vc4_crtc.c 20.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Copyright (C) 2015 Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/**
 * DOC: VC4 CRTC module
 *
 * In VC4, the Pixel Valve is what most closely corresponds to the
 * DRM's concept of a CRTC.  The PV generates video timings from the
 * output's clock plus its configuration.  It pulls scaled pixels from
 * the HVS at that timing, and feeds it to the encoder.
 *
 * However, the DRM CRTC also collects the configuration of all the
 * DRM planes attached to it.  As a result, this file also manages
 * setup of the VC4 HVS's display elements on the CRTC.
 *
 * The 2835 has 3 different pixel valves.  pv0 in the audio power
 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
 * image domain can feed either HDMI or the SDTV controller.  The
 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
 * SDTV, etc.) according to which output type is chosen in the mux.
 *
 * For power management, the pixel valve's registers are all clocked
 * by the AXI clock, while the timings and FIFOs make use of the
 * output-specific clock.  Since the encoders also directly consume
 * the CPRMAN clocks, and know what timings they need, they are the
 * ones that set the clock.
 */

#include "drm_atomic.h"
#include "drm_atomic_helper.h"
#include "drm_crtc_helper.h"
#include "linux/clk.h"
38
#include "drm_fb_cma_helper.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#include "linux/component.h"
#include "linux/of_device.h"
#include "vc4_drv.h"
#include "vc4_regs.h"

struct vc4_crtc {
	struct drm_crtc base;
	const struct vc4_crtc_data *data;
	void __iomem *regs;

	/* Which HVS channel we're using for our CRTC. */
	int channel;

	struct drm_pending_vblank_event *event;
};

55 56 57 58 59 60
struct vc4_crtc_state {
	struct drm_crtc_state base;
	/* Dlist area for this CRTC configuration. */
	struct drm_mm_node mm;
};

61 62 63 64 65 66
static inline struct vc4_crtc *
to_vc4_crtc(struct drm_crtc *crtc)
{
	return (struct vc4_crtc *)crtc;
}

67 68 69 70 71 72
static inline struct vc4_crtc_state *
to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
{
	return (struct vc4_crtc_state *)crtc_state;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
struct vc4_crtc_data {
	/* Which channel of the HVS this pixelvalve sources from. */
	int hvs_channel;

	enum vc4_encoder_type encoder0_type;
	enum vc4_encoder_type encoder1_type;
};

#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))

#define CRTC_REG(reg) { reg, #reg }
static const struct {
	u32 reg;
	const char *name;
} crtc_regs[] = {
	CRTC_REG(PV_CONTROL),
	CRTC_REG(PV_V_CONTROL),
	CRTC_REG(PV_VSYNCD),
	CRTC_REG(PV_HORZA),
	CRTC_REG(PV_HORZB),
	CRTC_REG(PV_VERTA),
	CRTC_REG(PV_VERTB),
	CRTC_REG(PV_VERTA_EVEN),
	CRTC_REG(PV_VERTB_EVEN),
	CRTC_REG(PV_INTEN),
	CRTC_REG(PV_INTSTAT),
	CRTC_REG(PV_STAT),
	CRTC_REG(PV_HACT_ACT),
};

static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
		DRM_INFO("0x%04x (%s): 0x%08x\n",
			 crtc_regs[i].reg, crtc_regs[i].name,
			 CRTC_READ(crtc_regs[i].reg));
	}
}

#ifdef CONFIG_DEBUG_FS
int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *)m->private;
	struct drm_device *dev = node->minor->dev;
	int crtc_index = (uintptr_t)node->info_ent->data;
	struct drm_crtc *crtc;
	struct vc4_crtc *vc4_crtc;
	int i;

	i = 0;
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		if (i == crtc_index)
			break;
		i++;
	}
	if (!crtc)
		return 0;
	vc4_crtc = to_vc4_crtc(crtc);

	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
		seq_printf(m, "%s (0x%04x): 0x%08x\n",
			   crtc_regs[i].name, crtc_regs[i].reg,
			   CRTC_READ(crtc_regs[i].reg));
	}

	return 0;
}
#endif

static void vc4_crtc_destroy(struct drm_crtc *crtc)
{
	drm_crtc_cleanup(crtc);
}

static u32 vc4_get_fifo_full_level(u32 format)
{
	static const u32 fifo_len_bytes = 64;
	static const u32 hvs_latency_pix = 6;

	switch (format) {
	case PV_CONTROL_FORMAT_DSIV_16:
	case PV_CONTROL_FORMAT_DSIC_16:
		return fifo_len_bytes - 2 * hvs_latency_pix;
	case PV_CONTROL_FORMAT_DSIV_18:
		return fifo_len_bytes - 14;
	case PV_CONTROL_FORMAT_24:
	case PV_CONTROL_FORMAT_DSIV_24:
	default:
		return fifo_len_bytes - 3 * hvs_latency_pix;
	}
}

/*
 * Returns the clock select bit for the connector attached to the
 * CRTC.
 */
static int vc4_get_clock_select(struct drm_crtc *crtc)
{
	struct drm_connector *connector;

	drm_for_each_connector(connector, crtc->dev) {
J
Julia Lawall 已提交
177
		if (connector->state->crtc == crtc) {
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
			struct drm_encoder *encoder = connector->encoder;
			struct vc4_encoder *vc4_encoder =
				to_vc4_encoder(encoder);

			return vc4_encoder->clock_select;
		}
	}

	return -1;
}

static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_crtc_state *state = crtc->state;
	struct drm_display_mode *mode = &state->adjusted_mode;
	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
	u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
	u32 format = PV_CONTROL_FORMAT_24;
	bool debug_dump_regs = false;
	int clock_select = vc4_get_clock_select(crtc);

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
		vc4_crtc_dump_regs(vc4_crtc);
	}

	/* Reset the PV fifo. */
	CRTC_WRITE(PV_CONTROL, 0);
	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
	CRTC_WRITE(PV_CONTROL, 0);

	CRTC_WRITE(PV_HORZA,
		   VC4_SET_FIELD(mode->htotal - mode->hsync_end,
				 PV_HORZA_HBP) |
		   VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
				 PV_HORZA_HSYNC));
	CRTC_WRITE(PV_HORZB,
		   VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
				 PV_HORZB_HFP) |
		   VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));

	if (interlace) {
		CRTC_WRITE(PV_VERTA_EVEN,
			   VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
					 PV_VERTA_VBP) |
			   VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
					 PV_VERTA_VSYNC));
		CRTC_WRITE(PV_VERTB_EVEN,
			   VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
					 PV_VERTB_VFP) |
			   VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
	}

	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);

	CRTC_WRITE(PV_V_CONTROL,
		   PV_VCONTROL_CONTINUOUS |
		   (interlace ? PV_VCONTROL_INTERLACE : 0));

	CRTC_WRITE(PV_CONTROL,
		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
				 PV_CONTROL_FIFO_LEVEL) |
		   PV_CONTROL_CLR_AT_START |
		   PV_CONTROL_TRIGGER_UNDERFLOW |
		   PV_CONTROL_WAIT_HSTART |
		   VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
		   PV_CONTROL_FIFO_CLR |
		   PV_CONTROL_EN);

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
		vc4_crtc_dump_regs(vc4_crtc);
	}
}

static void require_hvs_enabled(struct drm_device *dev)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);

	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
		     SCALER_DISPCTRL_ENABLE);
}

static void vc4_crtc_disable(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	u32 chan = vc4_crtc->channel;
	int ret;
	require_hvs_enabled(dev);

	CRTC_WRITE(PV_V_CONTROL,
		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");

	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
	    SCALER_DISPCTRLX_ENABLE) {
		HVS_WRITE(SCALER_DISPCTRLX(chan),
			  SCALER_DISPCTRLX_RESET);

		/* While the docs say that reset is self-clearing, it
		 * seems it doesn't actually.
		 */
		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
	}

	/* Once we leave, the scaler should be disabled and its fifo empty. */

	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);

	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
				   SCALER_DISPSTATX_MODE) !=
		     SCALER_DISPSTATX_MODE_DISABLED);

	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
		     SCALER_DISPSTATX_EMPTY);
}

static void vc4_crtc_enable(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_crtc_state *state = crtc->state;
	struct drm_display_mode *mode = &state->adjusted_mode;

	require_hvs_enabled(dev);

	/* Turn on the scaler, which will wait for vstart to start
	 * compositing.
	 */
	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
		  SCALER_DISPCTRLX_ENABLE);

	/* Turn on the pixel valve, which will emit the vstart signal. */
	CRTC_WRITE(PV_V_CONTROL,
		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
}

static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
				 struct drm_crtc_state *state)
{
327
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
328 329 330
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane;
331
	unsigned long flags;
332
	u32 dlist_count = 0;
333
	int ret;
334 335 336 337

	/* The pixelvalve can only feed one encoder (and encoders are
	 * 1:1 with connectors.)
	 */
338
	if (hweight32(state->connector_mask) > 1)
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		return -EINVAL;

	drm_atomic_crtc_state_for_each_plane(plane, state) {
		struct drm_plane_state *plane_state =
			state->state->plane_states[drm_plane_index(plane)];

		/* plane might not have changed, in which case take
		 * current state:
		 */
		if (!plane_state)
			plane_state = plane->state;

		dlist_count += vc4_plane_dlist_size(plane_state);
	}

	dlist_count++; /* Account for SCALER_CTL0_END. */

356 357 358 359 360 361
	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
				 dlist_count, 1, 0);
	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
	if (ret)
		return ret;
362 363 364 365 366 367 368 369 370 371

	return 0;
}

static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
				  struct drm_crtc_state *old_state)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
372
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
373 374
	struct drm_plane *plane;
	bool debug_dump_regs = false;
375 376
	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
	u32 __iomem *dlist_next = dlist_start;
377 378 379 380 381 382

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
		vc4_hvs_dump_state(dev);
	}

383
	/* Copy all the active planes' dlist contents to the hardware dlist. */
384 385 386 387
	drm_atomic_crtc_for_each_plane(plane, crtc) {
		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
	}

388 389 390 391 392 393 394
	writel(SCALER_CTL0_END, dlist_next);
	dlist_next++;

	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);

	HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
		  vc4_state->mm.start);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
		vc4_hvs_dump_state(dev);
	}

	if (crtc->state->event) {
		unsigned long flags;

		crtc->state->event->pipe = drm_crtc_index(crtc);

		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
		vc4_crtc->event = crtc->state->event;
		spin_unlock_irqrestore(&dev->event_lock, flags);
		crtc->state->event = NULL;
	}
}

415
int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
416 417 418 419 420 421 422 423 424
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];

	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);

	return 0;
}

425
void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];

	CRTC_WRITE(PV_INTEN, 0);
}

static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
{
	struct drm_crtc *crtc = &vc4_crtc->base;
	struct drm_device *dev = crtc->dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	if (vc4_crtc->event) {
		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
		vc4_crtc->event = NULL;
	}
	spin_unlock_irqrestore(&dev->event_lock, flags);
}

static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
{
	struct vc4_crtc *vc4_crtc = data;
	u32 stat = CRTC_READ(PV_INTSTAT);
	irqreturn_t ret = IRQ_NONE;

	if (stat & PV_INT_VFP_START) {
		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
		drm_crtc_handle_vblank(&vc4_crtc->base);
		vc4_crtc_handle_page_flip(vc4_crtc);
		ret = IRQ_HANDLED;
	}

	return ret;
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
struct vc4_async_flip_state {
	struct drm_crtc *crtc;
	struct drm_framebuffer *fb;
	struct drm_pending_vblank_event *event;

	struct vc4_seqno_cb cb;
};

/* Called when the V3D execution for the BO being flipped to is done, so that
 * we can actually update the plane's address to point to it.
 */
static void
vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
{
	struct vc4_async_flip_state *flip_state =
		container_of(cb, struct vc4_async_flip_state, cb);
	struct drm_crtc *crtc = flip_state->crtc;
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane = crtc->primary;

	vc4_plane_async_set_fb(plane, flip_state->fb);
	if (flip_state->event) {
		unsigned long flags;

		spin_lock_irqsave(&dev->event_lock, flags);
		drm_crtc_send_vblank_event(crtc, flip_state->event);
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

	drm_framebuffer_unreference(flip_state->fb);
	kfree(flip_state);

	up(&vc4->async_modeset);
}

/* Implements async (non-vblank-synced) page flips.
 *
 * The page flip ioctl needs to return immediately, so we grab the
 * modeset semaphore on the pipe, and queue the address update for
 * when V3D is done with the BO being flipped to.
 */
static int vc4_async_page_flip(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb,
			       struct drm_pending_vblank_event *event,
			       uint32_t flags)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane = crtc->primary;
	int ret = 0;
	struct vc4_async_flip_state *flip_state;
	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);

	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
	if (!flip_state)
		return -ENOMEM;

	drm_framebuffer_reference(fb);
	flip_state->fb = fb;
	flip_state->crtc = crtc;
	flip_state->event = event;

	/* Make sure all other async modesetes have landed. */
	ret = down_interruptible(&vc4->async_modeset);
	if (ret) {
		kfree(flip_state);
		return ret;
	}

	/* Immediately update the plane's legacy fb pointer, so that later
	 * modeset prep sees the state that will be present when the semaphore
	 * is released.
	 */
	drm_atomic_set_fb_for_plane(plane->state, fb);
	plane->fb = fb;

	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
			   vc4_async_page_flip_complete);

	/* Driver takes ownership of state on successful async commit. */
	return 0;
}

static int vc4_page_flip(struct drm_crtc *crtc,
			 struct drm_framebuffer *fb,
			 struct drm_pending_vblank_event *event,
			 uint32_t flags)
{
	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
		return vc4_async_page_flip(crtc, fb, event, flags);
	else
		return drm_atomic_helper_page_flip(crtc, fb, event, flags);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
{
	struct vc4_crtc_state *vc4_state;

	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return NULL;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
	return &vc4_state->base;
}

static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
				   struct drm_crtc_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);

	if (vc4_state->mm.allocated) {
		unsigned long flags;

		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
		drm_mm_remove_node(&vc4_state->mm);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);

	}

	__drm_atomic_helper_crtc_destroy_state(crtc, state);
}

589 590 591
static const struct drm_crtc_funcs vc4_crtc_funcs = {
	.set_config = drm_atomic_helper_set_config,
	.destroy = vc4_crtc_destroy,
592
	.page_flip = vc4_page_flip,
593 594 595 596
	.set_property = NULL,
	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
	.reset = drm_atomic_helper_crtc_reset,
597 598
	.atomic_duplicate_state = vc4_crtc_duplicate_state,
	.atomic_destroy_state = vc4_crtc_destroy_state,
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
};

static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
	.mode_set_nofb = vc4_crtc_mode_set_nofb,
	.disable = vc4_crtc_disable,
	.enable = vc4_crtc_enable,
	.atomic_check = vc4_crtc_atomic_check,
	.atomic_flush = vc4_crtc_atomic_flush,
};

static const struct vc4_crtc_data pv0_data = {
	.hvs_channel = 0,
	.encoder0_type = VC4_ENCODER_TYPE_DSI0,
	.encoder1_type = VC4_ENCODER_TYPE_DPI,
};

static const struct vc4_crtc_data pv1_data = {
	.hvs_channel = 2,
	.encoder0_type = VC4_ENCODER_TYPE_DSI1,
	.encoder1_type = VC4_ENCODER_TYPE_SMI,
};

static const struct vc4_crtc_data pv2_data = {
	.hvs_channel = 1,
	.encoder0_type = VC4_ENCODER_TYPE_VEC,
	.encoder1_type = VC4_ENCODER_TYPE_HDMI,
};

static const struct of_device_id vc4_crtc_dt_match[] = {
	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
	{}
};

static void vc4_set_crtc_possible_masks(struct drm_device *drm,
					struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_encoder *encoder;

	drm_for_each_encoder(encoder, drm) {
		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);

		if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
			vc4_encoder->clock_select = 0;
			encoder->possible_crtcs |= drm_crtc_mask(crtc);
		} else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
			vc4_encoder->clock_select = 1;
			encoder->possible_crtcs |= drm_crtc_mask(crtc);
		}
	}
}

static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct drm_device *drm = dev_get_drvdata(master);
	struct vc4_dev *vc4 = to_vc4_dev(drm);
	struct vc4_crtc *vc4_crtc;
	struct drm_crtc *crtc;
	struct drm_plane *primary_plane, *cursor_plane;
	const struct of_device_id *match;
	int ret;

	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
	if (!vc4_crtc)
		return -ENOMEM;
	crtc = &vc4_crtc->base;

	match = of_match_device(vc4_crtc_dt_match, dev);
	if (!match)
		return -ENODEV;
	vc4_crtc->data = match->data;

	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
	if (IS_ERR(vc4_crtc->regs))
		return PTR_ERR(vc4_crtc->regs);

	/* For now, we create just the primary and the legacy cursor
	 * planes.  We should be able to stack more planes on easily,
	 * but to do that we would need to compute the bandwidth
	 * requirement of the plane configuration, and reject ones
	 * that will take too much.
	 */
	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
685
	if (IS_ERR(primary_plane)) {
686 687 688 689 690 691
		dev_err(dev, "failed to construct primary plane\n");
		ret = PTR_ERR(primary_plane);
		goto err;
	}

	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
692
	if (IS_ERR(cursor_plane)) {
693 694 695 696 697 698
		dev_err(dev, "failed to construct cursor plane\n");
		ret = PTR_ERR(cursor_plane);
		goto err_primary;
	}

	drm_crtc_init_with_planes(drm, crtc, primary_plane, cursor_plane,
699
				  &vc4_crtc_funcs, NULL);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
	primary_plane->crtc = crtc;
	cursor_plane->crtc = crtc;
	vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
	vc4_crtc->channel = vc4_crtc->data->hvs_channel;

	CRTC_WRITE(PV_INTEN, 0);
	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
	if (ret)
		goto err_cursor;

	vc4_set_crtc_possible_masks(drm, crtc);

	platform_set_drvdata(pdev, vc4_crtc);

	return 0;

err_cursor:
	cursor_plane->funcs->destroy(cursor_plane);
err_primary:
	primary_plane->funcs->destroy(primary_plane);
err:
	return ret;
}

static void vc4_crtc_unbind(struct device *dev, struct device *master,
			    void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);

	vc4_crtc_destroy(&vc4_crtc->base);

	CRTC_WRITE(PV_INTEN, 0);

	platform_set_drvdata(pdev, NULL);
}

static const struct component_ops vc4_crtc_ops = {
	.bind   = vc4_crtc_bind,
	.unbind = vc4_crtc_unbind,
};

static int vc4_crtc_dev_probe(struct platform_device *pdev)
{
	return component_add(&pdev->dev, &vc4_crtc_ops);
}

static int vc4_crtc_dev_remove(struct platform_device *pdev)
{
	component_del(&pdev->dev, &vc4_crtc_ops);
	return 0;
}

struct platform_driver vc4_crtc_driver = {
	.probe = vc4_crtc_dev_probe,
	.remove = vc4_crtc_dev_remove,
	.driver = {
		.name = "vc4_crtc",
		.of_match_table = vc4_crtc_dt_match,
	},
};