cfi_cmdset_0001.c 64.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 * Common Flash Interface support:
 *   Intel Extended Vendor Command Set (ID 0x0001)
 *
 * (C) 2000 Red Hat. GPL'd
 *
7
 * $Id: cfi_cmdset_0001.c,v 1.178 2005/05/19 17:05:43 nico Exp $
L
Linus Torvalds 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 *
 * 
 * 10/10/2000	Nicolas Pitre <nico@cam.org>
 * 	- completely revamped method functions so they are aware and
 * 	  independent of the flash geometry (buswidth, interleave, etc.)
 * 	- scalability vs code size is completely set at compile-time
 * 	  (see include/linux/mtd/cfi.h for selection)
 *	- optimized write buffer method
 * 02/05/2002	Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
 *	- reworked lock/unlock/erase support for var size flash
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <asm/io.h>
#include <asm/byteorder.h>

#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
32
#include <linux/reboot.h>
L
Linus Torvalds 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#include <linux/mtd/xip.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/compatmac.h>
#include <linux/mtd/cfi.h>

/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */

// debugging, turns off buffer write mode if set to 1
#define FORCE_WORD_WRITE 0

#define MANUFACTURER_INTEL	0x0089
#define I82802AB	0x00ad
#define I82802AC	0x00ac
#define MANUFACTURER_ST         0x0020
#define M50LPW080       0x002F

static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
static void cfi_intelext_sync (struct mtd_info *);
static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
58
#ifdef CONFIG_MTD_OTP
59 60 61 62 63 64 65 66
static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
					    struct otp_info *, size_t);
static int cfi_intelext_get_user_prot_info (struct mtd_info *,
					    struct otp_info *, size_t);
67
#endif
L
Linus Torvalds 已提交
68 69
static int cfi_intelext_suspend (struct mtd_info *);
static void cfi_intelext_resume (struct mtd_info *);
70
static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
L
Linus Torvalds 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

static void cfi_intelext_destroy(struct mtd_info *);

struct mtd_info *cfi_cmdset_0001(struct map_info *, int);

static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);

static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
		     size_t *retlen, u_char **mtdbuf);
static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
			size_t len);

static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
#include "fwh_lock.h"



/*
 *  *********** SETUP AND PROBE BITS  ***********
 */

static struct mtd_chip_driver cfi_intelext_chipdrv = {
	.probe		= NULL, /* Not usable directly */
	.destroy	= cfi_intelext_destroy,
	.name		= "cfi_cmdset_0001",
	.module		= THIS_MODULE
};

/* #define DEBUG_LOCK_BITS */
/* #define DEBUG_CFI_FEATURES */

#ifdef DEBUG_CFI_FEATURES
static void cfi_tell_features(struct cfi_pri_intelext *extp)
{
	int i;
	printk("  Feature/Command Support:      %4.4X\n", extp->FeatureSupport);
	printk("     - Chip Erase:              %s\n", extp->FeatureSupport&1?"supported":"unsupported");
	printk("     - Suspend Erase:           %s\n", extp->FeatureSupport&2?"supported":"unsupported");
	printk("     - Suspend Program:         %s\n", extp->FeatureSupport&4?"supported":"unsupported");
	printk("     - Legacy Lock/Unlock:      %s\n", extp->FeatureSupport&8?"supported":"unsupported");
	printk("     - Queued Erase:            %s\n", extp->FeatureSupport&16?"supported":"unsupported");
	printk("     - Instant block lock:      %s\n", extp->FeatureSupport&32?"supported":"unsupported");
	printk("     - Protection Bits:         %s\n", extp->FeatureSupport&64?"supported":"unsupported");
	printk("     - Page-mode read:          %s\n", extp->FeatureSupport&128?"supported":"unsupported");
	printk("     - Synchronous read:        %s\n", extp->FeatureSupport&256?"supported":"unsupported");
	printk("     - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
	for (i=10; i<32; i++) {
		if (extp->FeatureSupport & (1<<i)) 
			printk("     - Unknown Bit %X:      supported\n", i);
	}
	
	printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
	printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
	for (i=1; i<8; i++) {
		if (extp->SuspendCmdSupport & (1<<i))
			printk("     - Unknown Bit %X:               supported\n", i);
	}
	
	printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
	printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
	printk("     - Valid Bit Active:     %s\n", extp->BlkStatusRegMask&2?"yes":"no");
	for (i=2; i<16; i++) {
		if (extp->BlkStatusRegMask & (1<<i))
			printk("     - Unknown Bit %X Active: yes\n",i);
	}
	
	printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", 
	       extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
	if (extp->VppOptimal)
		printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", 
		       extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
}
#endif

#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ 
static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;

	printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
	                    "erase on write disabled.\n");
	extp->SuspendCmdSupport &= ~1;
}
#endif

#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;

	if (cfip && (cfip->FeatureSupport&4)) {
		cfip->FeatureSupport &= ~4;
		printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
	}
}
#endif

static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	
	cfi->cfiq->BufWriteTimeoutTyp = 0;	/* Not supported */
	cfi->cfiq->BufWriteTimeoutMax = 0;	/* Not supported */
}

static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	
	/* Note this is done after the region info is endian swapped */
	cfi->cfiq->EraseRegionInfo[1] =
		(cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
};

static void fixup_use_point(struct mtd_info *mtd, void *param)
{
	struct map_info *map = mtd->priv;
	if (!mtd->point && map_is_linear(map)) {
		mtd->point   = cfi_intelext_point;
		mtd->unpoint = cfi_intelext_unpoint;
	}
}

static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	if (cfi->cfiq->BufWriteTimeoutTyp) {
		printk(KERN_INFO "Using buffer write method\n" );
		mtd->write = cfi_intelext_write_buffers;
	}
}

static struct cfi_fixup cfi_fixup_table[] = {
#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL }, 
#endif
#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
#endif
#if !FORCE_WORD_WRITE
	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
#endif
	{ CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
	{ CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
	{ 0, 0, NULL, NULL }
};

static struct cfi_fixup jedec_fixup_table[] = {
	{ MANUFACTURER_INTEL, I82802AB,   fixup_use_fwh_lock, NULL, },
	{ MANUFACTURER_INTEL, I82802AC,   fixup_use_fwh_lock, NULL, },
	{ MANUFACTURER_ST,    M50LPW080,  fixup_use_fwh_lock, NULL, },
	{ 0, 0, NULL, NULL }
};
static struct cfi_fixup fixup_table[] = {
	/* The CFI vendor ids and the JEDEC vendor IDs appear
	 * to be common.  It is like the devices id's are as
	 * well.  This table is to pick all cases where
	 * we know that is the case.
	 */
	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
	{ 0, 0, NULL, NULL }
};

static inline struct cfi_pri_intelext *
read_pri_intelext(struct map_info *map, __u16 adr)
{
	struct cfi_pri_intelext *extp;
	unsigned int extp_size = sizeof(*extp);

 again:
	extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
	if (!extp)
		return NULL;

	/* Do some byteswapping if necessary */
	extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
	extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
	extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);

	if (extp->MajorVersion == '1' && extp->MinorVersion == '3') {
		unsigned int extra_size = 0;
		int nb_parts, i;

		/* Protection Register info */
N
Nicolas Pitre 已提交
265 266
		extra_size += (extp->NumProtectionFields - 1) *
			      sizeof(struct cfi_intelext_otpinfo);
L
Linus Torvalds 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

		/* Burst Read info */
		extra_size += 6;

		/* Number of hardware-partitions */
		extra_size += 1;
		if (extp_size < sizeof(*extp) + extra_size)
			goto need_more;
		nb_parts = extp->extra[extra_size - 1];

		for (i = 0; i < nb_parts; i++) {
			struct cfi_intelext_regioninfo *rinfo;
			rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
			extra_size += sizeof(*rinfo);
			if (extp_size < sizeof(*extp) + extra_size)
				goto need_more;
			rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
			extra_size += (rinfo->NumBlockTypes - 1)
				      * sizeof(struct cfi_intelext_blockinfo);
		}

		if (extp_size < sizeof(*extp) + extra_size) {
			need_more:
			extp_size = sizeof(*extp) + extra_size;
			kfree(extp);
			if (extp_size > 4096) {
				printk(KERN_ERR
					"%s: cfi_pri_intelext is too fat\n",
					__FUNCTION__);
				return NULL;
			}
			goto again;
		}
	}
		
	return extp;
}

/* This routine is made available to other mtd code via
 * inter_module_register.  It must only be accessed through
 * inter_module_get which will bump the use count of this module.  The
 * addresses passed back in cfi are valid as long as the use count of
 * this module is non-zero, i.e. between inter_module_get and
 * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
 */
struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
{
	struct cfi_private *cfi = map->fldrv_priv;
	struct mtd_info *mtd;
	int i;

	mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
	if (!mtd) {
		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
		return NULL;
	}
	memset(mtd, 0, sizeof(*mtd));
	mtd->priv = map;
	mtd->type = MTD_NORFLASH;

	/* Fill in the default mtd operations */
	mtd->erase   = cfi_intelext_erase_varsize;
	mtd->read    = cfi_intelext_read;
	mtd->write   = cfi_intelext_write_words;
	mtd->sync    = cfi_intelext_sync;
	mtd->lock    = cfi_intelext_lock;
	mtd->unlock  = cfi_intelext_unlock;
	mtd->suspend = cfi_intelext_suspend;
	mtd->resume  = cfi_intelext_resume;
	mtd->flags   = MTD_CAP_NORFLASH;
	mtd->name    = map->name;
338 339 340

	mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;

L
Linus Torvalds 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	if (cfi->cfi_mode == CFI_MODE_CFI) {
		/* 
		 * It's a real CFI chip, not one for which the probe
		 * routine faked a CFI structure. So we read the feature
		 * table from it.
		 */
		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
		struct cfi_pri_intelext *extp;

		extp = read_pri_intelext(map, adr);
		if (!extp) {
			kfree(mtd);
			return NULL;
		}

		/* Install our own private info structure */
		cfi->cmdset_priv = extp;	

		cfi_fixup(mtd, cfi_fixup_table);

#ifdef DEBUG_CFI_FEATURES
		/* Tell the user about it in lots of lovely detail */
		cfi_tell_features(extp);
#endif	

		if(extp->SuspendCmdSupport & 1) {
			printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
		}
	}
	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
		/* Apply jedec specific fixups */
		cfi_fixup(mtd, jedec_fixup_table);
	}
	/* Apply generic fixups */
	cfi_fixup(mtd, fixup_table);

	for (i=0; i< cfi->numchips; i++) {
		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
		cfi->chips[i].ref_point_counter = 0;
	}		

	map->fldrv = &cfi_intelext_chipdrv;
	
	return cfi_intelext_setup(mtd);
}

static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long offset = 0;
	int i,j;
	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;

	//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);

	mtd->size = devsize * cfi->numchips;

	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) 
			* mtd->numeraseregions, GFP_KERNEL);
	if (!mtd->eraseregions) { 
		printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
		goto setup_err;
	}
	
	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
		unsigned long ernum, ersize;
		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;

		if (mtd->erasesize < ersize) {
			mtd->erasesize = ersize;
		}
		for (j=0; j<cfi->numchips; j++) {
			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
		}
		offset += (ersize * ernum);
	}

	if (offset != devsize) {
		/* Argh */
		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
		goto setup_err;
	}

	for (i=0; i<mtd->numeraseregions;i++){
		printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n",
		       i,mtd->eraseregions[i].offset,
		       mtd->eraseregions[i].erasesize,
		       mtd->eraseregions[i].numblocks);
	}

438
#ifdef CONFIG_MTD_OTP
L
Linus Torvalds 已提交
439
	mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
440 441 442 443 444
	mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
	mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
	mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
	mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
	mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452
#endif

	/* This function has the potential to distort the reality
	   a bit and therefore should be called last. */
	if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
		goto setup_err;

	__module_get(THIS_MODULE);
453
	register_reboot_notifier(&mtd->reboot_notifier);
L
Linus Torvalds 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	return mtd;

 setup_err:
	if(mtd) {
		if(mtd->eraseregions)
			kfree(mtd->eraseregions);
		kfree(mtd);
	}
	kfree(cfi->cmdset_priv);
	return NULL;
}

static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
					struct cfi_private **pcfi)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = *pcfi;
	struct cfi_pri_intelext *extp = cfi->cmdset_priv;

	/*
	 * Probing of multi-partition flash ships.
	 *
	 * To support multiple partitions when available, we simply arrange
	 * for each of them to have their own flchip structure even if they
	 * are on the same physical chip.  This means completely recreating
	 * a new cfi_private structure right here which is a blatent code
	 * layering violation, but this is still the least intrusive
	 * arrangement at this point. This can be rearranged in the future
	 * if someone feels motivated enough.  --nico
	 */
	if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3'
	    && extp->FeatureSupport & (1 << 9)) {
		struct cfi_private *newcfi;
		struct flchip *chip;
		struct flchip_shared *shared;
		int offs, numregions, numparts, partshift, numvirtchips, i, j;

		/* Protection Register info */
N
Nicolas Pitre 已提交
492 493
		offs = (extp->NumProtectionFields - 1) *
		       sizeof(struct cfi_intelext_otpinfo);
L
Linus Torvalds 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

		/* Burst Read info */
		offs += 6;

		/* Number of partition regions */
		numregions = extp->extra[offs];
		offs += 1;

		/* Number of hardware partitions */
		numparts = 0;
		for (i = 0; i < numregions; i++) {
			struct cfi_intelext_regioninfo *rinfo;
			rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
			numparts += rinfo->NumIdentPartitions;
			offs += sizeof(*rinfo)
				+ (rinfo->NumBlockTypes - 1) *
				  sizeof(struct cfi_intelext_blockinfo);
		}

		/*
		 * All functions below currently rely on all chips having
		 * the same geometry so we'll just assume that all hardware
		 * partitions are of the same size too.
		 */
		partshift = cfi->chipshift - __ffs(numparts);

		if ((1 << partshift) < mtd->erasesize) {
			printk( KERN_ERR
				"%s: bad number of hw partitions (%d)\n",
				__FUNCTION__, numparts);
			return -EINVAL;
		}

		numvirtchips = cfi->numchips * numparts;
		newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
		if (!newcfi)
			return -ENOMEM;
		shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
		if (!shared) {
			kfree(newcfi);
			return -ENOMEM;
		}
		memcpy(newcfi, cfi, sizeof(struct cfi_private));
		newcfi->numchips = numvirtchips;
		newcfi->chipshift = partshift;

		chip = &newcfi->chips[0];
		for (i = 0; i < cfi->numchips; i++) {
			shared[i].writing = shared[i].erasing = NULL;
			spin_lock_init(&shared[i].lock);
			for (j = 0; j < numparts; j++) {
				*chip = cfi->chips[i];
				chip->start += j << partshift;
				chip->priv = &shared[i];
				/* those should be reset too since
				   they create memory references. */
				init_waitqueue_head(&chip->wq);
				spin_lock_init(&chip->_spinlock);
				chip->mutex = &chip->_spinlock;
				chip++;
			}
		}

		printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
				  "--> %d partitions of %d KiB\n",
				  map->name, cfi->numchips, cfi->interleave,
				  newcfi->numchips, 1<<(newcfi->chipshift-10));

		map->fldrv_priv = newcfi;
		*pcfi = newcfi;
		kfree(cfi);
	}

	return 0;
}

/*
 *  *********** CHIP ACCESS FUNCTIONS ***********
 */

static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
{
	DECLARE_WAITQUEUE(wait, current);
	struct cfi_private *cfi = map->fldrv_priv;
	map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
	unsigned long timeo;
	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;

 resettime:
	timeo = jiffies + HZ;
 retry:
585
	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE)) {
L
Linus Torvalds 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
		/*
		 * OK. We have possibility for contension on the write/erase
		 * operations which are global to the real chip and not per
		 * partition.  So let's fight it over in the partition which
		 * currently has authority on the operation.
		 *
		 * The rules are as follows:
		 *
		 * - any write operation must own shared->writing.
		 *
		 * - any erase operation must own _both_ shared->writing and
		 *   shared->erasing.
		 *
		 * - contension arbitration is handled in the owner's context.
		 *
		 * The 'shared' struct can be read when its lock is taken.
		 * However any writes to it can only be made when the current
		 * owner's lock is also held.
		 */
		struct flchip_shared *shared = chip->priv;
		struct flchip *contender;
		spin_lock(&shared->lock);
		contender = shared->writing;
		if (contender && contender != chip) {
			/*
			 * The engine to perform desired operation on this
			 * partition is already in use by someone else.
			 * Let's fight over it in the context of the chip
			 * currently using it.  If it is possible to suspend,
			 * that other partition will do just that, otherwise
			 * it'll happily send us to sleep.  In any case, when
			 * get_chip returns success we're clear to go ahead.
			 */
			int ret = spin_trylock(contender->mutex);
			spin_unlock(&shared->lock);
			if (!ret)
				goto retry;
			spin_unlock(chip->mutex);
			ret = get_chip(map, contender, contender->start, mode);
			spin_lock(chip->mutex);
			if (ret) {
				spin_unlock(contender->mutex);
				return ret;
			}
			timeo = jiffies + HZ;
			spin_lock(&shared->lock);
		}

		/* We now own it */
		shared->writing = chip;
		if (mode == FL_ERASING)
			shared->erasing = chip;
		if (contender && contender != chip)
			spin_unlock(contender->mutex);
		spin_unlock(&shared->lock);
	}

	switch (chip->state) {

	case FL_STATUS:
		for (;;) {
			status = map_read(map, adr);
			if (map_word_andequal(map, status, status_OK, status_OK))
				break;

			/* At this point we're fine with write operations
			   in other partitions as they don't conflict. */
			if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
				break;

			if (time_after(jiffies, timeo)) {
				printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n", 
				       status.x[0]);
				return -EIO;
			}
			spin_unlock(chip->mutex);
			cfi_udelay(1);
			spin_lock(chip->mutex);
			/* Someone else might have been playing with it. */
			goto retry;
		}
				
	case FL_READY:
	case FL_CFI_QUERY:
	case FL_JEDEC_QUERY:
		return 0;

	case FL_ERASING:
		if (!cfip ||
		    !(cfip->FeatureSupport & 2) ||
		    !(mode == FL_READY || mode == FL_POINT ||
		     (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
			goto sleep;


		/* Erase suspend */
		map_write(map, CMD(0xB0), adr);

		/* If the flash has finished erasing, then 'erase suspend'
		 * appears to make some (28F320) flash devices switch to
		 * 'read' mode.  Make sure that we switch to 'read status'
		 * mode so we get the right data. --rmk
		 */
		map_write(map, CMD(0x70), adr);
		chip->oldstate = FL_ERASING;
		chip->state = FL_ERASE_SUSPENDING;
		chip->erase_suspended = 1;
		for (;;) {
			status = map_read(map, adr);
			if (map_word_andequal(map, status, status_OK, status_OK))
			        break;

			if (time_after(jiffies, timeo)) {
				/* Urgh. Resume and pretend we weren't here.  */
				map_write(map, CMD(0xd0), adr);
				/* Make sure we're in 'read status' mode if it had finished */
				map_write(map, CMD(0x70), adr);
				chip->state = FL_ERASING;
				chip->oldstate = FL_READY;
				printk(KERN_ERR "Chip not ready after erase "
				       "suspended: status = 0x%lx\n", status.x[0]);
				return -EIO;
			}

			spin_unlock(chip->mutex);
			cfi_udelay(1);
			spin_lock(chip->mutex);
			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
			   So we can just loop here. */
		}
		chip->state = FL_STATUS;
		return 0;

	case FL_XIP_WHILE_ERASING:
		if (mode != FL_READY && mode != FL_POINT &&
		    (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
			goto sleep;
		chip->oldstate = chip->state;
		chip->state = FL_READY;
		return 0;

	case FL_POINT:
		/* Only if there's no operation suspended... */
		if (mode == FL_READY && chip->oldstate == FL_READY)
			return 0;

	default:
	sleep:
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);
		spin_unlock(chip->mutex);
		schedule();
		remove_wait_queue(&chip->wq, &wait);
		spin_lock(chip->mutex);
		goto resettime;
	}
}

static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
{
	struct cfi_private *cfi = map->fldrv_priv;

	if (chip->priv) {
		struct flchip_shared *shared = chip->priv;
		spin_lock(&shared->lock);
		if (shared->writing == chip && chip->oldstate == FL_READY) {
			/* We own the ability to write, but we're done */
			shared->writing = shared->erasing;
			if (shared->writing && shared->writing != chip) {
				/* give back ownership to who we loaned it from */
				struct flchip *loaner = shared->writing;
				spin_lock(loaner->mutex);
				spin_unlock(&shared->lock);
				spin_unlock(chip->mutex);
				put_chip(map, loaner, loaner->start);
				spin_lock(chip->mutex);
				spin_unlock(loaner->mutex);
				wake_up(&chip->wq);
				return;
			}
			shared->erasing = NULL;
			shared->writing = NULL;
		} else if (shared->erasing == chip && shared->writing != chip) {
			/*
			 * We own the ability to erase without the ability
			 * to write, which means the erase was suspended
			 * and some other partition is currently writing.
			 * Don't let the switch below mess things up since
			 * we don't have ownership to resume anything.
			 */
			spin_unlock(&shared->lock);
			wake_up(&chip->wq);
			return;
		}
		spin_unlock(&shared->lock);
	}

	switch(chip->oldstate) {
	case FL_ERASING:
		chip->state = chip->oldstate;
		/* What if one interleaved chip has finished and the 
		   other hasn't? The old code would leave the finished
		   one in READY mode. That's bad, and caused -EROFS 
		   errors to be returned from do_erase_oneblock because
		   that's the only bit it checked for at the time.
		   As the state machine appears to explicitly allow 
		   sending the 0x70 (Read Status) command to an erasing
		   chip and expecting it to be ignored, that's what we 
		   do. */
		map_write(map, CMD(0xd0), adr);
		map_write(map, CMD(0x70), adr);
		chip->oldstate = FL_READY;
		chip->state = FL_ERASING;
		break;

	case FL_XIP_WHILE_ERASING:
		chip->state = chip->oldstate;
		chip->oldstate = FL_READY;
		break;

	case FL_READY:
	case FL_STATUS:
	case FL_JEDEC_QUERY:
		/* We should really make set_vpp() count, rather than doing this */
		DISABLE_VPP(map);
		break;
	default:
		printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate);
	}
	wake_up(&chip->wq);
}

#ifdef CONFIG_MTD_XIP

/*
 * No interrupt what so ever can be serviced while the flash isn't in array
 * mode.  This is ensured by the xip_disable() and xip_enable() functions
 * enclosing any code path where the flash is known not to be in array mode.
 * And within a XIP disabled code path, only functions marked with __xipram
 * may be called and nothing else (it's a good thing to inspect generated
 * assembly to make sure inline functions were actually inlined and that gcc
 * didn't emit calls to its own support functions). Also configuring MTD CFI
 * support to a single buswidth and a single interleave is also recommended.
 */

static void xip_disable(struct map_info *map, struct flchip *chip,
			unsigned long adr)
{
	/* TODO: chips with no XIP use should ignore and return */
	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
	local_irq_disable();
}

static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
				unsigned long adr)
{
	struct cfi_private *cfi = map->fldrv_priv;
	if (chip->state != FL_POINT && chip->state != FL_READY) {
		map_write(map, CMD(0xff), adr);
		chip->state = FL_READY;
	}
	(void) map_read(map, adr);
T
Thomas Gleixner 已提交
848
	xip_iprefetch();
L
Linus Torvalds 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	local_irq_enable();
}

/*
 * When a delay is required for the flash operation to complete, the
 * xip_udelay() function is polling for both the given timeout and pending
 * (but still masked) hardware interrupts.  Whenever there is an interrupt
 * pending then the flash erase or write operation is suspended, array mode
 * restored and interrupts unmasked.  Task scheduling might also happen at that
 * point.  The CPU eventually returns from the interrupt or the call to
 * schedule() and the suspended flash operation is resumed for the remaining
 * of the delay period.
 *
 * Warning: this function _will_ fool interrupt latency tracing tools.
 */

static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
				unsigned long adr, int usec)
{
	struct cfi_private *cfi = map->fldrv_priv;
	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
	map_word status, OK = CMD(0x80);
	unsigned long suspended, start = xip_currtime();
	flstate_t oldstate, newstate;

	do {
		cpu_relax();
		if (xip_irqpending() && cfip &&
		    ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
		     (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
			/*
			 * Let's suspend the erase or write operation when
			 * supported.  Note that we currently don't try to
			 * suspend interleaved chips if there is already
			 * another operation suspended (imagine what happens
			 * when one chip was already done with the current
			 * operation while another chip suspended it, then
			 * we resume the whole thing at once).  Yes, it
			 * can happen!
			 */
			map_write(map, CMD(0xb0), adr);
			map_write(map, CMD(0x70), adr);
			usec -= xip_elapsed_since(start);
			suspended = xip_currtime();
			do {
				if (xip_elapsed_since(suspended) > 100000) {
					/*
					 * The chip doesn't want to suspend
					 * after waiting for 100 msecs.
					 * This is a critical error but there
					 * is not much we can do here.
					 */
					return;
				}
				status = map_read(map, adr);
			} while (!map_word_andequal(map, status, OK, OK));

			/* Suspend succeeded */
			oldstate = chip->state;
			if (oldstate == FL_ERASING) {
				if (!map_word_bitsset(map, status, CMD(0x40)))
					break;
				newstate = FL_XIP_WHILE_ERASING;
				chip->erase_suspended = 1;
			} else {
				if (!map_word_bitsset(map, status, CMD(0x04)))
					break;
				newstate = FL_XIP_WHILE_WRITING;
				chip->write_suspended = 1;
			}
			chip->state = newstate;
			map_write(map, CMD(0xff), adr);
			(void) map_read(map, adr);
			asm volatile (".rep 8; nop; .endr");
			local_irq_enable();
925
			spin_unlock(chip->mutex);
L
Linus Torvalds 已提交
926 927 928 929 930 931 932 933 934
			asm volatile (".rep 8; nop; .endr");
			cond_resched();

			/*
			 * We're back.  However someone else might have
			 * decided to go write to the chip if we are in
			 * a suspended erase state.  If so let's wait
			 * until it's done.
			 */
935
			spin_lock(chip->mutex);
L
Linus Torvalds 已提交
936 937 938 939
			while (chip->state != newstate) {
				DECLARE_WAITQUEUE(wait, current);
				set_current_state(TASK_UNINTERRUPTIBLE);
				add_wait_queue(&chip->wq, &wait);
940
				spin_unlock(chip->mutex);
L
Linus Torvalds 已提交
941 942
				schedule();
				remove_wait_queue(&chip->wq, &wait);
943
				spin_lock(chip->mutex);
L
Linus Torvalds 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
			}
			/* Disallow XIP again */
			local_irq_disable();

			/* Resume the write or erase operation */
			map_write(map, CMD(0xd0), adr);
			map_write(map, CMD(0x70), adr);
			chip->state = oldstate;
			start = xip_currtime();
		} else if (usec >= 1000000/HZ) {
			/*
			 * Try to save on CPU power when waiting delay
			 * is at least a system timer tick period.
			 * No need to be extremely accurate here.
			 */
			xip_cpu_idle();
		}
		status = map_read(map, adr);
	} while (!map_word_andequal(map, status, OK, OK)
		 && xip_elapsed_since(start) < usec);
}

#define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)

/*
 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
 * the flash is actively programming or erasing since we have to poll for
 * the operation to complete anyway.  We can't do that in a generic way with
972 973
 * a XIP setup so do it before the actual flash operation in this case
 * and stub it out from INVALIDATE_CACHE_UDELAY.
L
Linus Torvalds 已提交
974
 */
975 976 977 978 979
#define XIP_INVAL_CACHED_RANGE(map, from, size)  \
	INVALIDATE_CACHED_RANGE(map, from, size)

#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
	UDELAY(map, chip, adr, usec)
L
Linus Torvalds 已提交
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

/*
 * Extra notes:
 *
 * Activating this XIP support changes the way the code works a bit.  For
 * example the code to suspend the current process when concurrent access
 * happens is never executed because xip_udelay() will always return with the
 * same chip state as it was entered with.  This is why there is no care for
 * the presence of add_wait_queue() or schedule() calls from within a couple
 * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
 * The queueing and scheduling are always happening within xip_udelay().
 *
 * Similarly, get_chip() and put_chip() just happen to always be executed
 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
 * is in array mode, therefore never executing many cases therein and not
 * causing any problem with XIP.
 */

#else

#define xip_disable(map, chip, adr)
#define xip_enable(map, chip, adr)
#define XIP_INVAL_CACHED_RANGE(x...)

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
#define UDELAY(map, chip, adr, usec)  \
do {  \
	spin_unlock(chip->mutex);  \
	cfi_udelay(usec);  \
	spin_lock(chip->mutex);  \
} while (0)

#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
do {  \
	spin_unlock(chip->mutex);  \
	INVALIDATE_CACHED_RANGE(map, adr, len);  \
	cfi_udelay(usec);  \
	spin_lock(chip->mutex);  \
} while (0)

L
Linus Torvalds 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
#endif

static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
{
	unsigned long cmd_addr;
	struct cfi_private *cfi = map->fldrv_priv;
	int ret = 0;

	adr += chip->start;

	/* Ensure cmd read/writes are aligned. */ 
	cmd_addr = adr & ~(map_bankwidth(map)-1); 

	spin_lock(chip->mutex);

	ret = get_chip(map, chip, cmd_addr, FL_POINT);

	if (!ret) {
		if (chip->state != FL_POINT && chip->state != FL_READY)
			map_write(map, CMD(0xff), cmd_addr);

		chip->state = FL_POINT;
		chip->ref_point_counter++;
	}
	spin_unlock(chip->mutex);

	return ret;
}

static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long ofs;
	int chipnum;
	int ret = 0;

	if (!map->virt || (from + len > mtd->size))
		return -EINVAL;
	
	*mtdbuf = (void *)map->virt + from;
	*retlen = 0;

	/* Now lock the chip(s) to POINT state */

	/* ofs: offset within the first chip that the first read should start */
	chipnum = (from >> cfi->chipshift);
	ofs = from - (chipnum << cfi->chipshift);

	while (len) {
		unsigned long thislen;

		if (chipnum >= cfi->numchips)
			break;

		if ((len + ofs -1) >> cfi->chipshift)
			thislen = (1<<cfi->chipshift) - ofs;
		else
			thislen = len;

		ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
		if (ret)
			break;

		*retlen += thislen;
		len -= thislen;
		
		ofs = 0;
		chipnum++;
	}
	return 0;
}

static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long ofs;
	int chipnum;

	/* Now unlock the chip(s) POINT state */

	/* ofs: offset within the first chip that the first read should start */
	chipnum = (from >> cfi->chipshift);
	ofs = from - (chipnum <<  cfi->chipshift);

	while (len) {
		unsigned long thislen;
		struct flchip *chip;

		chip = &cfi->chips[chipnum];
		if (chipnum >= cfi->numchips)
			break;

		if ((len + ofs -1) >> cfi->chipshift)
			thislen = (1<<cfi->chipshift) - ofs;
		else
			thislen = len;

		spin_lock(chip->mutex);
		if (chip->state == FL_POINT) {
			chip->ref_point_counter--;
			if(chip->ref_point_counter == 0)
				chip->state = FL_READY;
		} else
			printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */

		put_chip(map, chip, chip->start);
		spin_unlock(chip->mutex);

		len -= thislen;
		ofs = 0;
		chipnum++;
	}
}

static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
{
	unsigned long cmd_addr;
	struct cfi_private *cfi = map->fldrv_priv;
	int ret;

	adr += chip->start;

	/* Ensure cmd read/writes are aligned. */ 
	cmd_addr = adr & ~(map_bankwidth(map)-1); 

	spin_lock(chip->mutex);
	ret = get_chip(map, chip, cmd_addr, FL_READY);
	if (ret) {
		spin_unlock(chip->mutex);
		return ret;
	}

	if (chip->state != FL_POINT && chip->state != FL_READY) {
		map_write(map, CMD(0xff), cmd_addr);

		chip->state = FL_READY;
	}

	map_copy_from(map, buf, adr, len);

	put_chip(map, chip, cmd_addr);

	spin_unlock(chip->mutex);
	return 0;
}

static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long ofs;
	int chipnum;
	int ret = 0;

	/* ofs: offset within the first chip that the first read should start */
	chipnum = (from >> cfi->chipshift);
	ofs = from - (chipnum <<  cfi->chipshift);

	*retlen = 0;

	while (len) {
		unsigned long thislen;

		if (chipnum >= cfi->numchips)
			break;

		if ((len + ofs -1) >> cfi->chipshift)
			thislen = (1<<cfi->chipshift) - ofs;
		else
			thislen = len;

		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
		if (ret)
			break;

		*retlen += thislen;
		len -= thislen;
		buf += thislen;
		
		ofs = 0;
		chipnum++;
	}
	return ret;
}

static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1207
				     unsigned long adr, map_word datum, int mode)
L
Linus Torvalds 已提交
1208 1209
{
	struct cfi_private *cfi = map->fldrv_priv;
1210
	map_word status, status_OK, write_cmd;
L
Linus Torvalds 已提交
1211 1212 1213 1214 1215 1216 1217
	unsigned long timeo;
	int z, ret=0;

	adr += chip->start;

	/* Let's determine this according to the interleave only once */
	status_OK = CMD(0x80);
1218 1219 1220 1221 1222
	switch (mode) {
	case FL_WRITING:   write_cmd = CMD(0x40); break;
	case FL_OTP_WRITE: write_cmd = CMD(0xc0); break;
	default: return -EINVAL;
	}
L
Linus Torvalds 已提交
1223 1224

	spin_lock(chip->mutex);
1225
	ret = get_chip(map, chip, adr, mode);
L
Linus Torvalds 已提交
1226 1227 1228 1229 1230 1231 1232 1233
	if (ret) {
		spin_unlock(chip->mutex);
		return ret;
	}

	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
	ENABLE_VPP(map);
	xip_disable(map, chip, adr);
1234
	map_write(map, write_cmd, adr);
L
Linus Torvalds 已提交
1235
	map_write(map, datum, adr);
1236
	chip->state = mode;
L
Linus Torvalds 已提交
1237

1238 1239 1240
	INVALIDATE_CACHE_UDELAY(map, chip,
				adr, map_bankwidth(map),
				chip->word_write_time);
L
Linus Torvalds 已提交
1241 1242 1243 1244

	timeo = jiffies + (HZ/2);
	z = 0;
	for (;;) {
1245
		if (chip->state != mode) {
L
Linus Torvalds 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
			/* Someone's suspended the write. Sleep */
			DECLARE_WAITQUEUE(wait, current);

			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			spin_unlock(chip->mutex);
			schedule();
			remove_wait_queue(&chip->wq, &wait);
			timeo = jiffies + (HZ / 2); /* FIXME */
			spin_lock(chip->mutex);
			continue;
		}

		status = map_read(map, adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;
		
		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			chip->state = FL_STATUS;
			xip_enable(map, chip, adr);
			printk(KERN_ERR "waiting for chip to be ready timed out in word write\n");
			ret = -EIO;
			goto out;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		z++;
		UDELAY(map, chip, adr, 1);
	}
	if (!z) {
		chip->word_write_time--;
		if (!chip->word_write_time)
			chip->word_write_time++;
	}
	if (z > 1) 
		chip->word_write_time++;

	/* Done and happy. */
	chip->state = FL_STATUS;

	/* check for lock bit */
	if (map_word_bitsset(map, status, CMD(0x02))) {
		/* clear status */
		map_write(map, CMD(0x50), adr);
		/* put back into read status register mode */
		map_write(map, CMD(0x70), adr);
		ret = -EROFS;
	}

	xip_enable(map, chip, adr);
 out:	put_chip(map, chip, adr);
	spin_unlock(chip->mutex);

	return ret;
}


static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int ret = 0;
	int chipnum;
	unsigned long ofs;

	*retlen = 0;
	if (!len)
		return 0;

	chipnum = to >> cfi->chipshift;
	ofs = to  - (chipnum << cfi->chipshift);

	/* If it's not bus-aligned, do the first byte write */
	if (ofs & (map_bankwidth(map)-1)) {
		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
		int gap = ofs - bus_ofs;
		int n;
		map_word datum;

		n = min_t(int, len, map_bankwidth(map)-gap);
		datum = map_word_ff(map);
		datum = map_word_load_partial(map, datum, buf, gap, n);

		ret = do_write_oneword(map, &cfi->chips[chipnum],
1331
					       bus_ofs, datum, FL_WRITING);
L
Linus Torvalds 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		if (ret) 
			return ret;

		len -= n;
		ofs += n;
		buf += n;
		(*retlen) += n;

		if (ofs >> cfi->chipshift) {
			chipnum ++; 
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}
	
	while(len >= map_bankwidth(map)) {
		map_word datum = map_word_load(map, buf);

		ret = do_write_oneword(map, &cfi->chips[chipnum],
1352
				       ofs, datum, FL_WRITING);
L
Linus Torvalds 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		if (ret)
			return ret;

		ofs += map_bankwidth(map);
		buf += map_bankwidth(map);
		(*retlen) += map_bankwidth(map);
		len -= map_bankwidth(map);

		if (ofs >> cfi->chipshift) {
			chipnum ++; 
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}

	if (len & (map_bankwidth(map)-1)) {
		map_word datum;

		datum = map_word_ff(map);
		datum = map_word_load_partial(map, datum, buf, 0, len);

		ret = do_write_oneword(map, &cfi->chips[chipnum],
1376
				       ofs, datum, FL_WRITING);
L
Linus Torvalds 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
		if (ret) 
			return ret;
		
		(*retlen) += len;
	}

	return 0;
}


static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, 
				    unsigned long adr, const u_char *buf, int len)
{
	struct cfi_private *cfi = map->fldrv_priv;
	map_word status, status_OK;
	unsigned long cmd_adr, timeo;
	int wbufsize, z, ret=0, bytes, words;

	wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
	adr += chip->start;
	cmd_adr = adr & ~(wbufsize-1);
	
	/* Let's determine this according to the interleave only once */
	status_OK = CMD(0x80);

	spin_lock(chip->mutex);
	ret = get_chip(map, chip, cmd_adr, FL_WRITING);
	if (ret) {
		spin_unlock(chip->mutex);
		return ret;
	}

	XIP_INVAL_CACHED_RANGE(map, adr, len);
	ENABLE_VPP(map);
	xip_disable(map, chip, cmd_adr);

	/* 4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
	   [...], the device will not accept any more Write to Buffer commands". 
	   So we must check here and reset those bits if they're set. Otherwise
	   we're just pissing in the wind */
	if (chip->state != FL_STATUS)
		map_write(map, CMD(0x70), cmd_adr);
	status = map_read(map, cmd_adr);
	if (map_word_bitsset(map, status, CMD(0x30))) {
		xip_enable(map, chip, cmd_adr);
		printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
		xip_disable(map, chip, cmd_adr);
		map_write(map, CMD(0x50), cmd_adr);
		map_write(map, CMD(0x70), cmd_adr);
	}

	chip->state = FL_WRITING_TO_BUFFER;

	z = 0;
	for (;;) {
		map_write(map, CMD(0xe8), cmd_adr);

		status = map_read(map, cmd_adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;

		UDELAY(map, chip, cmd_adr, 1);

		if (++z > 20) {
			/* Argh. Not ready for write to buffer */
			map_word Xstatus;
			map_write(map, CMD(0x70), cmd_adr);
			chip->state = FL_STATUS;
			Xstatus = map_read(map, cmd_adr);
			/* Odd. Clear status bits */
			map_write(map, CMD(0x50), cmd_adr);
			map_write(map, CMD(0x70), cmd_adr);
			xip_enable(map, chip, cmd_adr);
			printk(KERN_ERR "Chip not ready for buffer write. status = %lx, Xstatus = %lx\n",
			       status.x[0], Xstatus.x[0]);
			ret = -EIO;
			goto out;
		}
	}

	/* Write length of data to come */
	bytes = len & (map_bankwidth(map)-1);
	words = len / map_bankwidth(map);
	map_write(map, CMD(words - !bytes), cmd_adr );

	/* Write data */
	z = 0;
	while(z < words * map_bankwidth(map)) {
		map_word datum = map_word_load(map, buf);
		map_write(map, datum, adr+z);

		z += map_bankwidth(map);
		buf += map_bankwidth(map);
	}

	if (bytes) {
		map_word datum;

		datum = map_word_ff(map);
		datum = map_word_load_partial(map, datum, buf, 0, bytes);
		map_write(map, datum, adr+z);
	}

	/* GO GO GO */
	map_write(map, CMD(0xd0), cmd_adr);
	chip->state = FL_WRITING;

1484 1485 1486
	INVALIDATE_CACHE_UDELAY(map, chip, 
				cmd_adr, len,
				chip->buffer_write_time);
L
Linus Torvalds 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

	timeo = jiffies + (HZ/2);
	z = 0;
	for (;;) {
		if (chip->state != FL_WRITING) {
			/* Someone's suspended the write. Sleep */
			DECLARE_WAITQUEUE(wait, current);
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			spin_unlock(chip->mutex);
			schedule();
			remove_wait_queue(&chip->wq, &wait);
			timeo = jiffies + (HZ / 2); /* FIXME */
			spin_lock(chip->mutex);
			continue;
		}

		status = map_read(map, cmd_adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;

		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			chip->state = FL_STATUS;
			xip_enable(map, chip, cmd_adr);
			printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
			ret = -EIO;
			goto out;
		}
		
		/* Latency issues. Drop the lock, wait a while and retry */
		z++;
1519
		UDELAY(map, chip, cmd_adr, 1);
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	}
	if (!z) {
		chip->buffer_write_time--;
		if (!chip->buffer_write_time)
			chip->buffer_write_time++;
	}
	if (z > 1) 
		chip->buffer_write_time++;

	/* Done and happy. */
 	chip->state = FL_STATUS;

	/* check for lock bit */
	if (map_word_bitsset(map, status, CMD(0x02))) {
		/* clear status */
		map_write(map, CMD(0x50), cmd_adr);
		/* put back into read status register mode */
		map_write(map, CMD(0x70), adr);
		ret = -EROFS;
	}

	xip_enable(map, chip, cmd_adr);
 out:	put_chip(map, chip, cmd_adr);
	spin_unlock(chip->mutex);
	return ret;
}

static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, 
				       size_t len, size_t *retlen, const u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
	int ret = 0;
	int chipnum;
	unsigned long ofs;

	*retlen = 0;
	if (!len)
		return 0;

	chipnum = to >> cfi->chipshift;
	ofs = to  - (chipnum << cfi->chipshift);

	/* If it's not bus-aligned, do the first word write */
	if (ofs & (map_bankwidth(map)-1)) {
		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
		if (local_len > len)
			local_len = len;
		ret = cfi_intelext_write_words(mtd, to, local_len,
					       retlen, buf);
		if (ret)
			return ret;
		ofs += local_len;
		buf += local_len;
		len -= local_len;

		if (ofs >> cfi->chipshift) {
			chipnum ++;
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}

	while(len) {
		/* We must not cross write block boundaries */
		int size = wbufsize - (ofs & (wbufsize-1));

		if (size > len)
			size = len;
		ret = do_write_buffer(map, &cfi->chips[chipnum], 
				      ofs, buf, size);
		if (ret)
			return ret;

		ofs += size;
		buf += size;
		(*retlen) += size;
		len -= size;

		if (ofs >> cfi->chipshift) {
			chipnum ++; 
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}
	return 0;
}

static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
				      unsigned long adr, int len, void *thunk)
{
	struct cfi_private *cfi = map->fldrv_priv;
	map_word status, status_OK;
	unsigned long timeo;
	int retries = 3;
	DECLARE_WAITQUEUE(wait, current);
	int ret = 0;

	adr += chip->start;

	/* Let's determine this according to the interleave only once */
	status_OK = CMD(0x80);

 retry:
	spin_lock(chip->mutex);
	ret = get_chip(map, chip, adr, FL_ERASING);
	if (ret) {
		spin_unlock(chip->mutex);
		return ret;
	}

	XIP_INVAL_CACHED_RANGE(map, adr, len);
	ENABLE_VPP(map);
	xip_disable(map, chip, adr);

	/* Clear the status register first */
	map_write(map, CMD(0x50), adr);

	/* Now erase */
	map_write(map, CMD(0x20), adr);
	map_write(map, CMD(0xD0), adr);
	chip->state = FL_ERASING;
	chip->erase_suspended = 0;

1647 1648 1649
	INVALIDATE_CACHE_UDELAY(map, chip,
				adr, len,
				chip->erase_time*1000/2);
L
Linus Torvalds 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

	/* FIXME. Use a timer to check this, and return immediately. */
	/* Once the state machine's known to be working I'll do that */

	timeo = jiffies + (HZ*20);
	for (;;) {
		if (chip->state != FL_ERASING) {
			/* Someone's suspended the erase. Sleep */
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			spin_unlock(chip->mutex);
			schedule();
			remove_wait_queue(&chip->wq, &wait);
			spin_lock(chip->mutex);
			continue;
		}
		if (chip->erase_suspended) {
			/* This erase was suspended and resumed.
			   Adjust the timeout */
			timeo = jiffies + (HZ*20); /* FIXME */
			chip->erase_suspended = 0;
		}

		status = map_read(map, adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;
		
		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			map_word Xstatus;
			map_write(map, CMD(0x70), adr);
			chip->state = FL_STATUS;
			Xstatus = map_read(map, adr);
			/* Clear status bits */
			map_write(map, CMD(0x50), adr);
			map_write(map, CMD(0x70), adr);
			xip_enable(map, chip, adr);
			printk(KERN_ERR "waiting for erase at %08lx to complete timed out. status = %lx, Xstatus = %lx.\n",
			       adr, status.x[0], Xstatus.x[0]);
			ret = -EIO;
			goto out;
		}
		
		/* Latency issues. Drop the lock, wait a while and retry */
		UDELAY(map, chip, adr, 1000000/HZ);
	}

	/* We've broken this before. It doesn't hurt to be safe */
	map_write(map, CMD(0x70), adr);
	chip->state = FL_STATUS;
	status = map_read(map, adr);

	/* check for lock bit */
	if (map_word_bitsset(map, status, CMD(0x3a))) {
1704
		unsigned long chipstatus;
L
Linus Torvalds 已提交
1705 1706 1707 1708 1709 1710

		/* Reset the error bits */
		map_write(map, CMD(0x50), adr);
		map_write(map, CMD(0x70), adr);
		xip_enable(map, chip, adr);

1711
		chipstatus = MERGESTATUS(status);
L
Linus Torvalds 已提交
1712 1713

		if ((chipstatus & 0x30) == 0x30) {
1714
			printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%lx\n", chipstatus);
L
Linus Torvalds 已提交
1715 1716 1717 1718 1719 1720
			ret = -EIO;
		} else if (chipstatus & 0x02) {
			/* Protection bit set */
			ret = -EROFS;
		} else if (chipstatus & 0x8) {
			/* Voltage */
1721
			printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%lx\n", chipstatus);
L
Linus Torvalds 已提交
1722 1723 1724
			ret = -EIO;
		} else if (chipstatus & 0x20) {
			if (retries--) {
1725
				printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
L
Linus Torvalds 已提交
1726 1727 1728 1729 1730
				timeo = jiffies + HZ;
				put_chip(map, chip, adr);
				spin_unlock(chip->mutex);
				goto retry;
			}
1731
			printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%lx\n", adr, chipstatus);
L
Linus Torvalds 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
			ret = -EIO;
		}
	} else {
		xip_enable(map, chip, adr);
		ret = 0;
	}

 out:	put_chip(map, chip, adr);
	spin_unlock(chip->mutex);
	return ret;
}

int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
{
	unsigned long ofs, len;
	int ret;

	ofs = instr->addr;
	len = instr->len;

	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
	if (ret)
		return ret;

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);
	
	return 0;
}

static void cfi_intelext_sync (struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;
	int ret = 0;

	for (i=0; !ret && i<cfi->numchips; i++) {
		chip = &cfi->chips[i];

		spin_lock(chip->mutex);
		ret = get_chip(map, chip, chip->start, FL_SYNCING);

		if (!ret) {
			chip->oldstate = chip->state;
			chip->state = FL_SYNCING;
			/* No need to wake_up() on this state change - 
			 * as the whole point is that nobody can do anything
			 * with the chip now anyway.
			 */
		}
		spin_unlock(chip->mutex);
	}

	/* Unlock the chips again */

	for (i--; i >=0; i--) {
		chip = &cfi->chips[i];

		spin_lock(chip->mutex);
		
		if (chip->state == FL_SYNCING) {
			chip->state = chip->oldstate;
1796
			chip->oldstate = FL_READY;
L
Linus Torvalds 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
			wake_up(&chip->wq);
		}
		spin_unlock(chip->mutex);
	}
}

#ifdef DEBUG_LOCK_BITS
static int __xipram do_printlockstatus_oneblock(struct map_info *map,
						struct flchip *chip,
						unsigned long adr,
						int len, void *thunk)
{
	struct cfi_private *cfi = map->fldrv_priv;
	int status, ofs_factor = cfi->interleave * cfi->device_type;

1812
	adr += chip->start;
L
Linus Torvalds 已提交
1813
	xip_disable(map, chip, adr+(2*ofs_factor));
1814
	map_write(map, CMD(0x90), adr+(2*ofs_factor));
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	chip->state = FL_JEDEC_QUERY;
	status = cfi_read_query(map, adr+(2*ofs_factor));
	xip_enable(map, chip, 0);
	printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
	       adr, status);
	return 0;
}
#endif

#define DO_XXLOCK_ONEBLOCK_LOCK		((void *) 1)
#define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *) 2)

static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
				       unsigned long adr, int len, void *thunk)
{
	struct cfi_private *cfi = map->fldrv_priv;
1831
	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	map_word status, status_OK;
	unsigned long timeo = jiffies + HZ;
	int ret;

	adr += chip->start;

	/* Let's determine this according to the interleave only once */
	status_OK = CMD(0x80);

	spin_lock(chip->mutex);
	ret = get_chip(map, chip, adr, FL_LOCKING);
	if (ret) {
		spin_unlock(chip->mutex);
		return ret;
	}

	ENABLE_VPP(map);
	xip_disable(map, chip, adr);
	
	map_write(map, CMD(0x60), adr);
	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
		map_write(map, CMD(0x01), adr);
		chip->state = FL_LOCKING;
	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
		map_write(map, CMD(0xD0), adr);
		chip->state = FL_UNLOCKING;
	} else
		BUG();

1861 1862 1863 1864 1865
	/*
	 * If Instant Individual Block Locking supported then no need
	 * to delay.
	 */

1866
	if (!extp || !(extp->FeatureSupport & (1 << 5)))
1867
		UDELAY(map, chip, adr, 1000000/HZ);
L
Linus Torvalds 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

	/* FIXME. Use a timer to check this, and return immediately. */
	/* Once the state machine's known to be working I'll do that */

	timeo = jiffies + (HZ*20);
	for (;;) {

		status = map_read(map, adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;
		
		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			map_word Xstatus;
			map_write(map, CMD(0x70), adr);
			chip->state = FL_STATUS;
			Xstatus = map_read(map, adr);
			xip_enable(map, chip, adr);
			printk(KERN_ERR "waiting for unlock to complete timed out. status = %lx, Xstatus = %lx.\n",
			       status.x[0], Xstatus.x[0]);
			put_chip(map, chip, adr);
			spin_unlock(chip->mutex);
			return -EIO;
		}
		
		/* Latency issues. Drop the lock, wait a while and retry */
		UDELAY(map, chip, adr, 1);
	}
	
	/* Done and happy. */
	chip->state = FL_STATUS;
	xip_enable(map, chip, adr);
	put_chip(map, chip, adr);
	spin_unlock(chip->mutex);
	return 0;
}

static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	int ret;

#ifdef DEBUG_LOCK_BITS
	printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
	       __FUNCTION__, ofs, len);
	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
		ofs, len, 0);
#endif

	ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, 
		ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
	
#ifdef DEBUG_LOCK_BITS
	printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
	       __FUNCTION__, ret);
	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
		ofs, len, 0);
#endif

	return ret;
}

static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	int ret;

#ifdef DEBUG_LOCK_BITS
	printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
	       __FUNCTION__, ofs, len);
	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
		ofs, len, 0);
#endif

	ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
					ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
	
#ifdef DEBUG_LOCK_BITS
	printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
	       __FUNCTION__, ret);
	cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 
		ofs, len, 0);
#endif
	
	return ret;
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
#ifdef CONFIG_MTD_OTP

typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip, 
			u_long data_offset, u_char *buf, u_int size,
			u_long prot_offset, u_int groupno, u_int groupsize);

static int __xipram
do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
	    u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
{
	struct cfi_private *cfi = map->fldrv_priv;
	int ret;

	spin_lock(chip->mutex);
	ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
	if (ret) {
		spin_unlock(chip->mutex);
		return ret;
	}

	/* let's ensure we're not reading back cached data from array mode */
1974
	INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

	xip_disable(map, chip, chip->start);
	if (chip->state != FL_JEDEC_QUERY) {
		map_write(map, CMD(0x90), chip->start);
		chip->state = FL_JEDEC_QUERY;
	}
	map_copy_from(map, buf, chip->start + offset, size);
	xip_enable(map, chip, chip->start);

	/* then ensure we don't keep OTP data in the cache */
1985
	INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

	put_chip(map, chip, chip->start);
	spin_unlock(chip->mutex);
	return 0;
}

static int
do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
	     u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
{
	int ret;

	while (size) {
		unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
		int gap = offset - bus_ofs;
		int n = min_t(int, size, map_bankwidth(map)-gap);
		map_word datum = map_word_ff(map);

		datum = map_word_load_partial(map, datum, buf, gap, n);
		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
		if (ret) 
			return ret;

		offset += n;
		buf += n;
		size -= n;
	}

	return 0;
}

static int
do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
	    u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
{
	struct cfi_private *cfi = map->fldrv_priv;
	map_word datum;

	/* make sure area matches group boundaries */
N
Nicolas Pitre 已提交
2025
	if (size != grpsz)
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
		return -EXDEV;

	datum = map_word_ff(map);
	datum = map_word_clr(map, datum, CMD(1 << grpno));
	return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
}

static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
				 size_t *retlen, u_char *buf,
				 otp_op_t action, int user_regs)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
	struct flchip *chip;
	struct cfi_intelext_otpinfo *otp;
	u_long devsize, reg_prot_offset, data_offset;
	u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
	u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
	int ret;

	*retlen = 0;

	/* Check that we actually have some OTP registers */
	if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
		return -ENODATA;

	/* we need real chips here not virtual ones */
	devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
	chip_step = devsize >> cfi->chipshift;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	chip_num = 0;

	/* Some chips have OTP located in the _top_ partition only.
	   For example: Intel 28F256L18T (T means top-parameter device) */
	if (cfi->mfr == MANUFACTURER_INTEL) {
		switch (cfi->id) {
		case 0x880b:
		case 0x880c:
		case 0x880d:
			chip_num = chip_step - 1;
		}
	}
2068

2069
	for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		chip = &cfi->chips[chip_num];
		otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];

		/* first OTP region */
		field = 0;
		reg_prot_offset = extp->ProtRegAddr;
		reg_fact_groups = 1;
		reg_fact_size = 1 << extp->FactProtRegSize;
		reg_user_groups = 1;
		reg_user_size = 1 << extp->UserProtRegSize;

		while (len > 0) {
			/* flash geometry fixup */
			data_offset = reg_prot_offset + 1;
			data_offset *= cfi->interleave * cfi->device_type;
			reg_prot_offset *= cfi->interleave * cfi->device_type;
			reg_fact_size *= cfi->interleave;
			reg_user_size *= cfi->interleave;

			if (user_regs) {
				groups = reg_user_groups;
				groupsize = reg_user_size;
				/* skip over factory reg area */
				groupno = reg_fact_groups;
				data_offset += reg_fact_groups * reg_fact_size;
			} else {
				groups = reg_fact_groups;
				groupsize = reg_fact_size;
				groupno = 0;
			}

N
Nicolas Pitre 已提交
2101
			while (len > 0 && groups > 0) {
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
				if (!action) {
					/*
					 * Special case: if action is NULL
					 * we fill buf with otp_info records.
					 */
					struct otp_info *otpinfo;
					map_word lockword;
					len -= sizeof(struct otp_info);
					if (len <= 0)
						return -ENOSPC;
					ret = do_otp_read(map, chip,
							  reg_prot_offset,
							  (u_char *)&lockword,
							  map_bankwidth(map),
							  0, 0,  0);
					if (ret)
						return ret;
					otpinfo = (struct otp_info *)buf;
					otpinfo->start = from;
					otpinfo->length = groupsize;
					otpinfo->locked =
					   !map_word_bitsset(map, lockword,
							     CMD(1 << groupno));
					from += groupsize;
					buf += sizeof(*otpinfo);
					*retlen += sizeof(*otpinfo);
				} else if (from >= groupsize) {
					from -= groupsize;
N
Nicolas Pitre 已提交
2130
					data_offset += groupsize;
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
				} else {
					int size = groupsize;
					data_offset += from;
					size -= from;
					from = 0;
					if (size > len)
						size = len;
					ret = action(map, chip, data_offset,
						     buf, size, reg_prot_offset,
						     groupno, groupsize);
					if (ret < 0)
						return ret;
					buf += size;
					len -= size;
					*retlen += size;
N
Nicolas Pitre 已提交
2146
					data_offset += size;
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
				}
				groupno++;
				groups--;
			}

			/* next OTP region */
			if (++field == extp->NumProtectionFields)
				break;
			reg_prot_offset = otp->ProtRegAddr;
			reg_fact_groups = otp->FactGroups;
			reg_fact_size = 1 << otp->FactProtRegSize;
			reg_user_groups = otp->UserGroups;
			reg_user_size = 1 << otp->UserProtRegSize;
			otp++;
		}
	}

	return 0;
}

static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
					   size_t len, size_t *retlen,
					    u_char *buf)
{
	return cfi_intelext_otp_walk(mtd, from, len, retlen,
				     buf, do_otp_read, 0);
}

static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
					   size_t len, size_t *retlen,
					    u_char *buf)
{
	return cfi_intelext_otp_walk(mtd, from, len, retlen,
				     buf, do_otp_read, 1);
}

static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
					    size_t len, size_t *retlen,
					     u_char *buf)
{
	return cfi_intelext_otp_walk(mtd, from, len, retlen,
				     buf, do_otp_write, 1);
}

static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
					   loff_t from, size_t len)
{
	size_t retlen;
	return cfi_intelext_otp_walk(mtd, from, len, &retlen,
				     NULL, do_otp_lock, 1);
}

static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, 
					   struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
	return ret ? : retlen;
}

static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
					   struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
	return ret ? : retlen;
}

#endif

L
Linus Torvalds 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
static int cfi_intelext_suspend(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;
	int ret = 0;

	for (i=0; !ret && i<cfi->numchips; i++) {
		chip = &cfi->chips[i];

		spin_lock(chip->mutex);

		switch (chip->state) {
		case FL_READY:
		case FL_STATUS:
		case FL_CFI_QUERY:
		case FL_JEDEC_QUERY:
			if (chip->oldstate == FL_READY) {
				chip->oldstate = chip->state;
				chip->state = FL_PM_SUSPENDED;
				/* No need to wake_up() on this state change - 
				 * as the whole point is that nobody can do anything
				 * with the chip now anyway.
				 */
			} else {
				/* There seems to be an operation pending. We must wait for it. */
				printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
				ret = -EAGAIN;
			}
			break;
		default:
			/* Should we actually wait? Once upon a time these routines weren't
			   allowed to. Or should we return -EAGAIN, because the upper layers
			   ought to have already shut down anything which was using the device
			   anyway? The latter for now. */
			printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
			ret = -EAGAIN;
		case FL_PM_SUSPENDED:
			break;
		}
		spin_unlock(chip->mutex);
	}

	/* Unlock the chips again */

	if (ret) {
		for (i--; i >=0; i--) {
			chip = &cfi->chips[i];
			
			spin_lock(chip->mutex);
			
			if (chip->state == FL_PM_SUSPENDED) {
				/* No need to force it into a known state here,
				   because we're returning failure, and it didn't
				   get power cycled */
				chip->state = chip->oldstate;
				chip->oldstate = FL_READY;
				wake_up(&chip->wq);
			}
			spin_unlock(chip->mutex);
		}
	} 
	
	return ret;
}

static void cfi_intelext_resume(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;

	for (i=0; i<cfi->numchips; i++) {
	
		chip = &cfi->chips[i];

		spin_lock(chip->mutex);
		
		/* Go to known state. Chip may have been power cycled */
		if (chip->state == FL_PM_SUSPENDED) {
			map_write(map, CMD(0xFF), cfi->chips[i].start);
			chip->oldstate = chip->state = FL_READY;
			wake_up(&chip->wq);
		}

		spin_unlock(chip->mutex);
	}
}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
static int cfi_intelext_reset(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i, ret;

	for (i=0; i < cfi->numchips; i++) {
		struct flchip *chip = &cfi->chips[i];

		/* force the completion of any ongoing operation
		   and switch to array mode so any bootloader in 
		   flash is accessible for soft reboot. */
		spin_lock(chip->mutex);
		ret = get_chip(map, chip, chip->start, FL_SYNCING);
		if (!ret) {
			map_write(map, CMD(0xff), chip->start);
			chip->state = FL_READY;
		}
		spin_unlock(chip->mutex);
	}

	return 0;
}

static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
			       void *v)
{
	struct mtd_info *mtd;

	mtd = container_of(nb, struct mtd_info, reboot_notifier);
	cfi_intelext_reset(mtd);
	return NOTIFY_DONE;
}

L
Linus Torvalds 已提交
2346 2347 2348 2349
static void cfi_intelext_destroy(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
2350 2351
	cfi_intelext_reset(mtd);
	unregister_reboot_notifier(&mtd->reboot_notifier);
L
Linus Torvalds 已提交
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	kfree(cfi->cmdset_priv);
	kfree(cfi->cfiq);
	kfree(cfi->chips[0].priv);
	kfree(cfi);
	kfree(mtd->eraseregions);
}

static char im_name_1[]="cfi_cmdset_0001";
static char im_name_3[]="cfi_cmdset_0003";

static int __init cfi_intelext_init(void)
{
	inter_module_register(im_name_1, THIS_MODULE, &cfi_cmdset_0001);
	inter_module_register(im_name_3, THIS_MODULE, &cfi_cmdset_0001);
	return 0;
}

static void __exit cfi_intelext_exit(void)
{
	inter_module_unregister(im_name_1);
	inter_module_unregister(im_name_3);
}

module_init(cfi_intelext_init);
module_exit(cfi_intelext_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");