vfpsingle.c 28.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 *  linux/arch/arm/vfp/vfpsingle.c
 *
 * This code is derived in part from John R. Housers softfloat library, which
 * carries the following notice:
 *
 * ===========================================================================
 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
 * Arithmetic Package, Release 2.
 *
 * Written by John R. Hauser.  This work was made possible in part by the
 * International Computer Science Institute, located at Suite 600, 1947 Center
 * Street, Berkeley, California 94704.  Funding was partially provided by the
 * National Science Foundation under grant MIP-9311980.  The original version
 * of this code was written as part of a project to build a fixed-point vector
 * processor in collaboration with the University of California at Berkeley,
 * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
 * arithmetic/softfloat.html'.
 *
 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 *
 * Derivative works are acceptable, even for commercial purposes, so long as
 * (1) they include prominent notice that the work is derivative, and (2) they
 * include prominent notice akin to these three paragraphs for those parts of
 * this code that are retained.
 * ===========================================================================
 */
#include <linux/kernel.h>
#include <linux/bitops.h>
35 36

#include <asm/div64.h>
L
Linus Torvalds 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#include <asm/ptrace.h>
#include <asm/vfp.h>

#include "vfpinstr.h"
#include "vfp.h"

static struct vfp_single vfp_single_default_qnan = {
	.exponent	= 255,
	.sign		= 0,
	.significand	= VFP_SINGLE_SIGNIFICAND_QNAN,
};

static void vfp_single_dump(const char *str, struct vfp_single *s)
{
	pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
		 str, s->sign != 0, s->exponent, s->significand);
}

static void vfp_single_normalise_denormal(struct vfp_single *vs)
{
	int bits = 31 - fls(vs->significand);

	vfp_single_dump("normalise_denormal: in", vs);

	if (bits) {
		vs->exponent -= bits - 1;
		vs->significand <<= bits;
	}

	vfp_single_dump("normalise_denormal: out", vs);
}

#ifndef DEBUG
#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
#else
u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
#endif
{
	u32 significand, incr, rmode;
	int exponent, shift, underflow;

	vfp_single_dump("pack: in", vs);

	/*
	 * Infinities and NaNs are a special case.
	 */
	if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
		goto pack;

	/*
	 * Special-case zero.
	 */
	if (vs->significand == 0) {
		vs->exponent = 0;
		goto pack;
	}

	exponent = vs->exponent;
	significand = vs->significand;

	/*
	 * Normalise first.  Note that we shift the significand up to
	 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
	 * significant bit.
	 */
	shift = 32 - fls(significand);
	if (shift < 32 && shift) {
		exponent -= shift;
		significand <<= shift;
	}

#ifdef DEBUG
	vs->exponent = exponent;
	vs->significand = significand;
	vfp_single_dump("pack: normalised", vs);
#endif

	/*
	 * Tiny number?
	 */
	underflow = exponent < 0;
	if (underflow) {
		significand = vfp_shiftright32jamming(significand, -exponent);
		exponent = 0;
#ifdef DEBUG
		vs->exponent = exponent;
		vs->significand = significand;
		vfp_single_dump("pack: tiny number", vs);
#endif
		if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
			underflow = 0;
	}

	/*
	 * Select rounding increment.
	 */
	incr = 0;
	rmode = fpscr & FPSCR_RMODE_MASK;

	if (rmode == FPSCR_ROUND_NEAREST) {
		incr = 1 << VFP_SINGLE_LOW_BITS;
		if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
			incr -= 1;
	} else if (rmode == FPSCR_ROUND_TOZERO) {
		incr = 0;
	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
		incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;

	pr_debug("VFP: rounding increment = 0x%08x\n", incr);

	/*
	 * Is our rounding going to overflow?
	 */
	if ((significand + incr) < significand) {
		exponent += 1;
		significand = (significand >> 1) | (significand & 1);
		incr >>= 1;
#ifdef DEBUG
		vs->exponent = exponent;
		vs->significand = significand;
		vfp_single_dump("pack: overflow", vs);
#endif
	}

	/*
	 * If any of the low bits (which will be shifted out of the
	 * number) are non-zero, the result is inexact.
	 */
	if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
		exceptions |= FPSCR_IXC;

	/*
	 * Do our rounding.
	 */
	significand += incr;

	/*
	 * Infinity?
	 */
	if (exponent >= 254) {
		exceptions |= FPSCR_OFC | FPSCR_IXC;
		if (incr == 0) {
			vs->exponent = 253;
			vs->significand = 0x7fffffff;
		} else {
			vs->exponent = 255;		/* infinity */
			vs->significand = 0;
		}
	} else {
		if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
			exponent = 0;
		if (exponent || significand > 0x80000000)
			underflow = 0;
		if (underflow)
			exceptions |= FPSCR_UFC;
		vs->exponent = exponent;
		vs->significand = significand >> 1;
	}

 pack:
	vfp_single_dump("pack: final", vs);
	{
		s32 d = vfp_single_pack(vs);
		pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
			 sd, d, exceptions);
		vfp_put_float(sd, d);
	}

206
	return exceptions;
L
Linus Torvalds 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
}

/*
 * Propagate the NaN, setting exceptions if it is signalling.
 * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
 */
static u32
vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
		  struct vfp_single *vsm, u32 fpscr)
{
	struct vfp_single *nan;
	int tn, tm = 0;

	tn = vfp_single_type(vsn);

	if (vsm)
		tm = vfp_single_type(vsm);

	if (fpscr & FPSCR_DEFAULT_NAN)
		/*
		 * Default NaN mode - always returns a quiet NaN
		 */
		nan = &vfp_single_default_qnan;
	else {
		/*
		 * Contemporary mode - select the first signalling
		 * NAN, or if neither are signalling, the first
		 * quiet NAN.
		 */
		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
			nan = vsn;
		else
			nan = vsm;
		/*
		 * Make the NaN quiet.
		 */
		nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
	}

	*vsd = *nan;

	/*
	 * If one was a signalling NAN, raise invalid operation.
	 */
	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
}


/*
 * Extended operations
 */
static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
{
	vfp_put_float(sd, vfp_single_packed_abs(m));
	return 0;
}

static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
{
	vfp_put_float(sd, m);
	return 0;
}

static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
{
	vfp_put_float(sd, vfp_single_packed_negate(m));
	return 0;
}

static const u16 sqrt_oddadjust[] = {
	0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
	0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
};

static const u16 sqrt_evenadjust[] = {
	0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
	0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
};

u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
{
	int index;
	u32 z, a;

	if ((significand & 0xc0000000) != 0x40000000) {
		printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n");
	}

	a = significand << 1;
	index = (a >> 27) & 15;
	if (exponent & 1) {
		z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
		z = ((a / z) << 14) + (z << 15);
		a >>= 1;
	} else {
		z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
		z = a / z + z;
		z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
		if (z <= a)
			return (s32)a >> 1;
	}
308 309 310 311 312
	{
		u64 v = (u64)a << 31;
		do_div(v, z);
		return v + (z >> 1);
	}
L
Linus Torvalds 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
}

static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
{
	struct vfp_single vsm, vsd;
	int ret, tm;

	vfp_single_unpack(&vsm, m);
	tm = vfp_single_type(&vsm);
	if (tm & (VFP_NAN|VFP_INFINITY)) {
		struct vfp_single *vsp = &vsd;

		if (tm & VFP_NAN)
			ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
		else if (vsm.sign == 0) {
 sqrt_copy:
			vsp = &vsm;
			ret = 0;
		} else {
 sqrt_invalid:
			vsp = &vfp_single_default_qnan;
			ret = FPSCR_IOC;
		}
		vfp_put_float(sd, vfp_single_pack(vsp));
		return ret;
	}

	/*
	 * sqrt(+/- 0) == +/- 0
	 */
	if (tm & VFP_ZERO)
		goto sqrt_copy;

	/*
	 * Normalise a denormalised number
	 */
	if (tm & VFP_DENORMAL)
		vfp_single_normalise_denormal(&vsm);

	/*
	 * sqrt(<0) = invalid
	 */
	if (vsm.sign)
		goto sqrt_invalid;

	vfp_single_dump("sqrt", &vsm);

	/*
	 * Estimate the square root.
	 */
	vsd.sign = 0;
	vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
	vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;

	vfp_single_dump("sqrt estimate", &vsd);

	/*
	 * And now adjust.
	 */
	if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
		if (vsd.significand < 2) {
			vsd.significand = 0xffffffff;
		} else {
			u64 term;
			s64 rem;
			vsm.significand <<= !(vsm.exponent & 1);
			term = (u64)vsd.significand * vsd.significand;
			rem = ((u64)vsm.significand << 32) - term;

			pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);

			while (rem < 0) {
				vsd.significand -= 1;
				rem += ((u64)vsd.significand << 1) | 1;
			}
			vsd.significand |= rem != 0;
		}
	}
	vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);

	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
}

/*
 * Equal	:= ZC
 * Less than	:= N
 * Greater than	:= C
 * Unordered	:= CV
 */
static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
{
	s32 d;
	u32 ret = 0;

	d = vfp_get_float(sd);
	if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
		ret |= FPSCR_C | FPSCR_V;
		if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
			/*
			 * Signalling NaN, or signalling on quiet NaN
			 */
			ret |= FPSCR_IOC;
	}

	if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
		ret |= FPSCR_C | FPSCR_V;
		if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
			/*
			 * Signalling NaN, or signalling on quiet NaN
			 */
			ret |= FPSCR_IOC;
	}

	if (ret == 0) {
		if (d == m || vfp_single_packed_abs(d | m) == 0) {
			/*
			 * equal
			 */
			ret |= FPSCR_Z | FPSCR_C;
		} else if (vfp_single_packed_sign(d ^ m)) {
			/*
			 * different signs
			 */
			if (vfp_single_packed_sign(d))
				/*
				 * d is negative, so d < m
				 */
				ret |= FPSCR_N;
			else
				/*
				 * d is positive, so d > m
				 */
				ret |= FPSCR_C;
		} else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
			/*
			 * d < m
			 */
			ret |= FPSCR_N;
		} else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
			/*
			 * d > m
			 */
			ret |= FPSCR_C;
		}
	}
	return ret;
}

static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
{
	return vfp_compare(sd, 0, m, fpscr);
}

static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
{
	return vfp_compare(sd, 1, m, fpscr);
}

static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
{
	return vfp_compare(sd, 0, 0, fpscr);
}

static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
{
	return vfp_compare(sd, 1, 0, fpscr);
}

static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
{
	struct vfp_single vsm;
	struct vfp_double vdd;
	int tm;
	u32 exceptions = 0;

	vfp_single_unpack(&vsm, m);

	tm = vfp_single_type(&vsm);

	/*
	 * If we have a signalling NaN, signal invalid operation.
	 */
	if (tm == VFP_SNAN)
		exceptions = FPSCR_IOC;

	if (tm & VFP_DENORMAL)
		vfp_single_normalise_denormal(&vsm);

	vdd.sign = vsm.sign;
	vdd.significand = (u64)vsm.significand << 32;

	/*
	 * If we have an infinity or NaN, the exponent must be 2047.
	 */
	if (tm & (VFP_INFINITY|VFP_NAN)) {
		vdd.exponent = 2047;
		if (tm & VFP_NAN)
			vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
		goto pack_nan;
	} else if (tm & VFP_ZERO)
		vdd.exponent = 0;
	else
		vdd.exponent = vsm.exponent + (1023 - 127);

	/*
	 * Technically, if bit 0 of dd is set, this is an invalid
	 * instruction.  However, we ignore this for efficiency.
	 */
	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");

 pack_nan:
	vfp_put_double(dd, vfp_double_pack(&vdd));
	return exceptions;
}

static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
{
	struct vfp_single vs;

	vs.sign = 0;
	vs.exponent = 127 + 31 - 1;
	vs.significand = (u32)m;

	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
}

static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
{
	struct vfp_single vs;

	vs.sign = (m & 0x80000000) >> 16;
	vs.exponent = 127 + 31 - 1;
	vs.significand = vs.sign ? -m : m;

	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
}

static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
{
	struct vfp_single vsm;
	u32 d, exceptions = 0;
	int rmode = fpscr & FPSCR_RMODE_MASK;
	int tm;

	vfp_single_unpack(&vsm, m);
	vfp_single_dump("VSM", &vsm);

	/*
	 * Do we have a denormalised number?
	 */
	tm = vfp_single_type(&vsm);
	if (tm & VFP_DENORMAL)
		exceptions |= FPSCR_IDC;

	if (tm & VFP_NAN)
		vsm.sign = 0;

	if (vsm.exponent >= 127 + 32) {
		d = vsm.sign ? 0 : 0xffffffff;
		exceptions = FPSCR_IOC;
	} else if (vsm.exponent >= 127 - 1) {
		int shift = 127 + 31 - vsm.exponent;
		u32 rem, incr = 0;

		/*
		 * 2^0 <= m < 2^32-2^8
		 */
		d = (vsm.significand << 1) >> shift;
		rem = vsm.significand << (33 - shift);

		if (rmode == FPSCR_ROUND_NEAREST) {
			incr = 0x80000000;
			if ((d & 1) == 0)
				incr -= 1;
		} else if (rmode == FPSCR_ROUND_TOZERO) {
			incr = 0;
		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
			incr = ~0;
		}

		if ((rem + incr) < rem) {
			if (d < 0xffffffff)
				d += 1;
			else
				exceptions |= FPSCR_IOC;
		}

		if (d && vsm.sign) {
			d = 0;
			exceptions |= FPSCR_IOC;
		} else if (rem)
			exceptions |= FPSCR_IXC;
	} else {
		d = 0;
		if (vsm.exponent | vsm.significand) {
			exceptions |= FPSCR_IXC;
			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
				d = 1;
			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
				d = 0;
				exceptions |= FPSCR_IOC;
			}
		}
	}

	pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);

	vfp_put_float(sd, d);

	return exceptions;
}

static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
{
	return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
}

static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
{
	struct vfp_single vsm;
	u32 d, exceptions = 0;
	int rmode = fpscr & FPSCR_RMODE_MASK;
635
	int tm;
L
Linus Torvalds 已提交
636 637 638 639 640 641 642

	vfp_single_unpack(&vsm, m);
	vfp_single_dump("VSM", &vsm);

	/*
	 * Do we have a denormalised number?
	 */
643
	tm = vfp_single_type(&vsm);
L
Linus Torvalds 已提交
644 645 646
	if (vfp_single_type(&vsm) & VFP_DENORMAL)
		exceptions |= FPSCR_IDC;

647 648 649 650
	if (tm & VFP_NAN) {
		d = 0;
		exceptions |= FPSCR_IOC;
	} else if (vsm.exponent >= 127 + 32) {
L
Linus Torvalds 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		/*
		 * m >= 2^31-2^7: invalid
		 */
		d = 0x7fffffff;
		if (vsm.sign)
			d = ~d;
		exceptions |= FPSCR_IOC;
	} else if (vsm.exponent >= 127 - 1) {
		int shift = 127 + 31 - vsm.exponent;
		u32 rem, incr = 0;

		/* 2^0 <= m <= 2^31-2^7 */
		d = (vsm.significand << 1) >> shift;
		rem = vsm.significand << (33 - shift);

		if (rmode == FPSCR_ROUND_NEAREST) {
			incr = 0x80000000;
			if ((d & 1) == 0)
				incr -= 1;
		} else if (rmode == FPSCR_ROUND_TOZERO) {
			incr = 0;
		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
			incr = ~0;
		}

		if ((rem + incr) < rem && d < 0xffffffff)
			d += 1;
		if (d > 0x7fffffff + (vsm.sign != 0)) {
			d = 0x7fffffff + (vsm.sign != 0);
			exceptions |= FPSCR_IOC;
		} else if (rem)
			exceptions |= FPSCR_IXC;

		if (vsm.sign)
			d = -d;
	} else {
		d = 0;
		if (vsm.exponent | vsm.significand) {
			exceptions |= FPSCR_IXC;
			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
				d = 1;
			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
				d = -1;
		}
	}

	pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);

	vfp_put_float(sd, (s32)d);

	return exceptions;
}

static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
{
	return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
}

static u32 (* const fop_extfns[32])(int sd, int unused, s32 m, u32 fpscr) = {
	[FEXT_TO_IDX(FEXT_FCPY)]	= vfp_single_fcpy,
	[FEXT_TO_IDX(FEXT_FABS)]	= vfp_single_fabs,
	[FEXT_TO_IDX(FEXT_FNEG)]	= vfp_single_fneg,
	[FEXT_TO_IDX(FEXT_FSQRT)]	= vfp_single_fsqrt,
	[FEXT_TO_IDX(FEXT_FCMP)]	= vfp_single_fcmp,
	[FEXT_TO_IDX(FEXT_FCMPE)]	= vfp_single_fcmpe,
	[FEXT_TO_IDX(FEXT_FCMPZ)]	= vfp_single_fcmpz,
	[FEXT_TO_IDX(FEXT_FCMPEZ)]	= vfp_single_fcmpez,
	[FEXT_TO_IDX(FEXT_FCVT)]	= vfp_single_fcvtd,
	[FEXT_TO_IDX(FEXT_FUITO)]	= vfp_single_fuito,
	[FEXT_TO_IDX(FEXT_FSITO)]	= vfp_single_fsito,
	[FEXT_TO_IDX(FEXT_FTOUI)]	= vfp_single_ftoui,
	[FEXT_TO_IDX(FEXT_FTOUIZ)]	= vfp_single_ftouiz,
	[FEXT_TO_IDX(FEXT_FTOSI)]	= vfp_single_ftosi,
	[FEXT_TO_IDX(FEXT_FTOSIZ)]	= vfp_single_ftosiz,
};





static u32
vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
			  struct vfp_single *vsm, u32 fpscr)
{
	struct vfp_single *vsp;
	u32 exceptions = 0;
	int tn, tm;

	tn = vfp_single_type(vsn);
	tm = vfp_single_type(vsm);

	if (tn & tm & VFP_INFINITY) {
		/*
		 * Two infinities.  Are they different signs?
		 */
		if (vsn->sign ^ vsm->sign) {
			/*
			 * different signs -> invalid
			 */
			exceptions = FPSCR_IOC;
			vsp = &vfp_single_default_qnan;
		} else {
			/*
			 * same signs -> valid
			 */
			vsp = vsn;
		}
	} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
		/*
		 * One infinity and one number -> infinity
		 */
		vsp = vsn;
	} else {
		/*
		 * 'n' is a NaN of some type
		 */
		return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
	}
	*vsd = *vsp;
	return exceptions;
}

static u32
vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
	       struct vfp_single *vsm, u32 fpscr)
{
	u32 exp_diff, m_sig;

	if (vsn->significand & 0x80000000 ||
	    vsm->significand & 0x80000000) {
		pr_info("VFP: bad FP values in %s\n", __func__);
		vfp_single_dump("VSN", vsn);
		vfp_single_dump("VSM", vsm);
	}

	/*
	 * Ensure that 'n' is the largest magnitude number.  Note that
	 * if 'n' and 'm' have equal exponents, we do not swap them.
	 * This ensures that NaN propagation works correctly.
	 */
	if (vsn->exponent < vsm->exponent) {
		struct vfp_single *t = vsn;
		vsn = vsm;
		vsm = t;
	}

	/*
	 * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,
	 * infinity or a NaN here.
	 */
	if (vsn->exponent == 255)
		return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);

	/*
	 * We have two proper numbers, where 'vsn' is the larger magnitude.
	 *
	 * Copy 'n' to 'd' before doing the arithmetic.
	 */
	*vsd = *vsn;

	/*
	 * Align both numbers.
	 */
	exp_diff = vsn->exponent - vsm->exponent;
	m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);

	/*
	 * If the signs are different, we are really subtracting.
	 */
	if (vsn->sign ^ vsm->sign) {
		m_sig = vsn->significand - m_sig;
		if ((s32)m_sig < 0) {
			vsd->sign = vfp_sign_negate(vsd->sign);
			m_sig = -m_sig;
		} else if (m_sig == 0) {
			vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
				      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
		}
	} else {
		m_sig = vsn->significand + m_sig;
	}
	vsd->significand = m_sig;

	return 0;
}

static u32
vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
{
	vfp_single_dump("VSN", vsn);
	vfp_single_dump("VSM", vsm);

	/*
	 * Ensure that 'n' is the largest magnitude number.  Note that
	 * if 'n' and 'm' have equal exponents, we do not swap them.
	 * This ensures that NaN propagation works correctly.
	 */
	if (vsn->exponent < vsm->exponent) {
		struct vfp_single *t = vsn;
		vsn = vsm;
		vsm = t;
		pr_debug("VFP: swapping M <-> N\n");
	}

	vsd->sign = vsn->sign ^ vsm->sign;

	/*
	 * If 'n' is an infinity or NaN, handle it.  'm' may be anything.
	 */
	if (vsn->exponent == 255) {
		if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
			return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
		if ((vsm->exponent | vsm->significand) == 0) {
			*vsd = vfp_single_default_qnan;
			return FPSCR_IOC;
		}
		vsd->exponent = vsn->exponent;
		vsd->significand = 0;
		return 0;
	}

	/*
	 * If 'm' is zero, the result is always zero.  In this case,
	 * 'n' may be zero or a number, but it doesn't matter which.
	 */
	if ((vsm->exponent | vsm->significand) == 0) {
		vsd->exponent = 0;
		vsd->significand = 0;
		return 0;
	}

	/*
	 * We add 2 to the destination exponent for the same reason as
	 * the addition case - though this time we have +1 from each
	 * input operand.
	 */
	vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
	vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);

	vfp_single_dump("VSD", vsd);
	return 0;
}

#define NEG_MULTIPLY	(1 << 0)
#define NEG_SUBTRACT	(1 << 1)

static u32
vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
{
	struct vfp_single vsd, vsp, vsn, vsm;
	u32 exceptions;
	s32 v;

	v = vfp_get_float(sn);
	pr_debug("VFP: s%u = %08x\n", sn, v);
	vfp_single_unpack(&vsn, v);
	if (vsn.exponent == 0 && vsn.significand)
		vfp_single_normalise_denormal(&vsn);

	vfp_single_unpack(&vsm, m);
	if (vsm.exponent == 0 && vsm.significand)
		vfp_single_normalise_denormal(&vsm);

	exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
	if (negate & NEG_MULTIPLY)
		vsp.sign = vfp_sign_negate(vsp.sign);

	v = vfp_get_float(sd);
	pr_debug("VFP: s%u = %08x\n", sd, v);
	vfp_single_unpack(&vsn, v);
	if (negate & NEG_SUBTRACT)
		vsn.sign = vfp_sign_negate(vsn.sign);

	exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);

	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
}

/*
 * Standard operations
 */

/*
 * sd = sd + (sn * sm)
 */
static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
{
	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
}

/*
 * sd = sd - (sn * sm)
 */
static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
{
	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
}

/*
 * sd = -sd + (sn * sm)
 */
static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
{
	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
}

/*
 * sd = -sd - (sn * sm)
 */
static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
{
	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
}

/*
 * sd = sn * sm
 */
static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
{
	struct vfp_single vsd, vsn, vsm;
	u32 exceptions;
	s32 n = vfp_get_float(sn);

	pr_debug("VFP: s%u = %08x\n", sn, n);

	vfp_single_unpack(&vsn, n);
	if (vsn.exponent == 0 && vsn.significand)
		vfp_single_normalise_denormal(&vsn);

	vfp_single_unpack(&vsm, m);
	if (vsm.exponent == 0 && vsm.significand)
		vfp_single_normalise_denormal(&vsm);

	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
}

/*
 * sd = -(sn * sm)
 */
static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
{
	struct vfp_single vsd, vsn, vsm;
	u32 exceptions;
	s32 n = vfp_get_float(sn);

	pr_debug("VFP: s%u = %08x\n", sn, n);

	vfp_single_unpack(&vsn, n);
	if (vsn.exponent == 0 && vsn.significand)
		vfp_single_normalise_denormal(&vsn);

	vfp_single_unpack(&vsm, m);
	if (vsm.exponent == 0 && vsm.significand)
		vfp_single_normalise_denormal(&vsm);

	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
	vsd.sign = vfp_sign_negate(vsd.sign);
	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
}

/*
 * sd = sn + sm
 */
static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
{
	struct vfp_single vsd, vsn, vsm;
	u32 exceptions;
	s32 n = vfp_get_float(sn);

	pr_debug("VFP: s%u = %08x\n", sn, n);

	/*
	 * Unpack and normalise denormals.
	 */
	vfp_single_unpack(&vsn, n);
	if (vsn.exponent == 0 && vsn.significand)
		vfp_single_normalise_denormal(&vsn);

	vfp_single_unpack(&vsm, m);
	if (vsm.exponent == 0 && vsm.significand)
		vfp_single_normalise_denormal(&vsm);

	exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);

	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
}

/*
 * sd = sn - sm
 */
static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
{
	/*
	 * Subtraction is addition with one sign inverted.
	 */
	return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
}

/*
 * sd = sn / sm
 */
static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
{
	struct vfp_single vsd, vsn, vsm;
	u32 exceptions = 0;
	s32 n = vfp_get_float(sn);
	int tm, tn;

	pr_debug("VFP: s%u = %08x\n", sn, n);

	vfp_single_unpack(&vsn, n);
	vfp_single_unpack(&vsm, m);

	vsd.sign = vsn.sign ^ vsm.sign;

	tn = vfp_single_type(&vsn);
	tm = vfp_single_type(&vsm);

	/*
	 * Is n a NAN?
	 */
	if (tn & VFP_NAN)
		goto vsn_nan;

	/*
	 * Is m a NAN?
	 */
	if (tm & VFP_NAN)
		goto vsm_nan;

	/*
	 * If n and m are infinity, the result is invalid
	 * If n and m are zero, the result is invalid
	 */
	if (tm & tn & (VFP_INFINITY|VFP_ZERO))
		goto invalid;

	/*
	 * If n is infinity, the result is infinity
	 */
	if (tn & VFP_INFINITY)
		goto infinity;

	/*
	 * If m is zero, raise div0 exception
	 */
	if (tm & VFP_ZERO)
		goto divzero;

	/*
	 * If m is infinity, or n is zero, the result is zero
	 */
	if (tm & VFP_INFINITY || tn & VFP_ZERO)
		goto zero;

	if (tn & VFP_DENORMAL)
		vfp_single_normalise_denormal(&vsn);
	if (tm & VFP_DENORMAL)
		vfp_single_normalise_denormal(&vsm);

	/*
	 * Ok, we have two numbers, we can perform division.
	 */
	vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
	vsm.significand <<= 1;
	if (vsm.significand <= (2 * vsn.significand)) {
		vsn.significand >>= 1;
		vsd.exponent++;
	}
1121 1122 1123 1124 1125
	{
		u64 significand = (u64)vsn.significand << 32;
		do_div(significand, vsm.significand);
		vsd.significand = significand;
	}
L
Linus Torvalds 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	if ((vsd.significand & 0x3f) == 0)
		vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);

	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");

 vsn_nan:
	exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
 pack:
	vfp_put_float(sd, vfp_single_pack(&vsd));
	return exceptions;

 vsm_nan:
	exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
	goto pack;

 zero:
	vsd.exponent = 0;
	vsd.significand = 0;
	goto pack;

 divzero:
	exceptions = FPSCR_DZC;
 infinity:
	vsd.exponent = 255;
	vsd.significand = 0;
	goto pack;

 invalid:
	vfp_put_float(sd, vfp_single_pack(&vfp_single_default_qnan));
	return FPSCR_IOC;
}

static u32 (* const fop_fns[16])(int sd, int sn, s32 m, u32 fpscr) = {
	[FOP_TO_IDX(FOP_FMAC)]	= vfp_single_fmac,
	[FOP_TO_IDX(FOP_FNMAC)]	= vfp_single_fnmac,
	[FOP_TO_IDX(FOP_FMSC)]	= vfp_single_fmsc,
	[FOP_TO_IDX(FOP_FNMSC)]	= vfp_single_fnmsc,
	[FOP_TO_IDX(FOP_FMUL)]	= vfp_single_fmul,
	[FOP_TO_IDX(FOP_FNMUL)]	= vfp_single_fnmul,
	[FOP_TO_IDX(FOP_FADD)]	= vfp_single_fadd,
	[FOP_TO_IDX(FOP_FSUB)]	= vfp_single_fsub,
	[FOP_TO_IDX(FOP_FDIV)]	= vfp_single_fdiv,
};

#define FREG_BANK(x)	((x) & 0x18)
#define FREG_IDX(x)	((x) & 7)

u32 vfp_single_cpdo(u32 inst, u32 fpscr)
{
	u32 op = inst & FOP_MASK;
	u32 exceptions = 0;
	unsigned int sd = vfp_get_sd(inst);
	unsigned int sn = vfp_get_sn(inst);
	unsigned int sm = vfp_get_sm(inst);
	unsigned int vecitr, veclen, vecstride;
	u32 (*fop)(int, int, s32, u32);

	veclen = fpscr & FPSCR_LENGTH_MASK;
	vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);

	/*
	 * If destination bank is zero, vector length is always '1'.
	 * ARM DDI0100F C5.1.3, C5.3.2.
	 */
	if (FREG_BANK(sd) == 0)
		veclen = 0;

	pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
		 (veclen >> FPSCR_LENGTH_BIT) + 1);

1196
	fop = (op == FOP_EXT) ? fop_extfns[FEXT_TO_IDX(inst)] : fop_fns[FOP_TO_IDX(op)];
L
Linus Torvalds 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	if (!fop)
		goto invalid;

	for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
		s32 m = vfp_get_float(sm);
		u32 except;

		if (op == FOP_EXT)
			pr_debug("VFP: itr%d (s%u) = op[%u] (s%u=%08x)\n",
				 vecitr >> FPSCR_LENGTH_BIT, sd, sn, sm, m);
		else
			pr_debug("VFP: itr%d (s%u) = (s%u) op[%u] (s%u=%08x)\n",
				 vecitr >> FPSCR_LENGTH_BIT, sd, sn,
				 FOP_TO_IDX(op), sm, m);

		except = fop(sd, sn, m, fpscr);
		pr_debug("VFP: itr%d: exceptions=%08x\n",
			 vecitr >> FPSCR_LENGTH_BIT, except);

		exceptions |= except;

		/*
		 * This ensures that comparisons only operate on scalars;
		 * comparisons always return with one FPSCR status bit set.
		 */
		if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
			break;

		/*
		 * CHECK: It appears to be undefined whether we stop when
		 * we encounter an exception.  We continue.
		 */

		sd = FREG_BANK(sd) + ((FREG_IDX(sd) + vecstride) & 7);
		sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
		if (FREG_BANK(sm) != 0)
			sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
	}
	return exceptions;

 invalid:
	return (u32)-1;
}