Kconfig 43.5 KB
Newer Older
1 2 3 4 5 6
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
7
#
D
Dan Williams 已提交
8
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
9
#
D
Dan Williams 已提交
10
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
11

D
Dan Williams 已提交
12 13 14
#
# Cryptographic API Configuration
#
15
menuconfig CRYPTO
16
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
17 18 19
	help
	  This option provides the core Cryptographic API.

20 21
if CRYPTO

22 23
comment "Crypto core or helper"

N
Neil Horman 已提交
24 25
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
26
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27
	depends on MODULE_SIG
N
Neil Horman 已提交
28 29 30 31
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
32
	  this is.
N
Neil Horman 已提交
33

34 35
config CRYPTO_ALGAPI
	tristate
36
	select CRYPTO_ALGAPI2
37 38 39
	help
	  This option provides the API for cryptographic algorithms.

40 41 42
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
43 44
config CRYPTO_AEAD
	tristate
45
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
46 47
	select CRYPTO_ALGAPI

48 49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2

52 53
config CRYPTO_BLKCIPHER
	tristate
54
	select CRYPTO_BLKCIPHER2
55
	select CRYPTO_ALGAPI
56 57 58 59 60

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
61
	select CRYPTO_WORKQUEUE
62

63 64
config CRYPTO_HASH
	tristate
65
	select CRYPTO_HASH2
66 67
	select CRYPTO_ALGAPI

68 69 70 71
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

72 73
config CRYPTO_RNG
	tristate
74
	select CRYPTO_RNG2
75 76
	select CRYPTO_ALGAPI

77 78 79 80
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

81
config CRYPTO_PCOMP
82 83 84 85 86
	tristate
	select CRYPTO_PCOMP2
	select CRYPTO_ALGAPI

config CRYPTO_PCOMP2
87 88 89
	tristate
	select CRYPTO_ALGAPI2

H
Herbert Xu 已提交
90 91
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
92
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
93 94 95 96
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

97 98 99 100 101
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
102
	select CRYPTO_PCOMP2
103

104 105
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
106
	depends on NET
107 108
	select CRYPTO_MANAGER
	help
109
	  Userspace configuration for cryptographic instantiations such as
110 111
	  cbc(aes).

112 113
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
114 115
	default y
	depends on CRYPTO_MANAGER2
116
	help
117 118
	  Disable run-time self tests that normally take place at
	  algorithm registration.
119

120
config CRYPTO_GF128MUL
121
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
122
	help
123 124 125 126 127
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
128

L
Linus Torvalds 已提交
129 130
config CRYPTO_NULL
	tristate "Null algorithms"
131
	select CRYPTO_ALGAPI
132
	select CRYPTO_BLKCIPHER
H
Herbert Xu 已提交
133
	select CRYPTO_HASH
L
Linus Torvalds 已提交
134 135 136
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

137
config CRYPTO_PCRYPT
138 139
	tristate "Parallel crypto engine"
	depends on SMP
140 141 142 143 144 145 146
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

147 148 149
config CRYPTO_WORKQUEUE
       tristate

150 151 152
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
153
	select CRYPTO_HASH
154
	select CRYPTO_MANAGER
155
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
156
	help
157 158 159
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
160

161 162 163 164 165 166 167 168 169 170 171 172
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
173
	  their crypto request asynchronously to be processed by this daemon.
174

175 176 177 178 179 180
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
L
Linus Torvalds 已提交
181
	help
182 183
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
184

185 186 187
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
188
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
189
	help
190
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
191

192
config CRYPTO_ABLK_HELPER
193 194 195
	tristate
	select CRYPTO_CRYPTD

196 197 198 199 200
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
	select CRYPTO_ALGAPI

201
comment "Authenticated Encryption with Associated Data"
202

203 204 205 206
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
207
	help
208
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
209

210 211 212 213
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
214
	select CRYPTO_GHASH
215
	select CRYPTO_NULL
L
Linus Torvalds 已提交
216
	help
217 218
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
219

220 221 222 223
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
224
	select CRYPTO_RNG
L
Linus Torvalds 已提交
225
	help
226 227
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
228

229
comment "Block modes"
230

231 232
config CRYPTO_CBC
	tristate "CBC support"
233
	select CRYPTO_BLKCIPHER
234
	select CRYPTO_MANAGER
235
	help
236 237
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
238

239 240
config CRYPTO_CTR
	tristate "CTR support"
241
	select CRYPTO_BLKCIPHER
242
	select CRYPTO_SEQIV
243
	select CRYPTO_MANAGER
244
	help
245
	  CTR: Counter mode
246 247
	  This block cipher algorithm is required for IPSec.

248 249 250 251 252 253 254 255 256 257 258 259 260
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
261 262 263
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
264 265 266
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
267

268
config CRYPTO_LRW
269
	tristate "LRW support"
270 271 272 273 274 275 276 277 278 279
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

280 281 282 283 284 285 286 287
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

288
config CRYPTO_XTS
289
	tristate "XTS support"
290 291 292 293 294 295 296 297
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

298 299
comment "Hash modes"

300 301 302 303 304 305 306 307 308 309 310
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

311 312 313
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
314 315
	select CRYPTO_MANAGER
	help
316 317
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
318

319 320 321 322
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
323
	help
324 325 326 327
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
328

329 330 331 332 333 334 335 336 337 338 339
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

340
comment "Digest"
M
Mikko Herranen 已提交
341

342 343
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
344
	select CRYPTO_HASH
345
	select CRC32
J
Joy Latten 已提交
346
	help
347 348
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
349
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
350

351 352 353 354 355 356 357 358 359 360 361 362
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

363 364 365 366 367 368 369 370 371
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

412 413 414 415 416 417
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

418 419
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
420
	select CRYPTO_HASH
421
	help
422
	  MD4 message digest algorithm (RFC1320).
423

424 425
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
426
	select CRYPTO_HASH
L
Linus Torvalds 已提交
427
	help
428
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
429

430 431 432 433 434 435 436 437 438
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

439 440 441 442 443 444 445 446 447
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

448 449
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
450
	select CRYPTO_HASH
451
	help
452 453 454 455
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
456

457
config CRYPTO_RMD128
458
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
459
	select CRYPTO_HASH
460 461
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
462

463
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
464
	  be used as a secure replacement for RIPEMD. For other use cases,
465
	  RIPEMD-160 should be used.
466

467
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
468
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
469 470

config CRYPTO_RMD160
471
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
472
	select CRYPTO_HASH
473 474
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
475

476 477 478 479
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
480

481 482
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
483

484
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
485
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
486 487

config CRYPTO_RMD256
488
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
489
	select CRYPTO_HASH
490 491 492 493 494
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
495

496
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
497
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
498 499

config CRYPTO_RMD320
500
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
501
	select CRYPTO_HASH
502 503 504 505 506
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
507

508
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
509
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
510

511 512
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
513
	select CRYPTO_HASH
L
Linus Torvalds 已提交
514
	help
515
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
516

517
config CRYPTO_SHA1_SSSE3
518
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
519 520 521 522 523 524
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
525
	  Extensions (AVX/AVX2), when available.
526

527 528 529 530 531 532 533 534 535
config CRYPTO_SHA256_SSSE3
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
536 537 538 539 540 541 542 543 544 545 546
	  version 2 (AVX2) instructions, when available.

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
547 548
	  version 2 (AVX2) instructions, when available.

549 550 551 552 553 554 555 556 557
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

558 559 560 561 562 563 564 565 566
config CRYPTO_SHA1_ARM
	tristate "SHA1 digest algorithm (ARM-asm)"
	depends on ARM
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using optimized ARM assembler.

567 568
config CRYPTO_SHA1_ARM_NEON
	tristate "SHA1 digest algorithm (ARM NEON)"
569
	depends on ARM && KERNEL_MODE_NEON
570 571 572 573 574 575 576 577
	select CRYPTO_SHA1_ARM
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using optimized ARM NEON assembly, when NEON instructions are
	  available.

578 579 580 581 582 583 584
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

601 602
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
603
	select CRYPTO_HASH
L
Linus Torvalds 已提交
604
	help
605
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
606

607 608
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
609

610 611
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
612

613 614 615 616 617 618 619 620 621
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

622 623
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
624
	select CRYPTO_HASH
625
	help
626
	  SHA512 secure hash standard (DFIPS 180-2).
627

628 629
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
630

631 632
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
633

634 635 636 637 638 639 640 641 642
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

643 644
config CRYPTO_SHA512_ARM_NEON
	tristate "SHA384 and SHA512 digest algorithm (ARM NEON)"
645
	depends on ARM && KERNEL_MODE_NEON
646 647 648 649 650 651 652 653 654 655 656 657
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using ARM NEON instructions, when available.

	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.

	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.

658 659
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
660
	select CRYPTO_HASH
661
	help
662
	  Tiger hash algorithm 192, 160 and 128-bit hashes
663

664 665 666
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
667 668

	  See also:
669
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
670

671 672
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
673
	select CRYPTO_HASH
L
Linus Torvalds 已提交
674
	help
675
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
676

677 678
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
679 680

	  See also:
681
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
682

683 684
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
685
	depends on X86 && 64BIT
686 687 688 689 690
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

691
comment "Ciphers"
L
Linus Torvalds 已提交
692 693 694

config CRYPTO_AES
	tristate "AES cipher algorithms"
695
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
696
	help
697
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
698 699 700
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
701 702 703 704 705 706 707
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
708

709
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
710 711 712 713 714

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
715 716
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
717
	select CRYPTO_AES
L
Linus Torvalds 已提交
718
	help
719
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
720 721 722
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
723 724 725 726 727 728 729
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
730

731
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
732 733 734 735 736

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
737 738
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
739
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
740
	help
741
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
742 743 744
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
745 746 747
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
748 749 750 751 752 753 754 755 756 757 758
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
759
	depends on X86
760 761
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
762
	select CRYPTO_CRYPTD
763
	select CRYPTO_ABLK_HELPER
764
	select CRYPTO_ALGAPI
765
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
766 767
	select CRYPTO_LRW
	select CRYPTO_XTS
768 769 770 771 772 773 774 775 776 777
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
778 779 780 781
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
782

783
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
784 785 786

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

787 788 789 790
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
791

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
config CRYPTO_AES_ARM
	tristate "AES cipher algorithms (ARM-asm)"
	depends on ARM
	select CRYPTO_ALGAPI
	select CRYPTO_AES
	help
	  Use optimized AES assembler routines for ARM platforms.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
config CRYPTO_AES_ARM_BS
	tristate "Bit sliced AES using NEON instructions"
	depends on ARM && KERNEL_MODE_NEON
	select CRYPTO_ALGAPI
	select CRYPTO_AES_ARM
	select CRYPTO_ABLK_HELPER
	help
	  Use a faster and more secure NEON based implementation of AES in CBC,
	  CTR and XTS modes

	  Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode
	  and for XTS mode encryption, CBC and XTS mode decryption speedup is
	  around 25%. (CBC encryption speed is not affected by this driver.)
	  This implementation does not rely on any lookup tables so it is
	  believed to be invulnerable to cache timing attacks.

860 861 862 863 864 865 866 867 868 869 870
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
871 872
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
873 874 875

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
876
	select CRYPTO_BLKCIPHER
877 878 879 880 881 882 883 884 885 886 887
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
888
	select CRYPTO_BLOWFISH_COMMON
889 890 891 892 893 894 895 896 897 898
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

899 900 901 902 903 904 905 906 907
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

908 909
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
910
	depends on X86 && 64BIT
911 912 913 914 915 916 917 918 919 920 921 922
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

938 939
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
940
	depends on X86 && 64BIT
941 942
	depends on CRYPTO
	select CRYPTO_ALGAPI
943
	select CRYPTO_GLUE_HELPER_X86
944 945 946 947 948 949 950 951 952 953 954
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
955 956 957 958 959 960 961 962
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
963
	select CRYPTO_ABLK_HELPER
964 965 966 967 968 969 970 971 972 973 974 975 976
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
977 978
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

979 980 981 982 983 984
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
985
	select CRYPTO_ABLK_HELPER
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1018 1019 1020 1021 1022 1023
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1024 1025
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1026
	select CRYPTO_ALGAPI
1027
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1028 1029 1030 1031
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1032 1033 1034 1035 1036
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1037
	select CRYPTO_ABLK_HELPER
1038
	select CRYPTO_CAST_COMMON
1039 1040 1041 1042 1043 1044 1045 1046
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1047 1048
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1049
	select CRYPTO_ALGAPI
1050
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1051 1052 1053 1054
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1055 1056 1057 1058 1059
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1060
	select CRYPTO_ABLK_HELPER
1061
	select CRYPTO_GLUE_HELPER_X86
1062
	select CRYPTO_CAST_COMMON
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1073 1074
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1075
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1076
	help
1077
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1078

1079 1080
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1081
	depends on SPARC64
1082 1083 1084 1085 1086 1087
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1101 1102
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1103
	select CRYPTO_ALGAPI
1104
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1105
	help
1106
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1107 1108 1109

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1110
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1111 1112 1113 1114 1115 1116 1117 1118
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1119
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1120

1121
config CRYPTO_SALSA20
1122
	tristate "Salsa20 stream cipher algorithm"
1123 1124 1125 1126 1127 1128
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1129 1130 1131 1132 1133

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1134
	tristate "Salsa20 stream cipher algorithm (i586)"
1135 1136 1137 1138 1139 1140 1141
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1142 1143 1144 1145 1146

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1147
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1148 1149 1150 1151 1152 1153 1154
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1155 1156 1157

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1158

1159 1160
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1161
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1162
	help
1163
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1175
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1176
	help
1177
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1178

1179 1180 1181 1182 1183 1184 1185
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1186 1187 1188 1189
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1190
	select CRYPTO_CRYPTD
1191
	select CRYPTO_ABLK_HELPER
1192
	select CRYPTO_GLUE_HELPER_X86
1193
	select CRYPTO_SERPENT
1194 1195
	select CRYPTO_LRW
	select CRYPTO_XTS
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes eigth
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1208 1209 1210 1211
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1212
	select CRYPTO_CRYPTD
1213
	select CRYPTO_ABLK_HELPER
1214
	select CRYPTO_GLUE_HELPER_X86
1215
	select CRYPTO_SERPENT
1216 1217
	select CRYPTO_LRW
	select CRYPTO_XTS
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1229 1230 1231 1232 1233 1234

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1235
	select CRYPTO_ABLK_HELPER
1236
	select CRYPTO_GLUE_HELPER_X86
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1251

1252 1253 1254 1255 1256
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1257
	select CRYPTO_ABLK_HELPER
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1275 1276
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1277
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1278
	help
1279
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1294
	select CRYPTO_ALGAPI
1295
	select CRYPTO_TWOFISH_COMMON
1296
	help
1297
	  Twofish cipher algorithm.
1298

1299 1300 1301 1302
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1325 1326

	  See also:
1327
	  <http://www.schneier.com/twofish.html>
1328

1329 1330 1331
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1332
	select CRYPTO_ALGAPI
1333
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1334
	help
1335
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1336

1337 1338 1339 1340 1341 1342 1343 1344
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1345 1346
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1347
	depends on X86 && 64BIT
1348 1349 1350
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1351
	select CRYPTO_GLUE_HELPER_X86
1352 1353
	select CRYPTO_LRW
	select CRYPTO_XTS
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1368 1369 1370 1371 1372
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1373
	select CRYPTO_ABLK_HELPER
1374
	select CRYPTO_GLUE_HELPER_X86
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1394 1395 1396 1397 1398 1399 1400
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1401
	help
1402 1403 1404 1405
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415
config CRYPTO_ZLIB
	tristate "Zlib compression algorithm"
	select CRYPTO_PCOMP
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
	select NLATTR
	help
	  This is the zlib algorithm.

1416 1417 1418 1419 1420 1421 1422 1423
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1424 1425 1426 1427 1428 1429 1430 1431
config CRYPTO_842
	tristate "842 compression algorithm"
	depends on CRYPTO_DEV_NX_COMPRESS
	# 842 uses lzo if the hardware becomes unavailable
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1448

1449 1450 1451 1452
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
1453
	default m
1454 1455 1456 1457 1458
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1459 1460
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1461

1462
menuconfig CRYPTO_DRBG_MENU
1463 1464 1465 1466 1467
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1468
if CRYPTO_DRBG_MENU
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

config CRYPTO_DRBG_HMAC
	bool "Enable HMAC DRBG"
	default y
	select CRYPTO_HMAC
	help
	  Enable the HMAC DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
	select CRYPTO_HASH
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1489 1490 1491 1492 1493 1494
config CRYPTO_DRBG
	tristate
	default CRYPTO_DRBG_MENU if (CRYPTO_DRBG_HMAC || CRYPTO_DRBG_HASH || CRYPTO_DRBG_CTR)
	select CRYPTO_RNG

endif	# if CRYPTO_DRBG_MENU
1495

1496 1497 1498
config CRYPTO_USER_API
	tristate

1499 1500
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1501
	depends on NET
1502 1503 1504 1505 1506 1507
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1508 1509
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1510
	depends on NET
1511 1512 1513 1514 1515 1516
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1517 1518 1519
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1520
source "drivers/crypto/Kconfig"
1521
source crypto/asymmetric_keys/Kconfig
L
Linus Torvalds 已提交
1522

1523
endif	# if CRYPTO