mechanism.
 *
 * "longterm" == userspace controlled elevated page count lifetime.
 * Contrast this to iov_iter_get_pages() usages which are transient.
 */
long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas_arg)
{
	struct vm_area_struct **vmas = vmas_arg;
	struct vm_area_struct *vma_prev = NULL;
	long rc, i;

	if (!pages)
		return -EINVAL;

	if (!vmas) {
		vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
			       GFP_KERNEL);
		if (!vmas)
			return -ENOMEM;
	}

	rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);

	for (i = 0; i < rc; i++) {
		struct vm_area_struct *vma = vmas[i];

		if (vma == vma_prev)
			continue;

		vma_prev = vma;

		if (vma_is_fsdax(vma))
			break;
	}

	/*
	 * Either get_user_pages() failed, or the vma validation
	 * succeeded, in either case we don't need to put_page() before
	 * returning.
	 */
	if (i >= rc)
		goto out;

	for (i = 0; i < rc; i++)
		put_page(pages[i]);
	rc = -EOPNOTSUPP;
out:
	if (vmas != vmas_arg)
		kfree(vmas);
	return rc;
}
EXPORT_SYMBOL(get_user_pages_longterm);
#endif /* CONFIG_FS_DAX */

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
 * @nonblocking:
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
 * return 0 on success, negative error code on error.
 *
 * vma->vm_mm->mmap_sem must be held.
 *
 * If @nonblocking is NULL, it may be held for read or write and will
 * be unperturbed.
 *
 * If @nonblocking is non-NULL, it must held for read only and may be
 * released.  If it's released, *@nonblocking will be set to 0.
 */
long populate_vma_page_range(struct vm_area_struct *vma,
		unsigned long start, unsigned long end, int *nonblocking)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);

E
Eric B Munson 已提交
1209 1210 1211
	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
				NULL, NULL, nonblocking);
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
 * mmap_sem must not be held.
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
			down_read(&mm->mmap_sem);
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;	/* 0 or negative error code */
}

1295 1296 1297 1298 1299
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
1300
 * to be freed afterwards by put_page().
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
 * Called without mmap_sem, but after all other threads have been killed.
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
	struct vm_area_struct *vma;
	struct page *page;

	if (__get_user_pages(current, current->mm, addr, 1,
			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
			     NULL) < 1)
		return NULL;
	flush_cache_page(vma, addr, page_to_pfn(page));
	return page;
}
#endif /* CONFIG_ELF_CORE */
1323 1324

/*
1325
 * Generic Fast GUP
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
1346 1347
 *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
1348 1349 1350 1351 1352 1353 1354 1355 1356
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
1357
#ifdef CONFIG_HAVE_GENERIC_GUP
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
#ifndef gup_get_pte
/*
 * We assume that the PTE can be read atomically. If this is not the case for
 * your architecture, please provide the helper.
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	return READ_ONCE(*ptep);
}
#endif

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
		put_page(page);
	}
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/*
 * Return the compund head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);
	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

1394
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1395 1396 1397
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
			 int write, struct page **pages, int *nr)
{
1398 1399
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
1400 1401 1402 1403
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
1404
		pte_t pte = gup_get_pte(ptep);
1405
		struct page *head, *page;
1406 1407 1408

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
1409
		 * path using the pte_protnone check.
1410
		 */
1411 1412 1413 1414 1415 1416
		if (pte_protnone(pte))
			goto pte_unmap;

		if (!pte_access_permitted(pte, write))
			goto pte_unmap;

1417 1418 1419 1420 1421 1422 1423
		if (pte_devmap(pte)) {
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
				undo_dev_pagemap(nr, nr_start, pages);
				goto pte_unmap;
			}
		} else if (pte_special(pte))
1424 1425 1426 1427 1428
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

1429 1430
		head = try_get_compound_head(page, 1);
		if (!head)
1431 1432 1433
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1434
			put_page(head);
1435 1436 1437
			goto pte_unmap;
		}

1438
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1439 1440

		SetPageReferenced(page);
1441 1442 1443 1444 1445 1446 1447 1448
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
1449 1450
	if (pgmap)
		put_dev_pagemap(pgmap);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
 * __get_user_pages_fast implementation that can pin pages. Thus it's still
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
			 int write, struct page **pages, int *nr)
{
	return 0;
}
1470
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1471

1472
#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
		unsigned long end, struct page **pages, int *nr)
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
			undo_dev_pagemap(nr, nr_start, pages);
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
		get_page(page);
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
1493 1494 1495

	if (pgmap)
		put_dev_pagemap(pgmap);
1496 1497 1498
	return 1;
}

1499
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1500 1501 1502
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;
1503 1504 1505 1506 1507
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
		return 0;
1508

1509 1510 1511 1512 1513
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		undo_dev_pagemap(nr, nr_start, pages);
		return 0;
	}
	return 1;
1514 1515
}

1516
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1517 1518 1519
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;
1520 1521 1522 1523 1524
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
		return 0;
1525

1526 1527 1528 1529 1530
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		undo_dev_pagemap(nr, nr_start, pages);
		return 0;
	}
	return 1;
1531 1532
}
#else
1533
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1534 1535 1536 1537 1538 1539
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}

1540
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1541 1542 1543 1544 1545 1546 1547
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}
#endif

1548 1549 1550
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
1551
	struct page *head, *page;
1552 1553
	int refs;

1554
	if (!pmd_access_permitted(orig, write))
1555 1556
		return 0;

1557
	if (pmd_devmap(orig))
1558
		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1559

1560
	refs = 0;
1561
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1562 1563 1564 1565 1566 1567 1568
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1569 1570
	head = try_get_compound_head(pmd_page(orig), refs);
	if (!head) {
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		*nr -= refs;
		return 0;
	}

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1582
	SetPageReferenced(head);
1583 1584 1585 1586 1587 1588
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
1589
	struct page *head, *page;
1590 1591
	int refs;

1592
	if (!pud_access_permitted(orig, write))
1593 1594
		return 0;

1595
	if (pud_devmap(orig))
1596
		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1597

1598
	refs = 0;
1599
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1600 1601 1602 1603 1604 1605 1606
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1607 1608
	head = try_get_compound_head(pud_page(orig), refs);
	if (!head) {
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		*nr -= refs;
		return 0;
	}

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1620
	SetPageReferenced(head);
1621 1622 1623
	return 1;
}

1624 1625 1626 1627 1628
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
			unsigned long end, int write,
			struct page **pages, int *nr)
{
	int refs;
1629
	struct page *head, *page;
1630

1631
	if (!pgd_access_permitted(orig, write))
1632 1633
		return 0;

1634
	BUILD_BUG_ON(pgd_devmap(orig));
1635
	refs = 0;
1636
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1637 1638 1639 1640 1641 1642 1643
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1644 1645
	head = try_get_compound_head(pgd_page(orig), refs);
	if (!head) {
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		*nr -= refs;
		return 0;
	}

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1657
	SetPageReferenced(head);
1658 1659 1660
	return 1;
}

1661 1662 1663 1664 1665 1666 1667 1668
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
		int write, struct page **pages, int *nr)
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
1669
		pmd_t pmd = READ_ONCE(*pmdp);
1670 1671

		next = pmd_addr_end(addr, end);
1672
		if (!pmd_present(pmd))
1673 1674
			return 0;

Y
Yu Zhao 已提交
1675 1676
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
1677 1678 1679 1680 1681
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
1682
			if (pmd_protnone(pmd))
1683 1684 1685 1686 1687 1688
				return 0;

			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
				pages, nr))
				return 0;

1689 1690 1691 1692 1693 1694 1695 1696
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
					 PMD_SHIFT, next, write, pages, nr))
				return 0;
1697
		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1698
			return 0;
1699 1700 1701 1702 1703
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

1704
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1705
			 int write, struct page **pages, int *nr)
1706 1707 1708 1709
{
	unsigned long next;
	pud_t *pudp;

1710
	pudp = pud_offset(&p4d, addr);
1711
	do {
1712
		pud_t pud = READ_ONCE(*pudp);
1713 1714 1715 1716

		next = pud_addr_end(addr, end);
		if (pud_none(pud))
			return 0;
1717
		if (unlikely(pud_huge(pud))) {
1718
			if (!gup_huge_pud(pud, pudp, addr, next, write,
1719 1720 1721 1722 1723
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
					 PUD_SHIFT, next, write, pages, nr))
1724 1725 1726 1727 1728 1729 1730 1731
				return 0;
		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
			 int write, struct page **pages, int *nr)
{
	unsigned long next;
	p4d_t *p4dp;

	p4dp = p4d_offset(&pgd, addr);
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
					 P4D_SHIFT, next, write, pages, nr))
				return 0;
1750
		} else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1751 1752 1753 1754 1755 1756
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
static void gup_pgd_range(unsigned long addr, unsigned long end,
		int write, struct page **pages, int *nr)
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
					 PGDIR_SHIFT, next, write, pages, nr))
				return;
		} else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
			return;
	} while (pgdp++, addr = next, addr != end);
}

#ifndef gup_fast_permitted
/*
 * Check if it's allowed to use __get_user_pages_fast() for the range, or
 * we need to fall back to the slow version:
 */
bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
{
	unsigned long len, end;

	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;
	return end >= start;
}
#endif

1798 1799
/*
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1800 1801 1802
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
1803 1804 1805 1806 1807
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages)
{
	unsigned long addr, len, end;
1808
	unsigned long flags;
1809 1810 1811 1812 1813 1814 1815 1816
	int nr = 0;

	start &= PAGE_MASK;
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1817
					(void __user *)start, len)))
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
		return 0;

	/*
	 * Disable interrupts.  We use the nested form as we can already have
	 * interrupts disabled by get_futex_key.
	 *
	 * With interrupts disabled, we block page table pages from being
	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
	 * for more details.
	 *
	 * We do not adopt an rcu_read_lock(.) here as we also want to
	 * block IPIs that come from THPs splitting.
	 */

1832 1833 1834 1835 1836
	if (gup_fast_permitted(start, nr_pages, write)) {
		local_irq_save(flags);
		gup_pgd_range(addr, end, write, pages, &nr);
		local_irq_restore(flags);
	}
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

	return nr;
}

/**
 * get_user_pages_fast() - pin user pages in memory
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @write:	whether pages will be written to
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long.
 *
 * Attempt to pin user pages in memory without taking mm->mmap_sem.
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
			struct page **pages)
{
1860
	unsigned long addr, len, end;
1861
	int nr = 0, ret = 0;
1862 1863

	start &= PAGE_MASK;
1864 1865 1866 1867
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

1868 1869 1870
	if (nr_pages <= 0)
		return 0;

1871 1872
	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
					(void __user *)start, len)))
1873
		return -EFAULT;
1874 1875

	if (gup_fast_permitted(start, nr_pages, write)) {
1876 1877 1878
		local_irq_disable();
		gup_pgd_range(addr, end, write, pages, &nr);
		local_irq_enable();
1879 1880
		ret = nr;
	}
1881 1882 1883 1884 1885 1886

	if (nr < nr_pages) {
		/* Try to get the remaining pages with get_user_pages */
		start += nr << PAGE_SHIFT;
		pages += nr;

1887 1888
		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
				write ? FOLL_WRITE : 0);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

		/* Have to be a bit careful with return values */
		if (nr > 0) {
			if (ret < 0)
				ret = nr;
			else
				ret += nr;
		}
	}

	return ret;
}

1902
#endif /* CONFIG_HAVE_GENERIC_GUP */